

Measurement of the W and Z cross section at $\sqrt{s} = 13.6$ TeV

Mihaela Marinescu

Birmingham HEP Seminar

8 May 2024

SM public plots

- Production of W/Z bosons at the LHC is of fundamental theoretical and experimental importance
 - Excellent experimental precision due to large cross sections and clean experimental signature from leptonic decays
 - Comparing measurements to theoretical predictions are an important test of perturbative QCD

 W^{\pm}

 \sim

Mihaela Marinescu

 Z/γ^*

Why measure the W and Z production?

 Increase our understanding of parton distribution functions (PDFs)

- Increase our understanding of parton distribution functions (PDFs)
- Test state-of-the-art theoretical predictions

- Increase our understanding of parton distribution functions (PDFs)
- Test state-of-the-art theoretical predictions
- Improve background modelling for other measurements and searches (BSM, Higgs, etc.)

- Increase our understanding of parton distribution functions (PDFs)
- Test state-of-the-art theoretical predictions
- Improve background modelling for other measurements and searches (BSM, Higgs, etc.)
- Determination of SM parameters
 (m_W, sin²θ^ℓ_{eff}, ...)

- Increase our understanding of parton distribution functions (PDFs)
- Test state-of-the-art theoretical predictions
- Improve background modelling for other measurements and searches (BSM, Higgs, etc.)
- Determination of SM parameters $(m_W^{}, sin^2 \theta^{\ell}_{eff}, ...)$
- Detector performance

- Increase our understanding of parton distribution functions (PDFs)
- Test state-of-the-art theoretical predictions
- Improve background modelling for other measurements and searches (BSM, Higgs, etc.)
- Determination of SM parameters
 (m_W, sin²θ^l_{eff}, ...)
- Detector performance

Parton distribution functions

- PDFs describe the probability density function of the longitudinal momentum fraction x at energy scale Q² for partons in the proton
- Any physics prediction at the LHC requires knowledge of PDFs
 - Essential for calculating cross sections and event generation
 - Uncertainties on PDFs translate into uncertainties on modelling and on the final measurement
- Driven by low-scale non-perturbative QCD cannot be computed from first principles
 - Instead determined by data through global PDF fits
- Different PDF sets provided by different collaborations
 - Differences arise from datasets used, theoretical calculation of cross sections, methodological choices for parametrisation of PDFs, uncertainty estimates, etc.

Constraining PDFs using W/Z production

- Inclusive W/Z production measurements are one of the key processes used in global PDF fits
- Lowest order contributions to W and Z production proceed via:

- W⁺/W⁻ ratios sensitive to valence quark PDFs, W/Z ratios sensitive to strange quark PDFs
- Most recent global PDF fit done by ATLAS, ATLASPDF21, used large sample of ATLAS data (and ep HERA data)
 - W/Z inclusive production, ttbar, W/Z+jets, inclusive jets, direct photon production in order to sample a wide range of the x and Q² plane
 - W/Z data constrains strange to light sea quarks ratio at low-x
- PDF uncertainties are the leading contributions to theoretical uncertainties on measurements at the LHC
 - Measurements of Higgs couplings and EW parameters
 - Beyond-the-Standard-Model (BSM) searches

 $u\overline{d}, c\overline{s} \quad (u\overline{s}, c\overline{d}) \to W^+$ $d\overline{u}, s\overline{c} \quad (s\overline{u}, d\overline{c}) \to W^$ $q\overline{q} \to Z/\gamma^*$

W and Z measurements for detector performance

Tag-and-Probe method

- Use known resonance (eg. Z → ll) to provide an unbiased sample of physics objects
- One lepton (tag) meets strict selection requirements, while the other lepton (probe) is used as an unbiased object
- Method used to determine the efficiency at each step of the electron/muon reconstruction stage
 - Reconstruction, identification and isolation (later slides)
 - Trigger performance

Luminosity determination using Z→ℓℓ events

- Counting Z bosons provides an independent check on luminosity measurement
- Can also be used to monitor luminosity, with a time granularity of about 60 s C = N

$$\mathcal{L} = \frac{N}{\sigma}$$

Mihaela Marinescu

- Inner Detector: silicon-based pixel and semiconductor tracker, transition radiation tracker (TRT)
- Calorimeters: liquid argon (LAr) and Tile calorimeters
- Muon Spectrometer: precision tracking chambers, trigger chambers
- Trigger: filters interesting events using custom hardware (Level-1: 40 MHz → 100 kHz) and software-based trigger (HLT: 100 kHz → 1 kHz)

Run-3 upgrades:

• New Small Wheel (NSW): innermost muon station in forward region replaced with completely new detector to provide good trigger and tracking at endcap with high background rates towards HL-LHC

Run-3 upgrades:

- New Small Wheel (NSW)
- LAr Calorimeter electronics: increased readout granularity by replacing coarse trigger towers with supercells → improvement for L1 trigger at higher luminosities and pileup

Run-3 upgrades:

- New Small Wheel (NSW)
- LAr Calorimeter electronics
- Trigger and data acquisition (TDAQ): new L1 hardware, new readout system

Reconstruction & Identification

- Muons are reconstructed using information from the Muon Spectrometer (MS), the Inner Detector (ID) and the Calorimeter
- **Combined muons** (95% of muons used for analysis) are identified by matching MS tracks to the ID tracks and performing a combined fit
 - Other algorithms help recover muon reconstruction efficiency at low p_T or in regions of limited detector coverage
- ID/quality working points are defined based on purity level and kinematics
 - Loose: high efficiency but low purity and large systematics
 - Medium: suitable efficiency and purity with low systematics

Reconstruction & Identification

- Muons are reconstructed using information from the Muon Spectrometer (MS), the Inner Detector (ID) and the Calorimeter
- **Combined muons** (95% of muons used for analysis) are identified by matching MS tracks to the ID tracks and performing a combined fit
 - Other algorithms help recover muon reconstruction efficiency at low p_T or in regions of limited detector coverage
- ID/quality working points are defined based on purity level and kinematics
 - Loose: high efficiency but low purity and large systematics
 - Medium: suitable efficiency and purity with low systematics
- **Muon reconstruction & ID efficiency**: measured using Tag & Probe method from $Z \rightarrow \mu\mu$ or $J/\psi \rightarrow \mu\mu$ decays
 - "Tag" muon triggers event and passes tight criteria, "probe" muon is used to test efficiency of a certain reconstruction algorithm or ID working point
 - The deviation of the simulation from the detector behavior is estimated by a scale factor (efficiencies ratio) that is used to correct the simulation

$$\varepsilon(X) = \frac{N_{\text{matches}}(X)}{N_{\text{probes}}}$$

N_{matches}(X) is the number of probes matched to a muon candidate identified with the algorithm X

Reconstruction & Identification

- Muons are reconstructed using information from the Muon Spectrometer (MS), the Inner Detector (ID) and the Calorimeter
- **Combined muons** (95% of muons used for analysis) are identified by matching MS tracks to the ID tracks and performing a combined fit
 - Other algorithms help recover muon reconstruction efficiency at low p_T or in regions of limited detector coverage
- ID/quality working points are defined based on purity level and kinematics
 - Loose: high efficiency but low purity and large systematics
 - Medium: suitable efficiency and purity with low systematics

Muon public plots

- **Muon reconstruction & ID efficiency**: measured using Tag & Probe method from $Z \rightarrow \mu\mu$ or $J/\psi \rightarrow \mu\mu$ decays
 - "Tag" muon triggers event and passes tight criteria, "probe" muon is used to test efficiency of a certain reconstruction algorithm or ID working point
 - The deviation of the simulation from the detector behavior is estimated by a scale factor (efficiencies ratio) that is used to correct the simulation

Charge-dependent momentum scale calibration

- Charge-dependent bias on muon momentum scale introduced by imperfect knowledge of the real detector geometry
- Reconstructed Z mass from $Z \rightarrow \mu\mu$ decays is sensitive to the bias through its impact on the variance of $m_{\mu\nu}$ distribution
 - Biases used to correct muon p_T evaluated by minimising variance of $m_{\mu\mu}$ distribution in η - ϕ grid
 - **Correction applied to data** simulation already assumes ideal detector alignment

Charge-dependent momentum scale calibration

- Charge-dependent bias on muon momentum scale introduced by imperfect knowledge of the real detector geometry
- Reconstructed Z mass from $Z \rightarrow \mu\mu$ decays is sensitive to the bias through its impact on the variance of m_m distribution
 - Biases used to correct muon p_T evaluated by minimising variance of $m_{\mu\mu}$ distribution in η - ϕ grid
 - **Correction applied to data** simulation already assumes ideal detector alignment

Charge-dependent bias maps correctly calibrate the muon momentum

0.5

-2 -1.5

1.5 2 2.5

-0.4

Muon momentum calibration

- Performed to correct mis-modelling effects in simulation
 - Muon momentum scale correction accounts for inaccuracy in description of magnetic field and energy loss in calorimeter
 - **Muon momentum resolution smearing** accounts for energy loss fluctuation in the material, multiple scattering, intrinsic detector resolution and residual misalignment
 - Corrections are extracted by fitting the $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ invariant mass spectra to provide the best agreement between simulation and data

data/simulation agreement after momentum scale and smearing calibration

Electrons

Reconstruction

- Electrons are reconstructed using energy deposits in the electromagnetic calorimeter and tracks from the Inner Detector (ID)
 - Dynamic, variable-sized clusters of calorimeter cells (superclusters) are used in order to recover energy from Bremsstrahlung photons or conversion electrons
- An electron candidate is identified as a supercluster matching a track reconstructed in the ID
 - If a match is found, the track is re-fitted to account for Bremsstrahlung
- Electron reconstruction efficiency: measured using Tag & Probe method from Z → ee decays

Electrons

Energy calibration

- Electron calibration relies on multiple steps to correct energy response of electrons
 - Corrections to match data and MC energy response/resolution
 - Correction to recover missing information in raw energy

Data and MC agreement for the Z
 → ee invariant mass after energy
 scale correction is applied

• Likelihood discriminants constructed from shower shape and track-based variables that can discriminate

Identification

- prompt electrons from different backgrounds:
 - Fake electrons including energy deposits from hadronic jets or converted photons

ATLAS Preliminary

 $1.0 - \sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹

Non-prompt electrons produced in heavy flavour decays

Efficiency

Data/MC

Jncert. [%]

0.7

0.9

0.5

50

75

100

125

150

175

E_T [GeV]

200

- Three ID working points are defined with different efficiencies and fake rates
 - Tight WP provides the best background rejection at the expense of smaller efficiency
- Optimised in bins of η and E_T using Z \rightarrow ee data and MC simulation

ATLAS Preliminary

= 13 TeV, 139 fb-

Efficiency

0.6

0.4

|n| < 2.47

Z-mass method

7-isolation method

> 25 GeV

Medium, combination

Tight, combination

Lepton isolation

 Leptons (electrons and muons) from prompt decays of W/Z bosons can be discriminated from leptons from hadronic sources by measuring the amount of hadronic activity in their vicinity (isolation)

- Track isolation variables with variable cone sizes and calorimeter isolation variables are defined to reject background from different sources
- Several working points that compromise between highly-efficient identification of prompt leptons and good background rejection

Missing Transverse Momentum

CERN-EP-2024-023

0

Ο

0

W/Z cross section measurement at \sqrt{s} = 13.6 TeV

- Measurement of the inclusive W/Z production cross sections and their ratios
 - Leptonic final states used for reconstruction and signal identification
 - ttbar/W ratio also calculated using recently published ttbar results (<u>PLB 848 (2024) 138376</u>)
- Test theoretical predictions at the new centre-of-mass energy of 13.6 TeV
- Large cross sections and easily identifiable leptonic decays of the W and Z bosons provide a clean experimental signature
 - Important for early validation of detector performance and software

Measurement of vector boson production cross sections and their ratios using p p collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS Collaboration

Data

- Measurement performed using 2022 data from the beginning of Run-3
 - 29 fb⁻¹ after data quality requirements
 - Selected using a combination of single electron and muon triggers
 - Lowest threshold triggers with tighter isolation and identification criteria maximise number of events
 - Higher threshold triggers with relaxed or no isolation requirements to recover efficiency at high lepton p_T
 - Pre-scaled support triggers with no isolation requirements are used to select events for background estimation

Event selection

Electrons: $p_T > 27$ GeV, TightLH identification, tight isolation **Muons:** $p_T > 27$ GeV, medium quality, tight isolation **Z-boson selection:** 2 opposite sign, same flavour leptons, 66 < m_{\parallel} < 116 GeV **W-boson selection:** only 1 lepton, $E_T^{miss} > 25$ GeV, $m_T^{W} > 50$ GeV

$$m_{\rm T}^W = \sqrt{2p_{\rm T}^{\nu}p_{\rm T}^{\ell}(1 - \cos \Delta \phi^{\nu})}$$

estimated using $E_{\rm T}^{\rm miss}$ lepton $p_{\rm T}$ $\Delta \phi$ between
lepton and $E_{\rm T}^{\rm miss}$

Mihaela Marinescu

Background modelling

- EW + top background: estimated using simulation
 - Diboson (VV): one of the bosons decays hadronically or invisibly
 - Ttbar + single-top: (semi-)leptonic decay mode with one e/μ
 - $Z \rightarrow ee/\mu\mu$: where one e/μ is not identified and E_{T}^{miss} from mis-measured hadronic energy
 - W $\rightarrow \tau v$: where τ decays into e/μ
- Multi-jet: estimated using data-driven method
 - Fake electrons and energy mis-measurement from diverse QCD processes
 - Semi-leptonic heavy-quark decays resulting in real but non-prompt electron or muon

Data-driven background estimation

- Major source of background in W channels is multijet
- Diverse background composition including fake leptons and energy mis-measurement
 - Cannot be modelled accurately using simulation
- Multijets concentrated at lower values of E_{τ}^{miss} and m_{τ}^{W} than signal
- Event categories corresponding to different regions in phase space and isolation
 - Events selected in control regions using support triggers with no isolation requirements and anti-isolated leptons for higher multijet yield
 - Scan track isolation to reduce isolation bias

Lepton isolation CRs

Data-driven background estimation

- Multijet templates derived from control regions requiring leptons to fail isolation
 - Support triggers used to select events in control regions
 - EW+top contamination subtracted from data, estimated using MC
- Several multijet templates created from several isolation slices in control regions
- Multijet normalisation from profile-likelihood fits in a fitting region
 - Extract normalisation using multijet templates from 4 isolation slices and 2 discriminating variables (E_T^{miss} and m_T^{W}) in each channel
- Perform extrapolation in track isolation in order to reduce isolation bias on final multijet yield
 - Central value obtained from quadratic fit result with difference between linear and quadratic fit results as additional uncertainty

Cross section measurement

- Fiducial cross sections are extracted with **binned profile likelihood fits** using 8 channels:
 - 2 Z-boson channels (ee and μμ), 4 W-boson channels (e⁺v, e⁻v, μ⁺v and μ⁻v) and 2 ttbar channels (eµ with 1 b-jet and eµ with 2 b-jets)

Results: fiducial cross sections

- Fiducial cross sections compared to theoretical predictions calculated with different PDF sets
 - Theoretical predictions are calculated to NNLO + NNLL QCD accuracy and NLO EW accuracy
 - Good agreement between results and SM predictions

Channel	$\sigma^{\rm fid} \pm \delta \sigma_{\rm stat.+syst.}$ [pb]
$Z \rightarrow e^+ e^-$	740 ± 22
$Z ightarrow \mu^+ \mu^-$	747 ± 23
$Z \rightarrow \ell^+ \ell^-$	744 ± 20
$W^- ightarrow e^- ar{ u}$	3380 ± 170
$W^- ightarrow \mu^- ar{ u}$	3310 ± 130
$W^- ightarrow \ell^- ar{ u}$	3310 ± 120
$W^+ ightarrow e^+ \nu$	4350 ± 200
$W^+ ightarrow \mu^+ \nu$	4240 ± 160
$W^+ \rightarrow \ell^+ \nu$	4250 ± 150
$W^{\pm} ightarrow \ell^{\pm} \nu$	7560 ± 270

Results: fiducial cross sections

- Fiducial cross sections compared to theoretical predictions calculated with different PDF sets
 - Theoretical predictions are calculated to NNLO + NNLL QCD accuracy and NLO EW accuracy
 - Good agreement between results and SM predictions

- Dominant sources of uncertainties:
 - W[±]: luminosity, jet and multi-jet background
 - Z: luminosity, lepton efficiency

Category	$\sigma(W^- \to \ell^- \bar{\nu})$	$\sigma(W^+ \to \ell^+ \nu)$	$\sigma(W^\pm \to \ell \nu)$	$\sigma(Z \to \ell \ell)$
Luminosity	2.5	2.4	2.4	2.2
Pile-up	0.5	0.7	0.6	0.8
MC statistics	< 0.2	0.2	< 0.2	< 0.2
Lepton trigger	1.0	0.9	0.9	0.2
Electron reconstruction	0.4	0.5	0.4	0.9
Muon reconstruction	0.6	0.6	0.6	1.4
Multi-jet	1.2	1.2	1.2	-
Other background modelling	0.4	0.4	0.4	< 0.2
Jet energy scale	1.3	1.3	1.3	
Jet energy resolution	< 0.2	0.2	< 0.2	
NNJVT	1.4	1.3	1.3	- J
$E_{\rm T}^{\rm muss}$ track soft term	< 0.2	0.3	0.3	-
PDF	0.5	0.5	0.3	< 0.2
QCD scale (ME and PS)	0.8	0.7	0.6	0.3
Flavour tagging	-	-	-	-
$t\bar{t}$ modelling	-	-	-	-
Total systematic impact [%]	3.7	3.5	3.5	2.7
Statistical impact [%]	0.01	0.01	0.01	0.02

Results: fiducial cross sections

- Fiducial cross sections compared to theoretical predictions calculated with different PDF sets
 - Theoretical predictions are calculated to NNLO + NNLL QCD accuracy and NLO EW accuracy
 - Good agreement between results and SM predictions

- Dominant sources of uncertainties:
 - W[±]: luminosity, jet and multi-jet background
 - Z: luminosity, lepton efficiency

Category	$\sigma(W^- \rightarrow \ell^- \bar{\nu})$	$\sigma(W^+ \to \ell^+ \nu)$	$\sigma(W^\pm \to \ell \nu)$	$\sigma(Z \to \ell \ell)$
Luminosity	2.5	2.4	2.4	2.2
Pile-up	0.5	0.7	0.6	0.8
MC statistics	< 0.2	0.2	< 0.2	< 0.2
Lepton trigger	1.0	0.9	0.9	0.2
Electron reconstruction	0.4	0.5	0.4	0.9
Muon reconstruction	0.6	0.6	0.6	1.4
Multi-jet	1.2	1.2	1.2	-
Other background modelling	0.4	0.4	0.4	< 0.2
Jet energy scale	1.3	1.3	1.3	-
Jet energy resolution	< 0.2	0.2	< 0.2	-
NNJVT	1.4	1.3	1.3	-
$E_{\rm T}^{\rm miss}$ track soft term	< 0.2	0.3	0.3	-
PDF	0.5	0.5	0.3	< 0.2
QCD scale (ME and PS)	0.8	0.7	0.6	0.3
Flavour tagging	-	-	-	
$t\bar{t}$ modelling	-	—	-	_
Total systematic impact [%]	3.7	3.5	3.5	2.7
Statistical impact [%]	0.01	0.01	0.01	0.02

- Cross-section ratios benefit from cancellations of some of the experimental uncertainties
- Good agreement between W/Z results and SM predictions
 - ttbar/W[±] ratio shows slight deviations from the theoretical predictions

Ratio	$R \pm \delta R_{stat.+syst.}$
W^{+}/W^{-}	1.286 ± 0.022
W^{\pm}/Z	10.17 ± 0.25
$t\bar{t}/W^{-}$	0.256 ± 0.008
$t\bar{t}/W^+$	0.199 ± 0.006
$t\bar{t}/W^{\pm}$	0.112 ± 0.003

13

13

- Cross-section ratios benefit from cancellations of some of the experimental uncertainties
- Good agreement between W/Z results and SM predictions
 - ttbar/W[±] ratio shows slight deviations from the theoretical predictions

Category	$R_{W^{+}/W^{-}}$	$R_{W^{\pm}/Z}$	$R_{t\bar{t}/W^{\pm}}$
Luminosity	< 0.2	0.3	< 0.2
Pile-up	< 0.2	< 0.2	< 0.2
MC statistics	< 0.2	< 0.2	< 0.2
Lepton trigger	< 0.2	0.7	0.8
Electron reconstruction	< 0.2	0.5	0.4
Muon reconstruction	0.2	0.8	0.6
Multi-jet	1.6	1.1	1.0
Other background modelling	< 0.2	0.3	0.9
Jet energy scale	< 0.2	1.3	1.3
Jet energy resolution	< 0.2	< 0.2	< 0.2
NNJVT	< 0.2	1.3	< 0.2
$E_{\rm T}^{\rm miss}$ track soft term	< 0.2	0.3	0.3
PDF	0.5	0.2	0.4
QCD scale (ME and PS)	< 0.2	0.7	0.7
Flavour tagging	-	-	< 0.2
$t\bar{t}$ modelling	—	—	1.1
Total systematic impact [%]	1.7	2.4	2.5
Statistical impact [%]	0.01	0.02	0.32

- Cross-section ratios benefit from cancellations of some of the experimental uncertainties
- Good agreement between W/Z results and SM predictions
 - ttbar/W[±] ratio shows slight deviations from the theoretical predictions

Category	$R_{W^{+}/W^{-}}$	$R_{W^{\pm}/Z}$	$R_{t\bar{t}/W^{\pm}}$
Luminosity	< 0.2	0.3	< 0.2
Pile-up	< 0.2	< 0.2	< 0.2
MC statistics	< 0.2	< 0.2	< 0.2
Lepton trigger	< 0.2	0.7	0.8
Electron reconstruction	< 0.2	0.5	0.4
Muon reconstruction	0.2	0.8	0.6
Multi-jet	1.6	1.1	1.0
Other background modelling	< 0.2	0.3	0.9
Jet energy scale	< 0.2	1.3	1.3
Jet energy resolution	< 0.2	< 0.2	< 0.2
NNJVT	< 0.2	1.3	< 0.2
$E_{\rm T}^{\rm miss}$ track soft term	< 0.2	0.3	0.3
PDF	0.5	0.2	0.4
QCD scale (ME and PS)	< 0.2	0.7	0.7
Flavour tagging	-	-	< 0.2
$t\bar{t}$ modelling	—	—	1.1
Total systematic impact [%]	1.7	2.4	2.5
Statistical impact [%]	0.01	0.02	0.32

- Cross-section ratios benefit from cancellations of some of the experimental uncertainties
- Good agreement between W/Z results and SM predictions
 - ttbar/W[±] ratio shows slight deviations from the theoretical predictions

Category	$R_{W^{+}/W^{-}}$	$R_{W^{\pm}/Z}$	$R_{t\bar{t}/W^{\pm}}$
Luminosity	< 0.2	0.3	< 0.2
Pile-up	< 0.2	< 0.2	< 0.2
MC statistics	< 0.2	< 0.2	< 0.2
Lepton trigger	< 0.2	0.7	0.8
Electron reconstruction	< 0.2	0.5	0.4
Muon reconstruction	0.2	0.8	0.6
Multi-jet	1.6	1.1	1.0
Other background modelling	< 0.2	0.3	0.9
Jet energy scale	< 0.2	1.3	1.3
Jet energy resolution	< 0.2	< 0.2	< 0.2
NNJVT	< 0.2	1.3	< 0.2
$E_{\rm T}^{\rm miss}$ track soft term	< 0.2	0.3	0.3
PDF	0.5	0.2	0.4
QCD scale (ME and PS)	< 0.2	0.7	0.7
Flavour tagging			< 0.2
$t\bar{t}$ modelling	-	-	1.1
Total systematic impact [%]	1./	2.4	2.5
Statistical impact [%]	0.01	0.02	0.32

Summary

- Measuring the W and Z boson cross sections provides a benchmark for our understanding of QCD and EW processes
- Large cross sections and clean experimental signatures from leptonic decays allow percent-level experimental precision (sub-percent level for ratios)
 - Sensitive to PDFs
 - Essential for detector performance
- Measurement of W and Z cross sections and their ratios at $\sqrt{s} = 13.6 \text{ TeV}$
 - ttbar/W ratio also measured for the first time in ATLAS
 - Good agreement between results and predictions calculated with different PDF sets

