

Higgs, what now?

Measurements of VH, $H \rightarrow bb/cc$ and the

ATLAS Higgs Physics Program in the Post-Higgs-Boson-Discovery Era

Maria Mironova

University of Birmingham May 29

Why are we doing collider physics?

- Higgs boson discovery in 2012
- Coupling to bosons established in Run I of the LHC

- Coupling of Higgs to heavy fermions established
- \rightarrow In direct decays or by measuring ttH production mode

• More recently: evidence of Higgs coupling to muons in direct decays

- Higgs program at the LHC has been very successful so far
- However, no new physics found at the LHC
- As the most unknow particle, clear motivation to use LHC dataset to probe the Higgs couplings as precisely as possible
- \rightarrow "Higgs a tool for new physics searches"
- Open questions:
 - Coupling to lighter fermions?
 - Higgs self-coupling?
 - Coupling to invisible particles? (e.g. dark matter?)

Higgs as a discovery tool

Can consider grouping Higgs measurements into different categories:

Higgs couplings (two-body decays):

New physics can manifest as:

- Precision correction to established decay channels, i.e. $H \rightarrow ZZ$, WW, $\gamma\gamma$, bb, $\tau\tau \rightarrow$ precision/differential measurements
- Significant modifications to more rare decays H→µµ, cc (e.g. arXiv 1804.02400, 1508.01501) → searches

Tri-linear Higgs self-coupling:

- Higgs self-coupling κ_λ one of the main SM parameters not yet measured
- Strong di-Higgs program in ATLAS \rightarrow largest sensitivity in HH \rightarrow bbbb, bb $\gamma\gamma$, bbtt (new for LHCP:<u>ATLAS-CONF-2024-006</u>)

Dedicated new physics searches/measurements with Higgs:

• Can set up dedicated analyses targeting specific rare processes or specific kinematics, e.g. $H \rightarrow J/\psi + X$ decay, H(yy)+X, Quantum entanglement

Nature 607, 52 (2022)

LHC Run 2

Precisely measuring Higgs couplings

Highlights of Run 2 measurements

- ATLAS physics program has been hugely successful in probing SM predictions across many orders of magnitude
- Higgs physics program only a subset of the interesting physics measurements in ATLAS
- Specifically, weak boson and top quark measurements are crucial tests of the SM at different center-of-mass energy scales
- → Also important for Higgs measurements, as they are some of the most important backgrounds and drive MC generator decisions

Standard Model Production Cross Section Measurements

Status: October 2023

VH, H→bb,cc

- Since Higgs discovery, moving towards studying Higgs boson in detail
- Higgs coupling to b-quarks has been well-established (observation paper), largest contribution to Higgs decay width (branching ratio 58%)
- Higgs coupling to c-quarks is most common Higgs decay channel that has not yet been observed (branching ratio 2.7%)
- New physics effects can manifest both as precision corrections to H→bb decay rate, or significant modifications to the smaller H→cc decay rate (e.g see arXiv <u>1804.02400</u>, <u>1508.01501</u>)
- VH(bb/cc) analyses target the VH production mode:
 - Use leptonic decays of the W and Z boson to suppress QCD background
 - Exploit similarity of $H \rightarrow bb/cc$ decays through similar analysis strategies and common samples and calibrations
 - Exploit flavour tagging to identify jets originating from b- and c-jets

Boosted vs resolved

- Two different topologies used based on transverse momentum of the Higgs boson
- High momentum Higgs boson decays more susceptible to new physics effects

29 May 2024

Lepton channels

Categorisation of events into channels by the decay of the vector boson into leptons (electrons or muons)

0 lepton 2 b/c-tagged jets + MET

I lepton 2 b/c-tagged jets + lepton +MET

2 lepton 2 b/c-tagged jets + 2 leptons

Signal regions

Signal: $VH(\rightarrow bb/cc)$, $VZ(\rightarrow cc)$, $VW(\rightarrow cq)$

Major backgrounds: W+jets, Z+jets, Top \rightarrow Constrained in dedicated control regions Subdominant backgrounds: VV background

Maria Mironova

180

m_{cc} [GeV]

Control regions

- Excellent understanding of background necessary for an analysis with such small signal
- \rightarrow all major backgrounds measured in regions with dedicated event selections

V+jets background

- One CR per SR ٠
- **Events with large** separation between jets (high ΔR_{cc})
- \rightarrow Constrain V + heavy flavour jets

- In 0/1 lepton
- Require \geq | b-tag
- \rightarrow Constrain ttbar and single top backgrounds

V+jets modelling in ATLAS

 Current baseline generator for V+jets in ATLAS is Sherpa 2.2.11 (superseding Sherpa 2.2.1)

- Several improvements: corrected heavy flavour production fractions, higher order QCD/EW corrections, computational improvements
- Alternative generator for modelling studies is MadGraph5_aMC@NLO+Pythia8 w/ up to 3 additional partons at NLO, using FxFx ME and PS merging prescription

Table 1: Summary of the SHERPA 2.2.1 and 2.2.11 configurations.						
Configuration	Sherpa 2.2.1	Sherpa 2.2.11				
Generator version	Sherpa 2.2.1	Sherpa 2.2.11				
PDF set	NNPDF3.0nnlo	NNPDF3.0nnlo				
EW input scheme	Effective	$\sin^2 \theta_{\rm eff}$				
QCD accuracy	0–2j@NLO+3,4j@LO	0–2j@NLO+3,4,5j@LO				
NLO EW _{virt} corrections	No	Yes				
Subtraction scheme	Default	Modified Catani-Seymour				
Special treatment for unordered histories	No	Yes				
Scale for H-events	STRICT_METS	$H'_{ m T}$				
Gluon colour/spin exact matching	Yes	No				
Core process for K-factor	$2 \rightarrow 4$	$2 \rightarrow 2$				
Phase-space strategy	Sliced in max $(H_{\rm T}, p_{\rm T}^V)$	Analytic enhancement				

29 May 2024

arXiv 2112.09588

V+jets modelling approach

- Start from nominal simulated samples
 - Nominally simulated with Sherpa 2.2.1 5F MEPS@NLO (NLO-accurate ME for up to 2 jets, LO-accurate ME for up to four jets)
 - Samples produced in slices of $max(H_T, p_T^V)$ to control phase space sampling
 - Filters are applied to select events with heavy flavour jets
 - More details on generator setup <u>here</u>
- Constrain **normalisations** (and m_{cc} shapes) of V+jets in dedicated control regions, e.g. through selecting events with high ΔR between jets
- Float normalisations based on di-jet flavour:
 - VH(bb): FloatV+hf (bb,bc,bl,cc) separately and take remaining components as predicted by simulation + uncertainty
 - VH(cc): Float separately V+hf (bb,cc), V+mf (bc,bl,cl) and V+l
 - \rightarrow In both cases, with uncertainties applied on flavour composition
- Determine floating normalisations with as much granularity as data allows (in different bins of jet multiplicity, p_T of vector boson)

Example of V+jets control region in VH(cc)

V+jets modelling approach

- Derive uncertainties by considering different variations
 - MadGraph+Pythia8 5F MEPS@LO (up to 4 partons) → dominant uncertainty
 - Renormalisation/factorisation scale (μ_R , μ_F) variations
- Calculate shape and normalisation effects of each alternative generator
- Group normalisation effects together, to calculate:
 - **Overall normalisation** uncertainties on smaller V+jets components
 - Extrapolation uncertainties between different analysis regions and on the flavour composition of backgrounds
 - Shape uncertainties: Consider also variations on the shapes of kinematic distributions based on the alternative samples, and include shape uncertainties in the analysis
 - \rightarrow directly parametrise the ratio of nominal and alternative generators on m_{cc}

Extrapolation uncertainties calculated from yields n_1 and n_2 from regions 1 and 2 (e.g. SR and CR):

Different sources added in quadrature

$VH, H \rightarrow bb, cc results$

Legacy analysis is a combination of three separate analyses, which have been previously published:

- <u>Resolved VH(bb)</u>:
 - MVA based analysis following $H \rightarrow bb$ observation strategy
 - Total significance of 6.7σ, WH/ZH measurement, STXS measurement and EFT interpretation
- Boosted VH(bb):
 - Cut-based analysis, first iteration of analysis using boosted reconstruction
 - Total observed significance of 2.1 $\sigma,$ STXS measurement and EFT interpretation
- <u>VH(cc)</u>: (resolved regime)
 - Cut-based analysis, first iteration of this analysis using Full Run 2 dataset and all three lepton channels)
 - Upper Limit of 26 x SM, first direct constraint on $|\kappa_c|$ < 8.5

VH(bb) cross-sections

VH(cc) breakdown of uncertainties

- Uncertainty on VH(cc) ~ 15.3
- **Stat** and **systematic** uncertainties of the same order
- Largest contributions to systematic uncertainties:
 - Z+jets
 - Top
 - Flavour tagging
- Knowledge of modelling of main analysis backgrounds is driving the size of the systematic uncertainties
- \rightarrow Significant improvements necessary on both V+jets and top quark modelling

Set of NPs	Impact		
Total	± 15.3		
Data Stat	± 10.0		
Data stat only	± 7.9		
Float. norm	± 5.1		
Full Syst	± 11.5		
VHcc modelling	± 2.1		
Background modelling	± 8.8		
W+jets	± 2.9		
Z+jets	± 7.0		
Тор	± 3.9		
Diboson	± 1.00		
Multi-jet	± 0.98		
Hbb	± 0.78		

Experimental Syst (excl FTAG)	± 2.96
Lepton	± 0.49
MET	± 0.18
JET	± 2.84
Pile-up/Lumi	± 0.29
FTAG + TT	± 4.29
FTAG (b-jet)	± .
FTAG (c-jet)	± 1.67
FTAG (l-jet)	± 0.35
FTAG (tau-jet)	± 0.33
TT ΔR	± 3.33
DT norm	± 1.74
MC Stat	± 4.23

VH, H→bb,cc analysis improvements

- Several areas of improvement possible for VH, $H \rightarrow bb$, cc analyses on the Full Run 2 dataset:
- Jet flavour tagging:
 - Definition of a coherent jet flavour tagging strategy for b- and c-jets → Close collaboration with ATLAS jet flavour tagging group
 - Overall improvement in sensitivity of +40% for $H \rightarrow cc$ decays from flavour tagging improvements
- Machine learning:
 - Boosted decision trees used as fit discriminant in all analysis categories → +50% improvement in sensitivity to H→cc decays
- Background modelling:
 - ML based approach for estimating theoretical uncertainties (CARL)
 → reweighting to ensure sufficient statistics in alterative MC samples
 - One of the driving analyses in ATLAS for informing theory/MC generator decisions in ATLAS, close overlap with Standard Model measurements of W/Z boson processes

Ongoing VH, H→bb,cc efforts

Efforts ongoing to publish a coherent analysis of the entire VH(bb/cc) phase space:

- → Define analysis strategy and treatment of backgrounds optimised for all analyses and improve on analysis results of standalone published analyses
- Separation of VH(bb) and VH(cc) events through flavour tagging
- Separation of boosted and resolved regime by p_T of W/Z

Deliverables:

- Inclusive $\mu_{\text{VH(bb)}}$ and $\mu_{\text{VH(cc)}}$ signal strengths measurements
- Combined κ_c/κ_b measurements
- STXS cross-section measurement in VH(bb)
- Upper limit on $\mu_{VH(cc)}$
- EFT interpretation

29 May 2024

Ongoing VH, H→bb,cc efforts

Given our current MC samples, have to design fit model such that , we rely on data-driven estimates description of both V+jets and top

- → Stay tuned for new VH(bb/cc) results soon
- → Need to improve generator setup for Run 3

/													v
	2L	SR High ∆R CR	SR High ΔR CR	- SR High ∆R CR	- SR High ∆R CR	- SR High ∆R CR	- SR High ΔR CR	- SR High ΔR CR	SR High ∆R CR	- SR High ΔR CR	ਨ SR	SR	
2 b-tag	Ţ	Low ΔR CR SR High ΔR CR	Low ∆R CR SR High ∆R CR		Low ∆R CR SR High ∆R CR	Low ∆R CR SR High ∆R CR		Low ∆R CR SR High ∆R CR	Low ΔR CR SR High ΔR CR		SR Top CR	SR Top CR	
	OL				SR High ∆R CR	SR High ∆R CR	SR High ∆R CR	SR High ∆R CR	SR High ∆R CR	SR High ΔR CR	SR Top CR	SR Top CR	
	Æ	2 jet	3 jet	4 jet	2 jet	3 jet	4 jet	2 jet	3 jet	4 jet			
	Re	solved VH(bl	0)								Boosted VH(bb)		
T D-tag	7	Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR		Regions with a single bin		
1 c-tag	ОГ				Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Regions with binned distributions (M\	/A, m _{cc} , mJ or pTV)	
	(2 jet	3 jet	4 jet	2 jet	3 jet	4 jet	2 jet	3 jet	4 jet	Legend		
5 5	2L	SR High ∆R CR ¹	SR High ΔR CR ¹		SR High ∆R CR 1	SR High ΔR CR ¹		SR High ∆R CR ¹	SR High ∆R CR 1	tag and 2 tight	c-tag regions		
+ 2 tight c-tag	7	High ΔR CR ¹	High ΔR CR ¹		High ΔR CR ¹	High AR CR 1		High ∆R CR 1	High ∆R CR 1	1 Note: CPHick	split into 1 loose o tag + 1 tight o		
1 loose c-tag 1 tight c-tag		SB	SB		High ∆R CR 1	High ∆R CR ¹		High ΔR CR 1	High ΔR CR ¹				p ^v [GeV
		2 jet	3 jet		2 jet SR	3 jet SR		2 jet SR	SR	0	200 250 300 3	350 400	450 5
	21	High ∆R CR	High ∆R CR		High AR CR	High AR CR		High ∆R CR	High AR CR	E	Low		
i ugin o-tay	H	High ΔR CR	High ΔR CR		High ΔR CR	High ΔR CR		High AR CR	High ΔR CR	0.5			
1 no c-tag	Ţ				SR	SR		SR	SR			SR	
	OL		- ,		SR High ΔR CR	SR High ΔR CR		SR High ∆R CR	SR High ΔR CR				
		2 iet	3 iet		2 jet	3 jet		2 jet	3 jet	1.5	nigi		
1 loose c-tag	5	CR	CR		CR	CR		CR	CR				
1 no c-tag	Ŧ	2 joi	o jet		CR	CR		CR	CR	2			
		2 iot	2 iot		2 iot	2 iot		2 iet	3 iot	4 2.5	1 lepton, 2 jet, 2 b-tags ag \rightarrow WH \rightarrow 1vbb		
> 1 tight c-tag	21	Top eµ CR	Top eµ CR		Top eµ CR	Top eµ CR		Top eµ CR	Top eµ CR	, , ,	√s = 13 TeV, 139 fb ⁻¹		
		2 iot	3 iot		2 iot	3 iot		2 iet	3 iet	(² 3	ATLAS Simulation		

29 May 2024

Run: 438298 Event: 1246008193 2022-10-30 04:04:50 CET

LHC Run 3

What's next in Higgs physics?

Run 3 H($\gamma\gamma$ /ZZ)

- ATLAS Run 3 datataking is progressing well
- Initial Run 3 analyses have been published

Maria Mironova

- W/Z cross-sections, ttbar cross-sections, $pp \rightarrow ZZ$
- First Run 3 Higgs results early last year, using the discovery channels H→γγ and H→ZZ
 - Following Run 2 analysis strategies largely serving as a cross-check of CP calibrations and detector performance
 - Uncertainties largely driven by larger CP uncertainties on physics object due to CP pre-recommendations

$H \rightarrow \gamma \gamma$ invariant mass spectrum

Run 3 H($\gamma\gamma$ /ZZ)

- Early Run 3 combination of H(ZZ) and H(γγ) also used to measure total pp→H cross-section measurements at 13.6 TeV for the first time: σ(pp→H) = 59.9±2.6 pb
- Good agreement with state-of-the art theory calculations, determined at NNLO or better
- Now moving to a more broad Run 3 Higgs physics program, repeating some of the known benchmark channels at the higher center-of-mass energy

Expected Run 3 highlights

Highlights of Run 3 Higgs physics are expected to include:

- **H**→µµ:
 - Initial Run 3 analysis planned to cross-check muon performance with New Small Wheel
 - Observation at 5σ likely with Full Run 3 dataset and combination with CMS
- Higgs self-coupling:
 - Di-Higgs physics program has ramped up significantly during Run 2
 - Unlikely to reach SM precision with Run 3 dataset, but exciting opportunity to test new analysis techniques

MC predictions for Run 3

- Generally, MC computation is very complicated, and there are several known modelling issues in V+jets
- Would like to provide a better set of MC samples for Run 3, as well as a more coherent definition of systematic uncertainties
- E.g. known mismodelling of p_T^V spectrum in Sherpa
 - For Sherpa 2.2.1, see runaway behaviour at high pTV
 - For Sherpa 2.2.11 prediction undershoots data significantly
- Likely due to updated scale choice in Sherpa 2.2.11
- Would like to fix this for the Run 3 MC productions, as well as provide a set of theory untertainties that sepearately varies different parts of the theory prediction (ME, PS, PDF etc)
- \rightarrow almost there with Sherpa, but need to define a dedicated parton shower uncertainty

Transverse momentum of vector boson in different MC generators

HL-LHC

What do we do with all this data?

And how do we make sure we have a working detector?

HL-LHC extrapolation

- Planned upgrade to the LHC to High-Luminosity LHC (HL-LHC) to start collecting data in 2028
- \rightarrow HL-LHC increased luminosity and pile-up
- Collect 3000 fb⁻¹ of data at a center-of-mass energy of 14 TeV over 10 years
- With larger dataset and reduced systematics (factor 2):

 \rightarrow Expected upper limit on VH(cc) of 6.4 x SM

- \rightarrow Expected constraint on κ_c of $|\kappa_c| < 3.0$
- Combination of VH(\rightarrow bb) and VH(\rightarrow cc) analyses allows to constrain more model-independent ratio κ_c/κ_b :

→Expected constraint of $|\kappa_c/\kappa_b| < 2.74$ at 95% CL at HL-LHC

• Extrapolation results based on Full Run 2 analysis \rightarrow would like to see updated numbers for ECFA within the next year

<u>ATL-PHYS-PUB-2021-039</u>

HL-LHC

- Will upgrade LHC accelerator to collect a 10 x larger dataset
- Around factor 4 increased number of interactions per collision of proton bunches
- → High-Luminosity LHC (HL-LHC)

Places stringent requirements on inner (pixel) detector:

Radiation:

- Expect 4000 fb⁻¹, while current technology and only withstand 400 fb⁻¹
- \rightarrow Require new sensor and chip technology, radiation tolerant to I Grad or IeI6 n_{eq}/cm²

Granularity:

- Expect up to 200 average collisions per bunch crossing & need to keep occupancy below 1 %
- ightarrow Silicon detector with smaller pixels needed

29 May 2024

HL-LHC

Performance:

- Improve performance at high p_T
- Reduce/don't increase detector material to reduce multiple scattering
- Increases detector acceptance to $|\eta|$ =4
- \rightarrow New detector layout cover larger area

Trigger

- Increase trigger rate (x10)
- Increase trigger latency (x2)
- \rightarrow Need high-speed readout electronics, with large buffer memory
- Need to utilise new technologies for all detector components (i.e. chip & sensors)
- → Build a much larger detector to meet the needs of HL-LHC

Maria Mironova

29 May 2024

ATLAS ITk Upgrade

- Upgraded ATLAS Inner Tracker (ITk)
- \rightarrow Improved resolution and radiation hardness needed & new detector layout
- All silicon tracker:
- ITk Strips system with 4 barrel layers and 6 endcap discs
- ITk Pixel Detector layout consists of 5 barrel layers & endcap rings
- Innermost layer located at r = 33 mm

ITk Pixel Upgrade

All-silicon upgraded tracking detector (ITk) for HL-LHC to cope with increased instantaneous luminosity and pile-up

Upgraded pixel detector:

- Larger silicon area → 6x larger than current tracking detector
 - ~13 m² of active area
 - 9200 pixel modules, 5.1 billion pixels
 - Extended η coverage to $|\eta| \le 4$
- Smaller pixel pitch:
 400 x 50 μm² → 50 x 50 μm²
- New readout chip to cope with higher data rates and increased radiation

Maria Mironova

34

ITk Pixel TID damage

- ITk Pixel ASIC required to withstand I Grad of total ionising dose (TID)
- TID damage to the readout electronics depends on both operational settings and dose rate of the delivered radiation
- → difficult to predict, requires dedicated research program to estimate failure point
- Dedicated irradiation program of ITk Pixel ASIC performed using X-rays and radioactive sources
- → Expected failure point of ITk Pixel ASIC digital logic around 3000 /fb

	Expected failure point					
Gate	TID [Grad]	Int. Lumi [/fb]				
CLK 4	١.7	3700 ± 160				
Inv 4	1.4	3040 ± 120				
NAND 4	2.1	4500 ± 370				
NOR 4	1.6	3480 ± 180				

Future colliders

How we decide on the next machine?

Timeline

Plasma wakefield acceleration (BELLA-µ)

- Plasma wakefield accelerators provide an exciting opportunity for an alternative to conventional accelerators
- However, significant R&D needed before a possible future accelerator can be defined
- Accelerator R&D currently also ongoing at LBL
- **BELLA-**µ **project** ongoing as part of that development:
 - DARPA¹-funded project on muon tomography currently ongoing
 - Use plasma wakefield accelerator to produce beam of electrons, which can be converted into muon
 - Using ITkPix modules & scintillators as muon detectors

Berkeley Lab 88,571 followers 5h • (5)

We're proud to announce a groundbreaking leap in **#ImagingTechnology** led by the incredible researchers in our **Berkeley Lab ATAP Division**! Introducing BELLA- μ , a revolutionary imaging tool powered by high-energy muons, capable of penetrating rock or concrete walls tens to hundreds of meters thick! \checkmark ***** (More via link below!)

Berkeley Lab ATAP Division 1,971 followers 10h · Edited · (S)

+ Follow

×

...

Our researchers are spearheading the development of a powerful new imaging tool that uses high-energy muons to penetrate rock or concrete walls tens to hundreds of meters thick. The BELLA- μ project will k ...see more

29 May 2024

Future Detector R&D

- Future collider discussion also opens opportunities for detector R&D
- Future e⁺e⁻ machine will require tracking detector with:
 - High position resolution and low material
 - Relaxed requirements on radiation hardness and data rate compared to HL-LHC
- Obvious application of monolithic active pixel sensors (MAPS), with active area and readout in the same piece of silicon
- Less developed that current hybrid pixel technology and not as radiation tolerant
- Example of ongoing efforts: Prototypes in TowerJazz 180 nm technology → (Mini-)MALTA
- 36.4 x 36.4 μ m² pixel size (compared to 50 x 50 μ m² in ITk)

Maria Mironova

Hybrid pixel detectors Flex Sensor **Front-End** Monolithic active pixel sensors Collection CMOS electrode electronics n-type silicon p-type silicon

JINST 15 (2020) P02005 Standard design: Continuous n layer

29 May 2024

Maria Mironova

Beam direction

Future Detector R&D

- MiniMALTA prototype characterised in X-ray testbeam at Diamond Light Source
- Scan small X-ray beam spot over device to measure pixel response to photons with high precision for samples before and after irradiation
- Clear decrease in pixel response in the pixel corners after irradiation ٠

29 May 2024

Standard design: Continuous n layer

<u>M. Mironova et al.</u>

<u>NIM A 956 (2020) 163381</u>

Future Detector R&D

- MiniMALTA prototype includes design modification for better charge collection at the pixel edges
 →Less decrease of response with irradiation in X-ray testbeam
- →Further R&D efforts have been ongoing for MALTA chips to improve charge collection and produce larger-scale demonstrators

Maria Mironova

29 May 2024

Conclusions

- Higgs measurement program at LHC has been highly successful
- As a community we are moving from searching for the Higgs boson to using Higgs as a discovery tool for new physics
- Highest priorities for LHC:
 - Conclude on an HL-LHC timeline and deliver Phase 2 upgrades
 - Define a Higgs physics program which challenges theorists to provide more accurate predictions
- Future colliders:
 - In order to make an informed decision on a future machine, need reliable baseline numbers (HL-LHC) to compare against → European strategy coming up in 2025
 - Significant effort in future colliders still needed to ensure the projected Higgs sensitivities are reliable