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2A Long History of Machine Learning

OpenAI Sora
Rosenblatt 1958, 1960

𝑓 𝑥 = ൞
1 𝑖𝑓 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron

Prompt: Several giant wooly mammoths approach 
treading through a snowy meadow […]

https://openai.com/sora#research
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


3A Long History of ML in High Energy Physics

- Bruce Denby

From talk

How was it to work on AI in those days?

• The local LAL reaction was rather diferent

– I got FIRED from the Delphi group

– LAL directors agreed to let me stay 
at the lab anyway

https://indico.ijclab.in2p3.fr/event/5999/timetable/#77-origins-of-ai-in-high-energ


4A Long History of ML in High Energy Physics

CDF Top Search in all-hadronic channel 
using Neural Nets!! 

• Proton-Antiproton Collider Conference, 
Tsukuba , Japan, 18-22 October 1993 

ML at LEP



5A Long History of ML in High Energy Physics

2012

Radovic, Williams, Rousseau, MK, et al.
Nature 560, 41–48 (2018)

https://www.nature.com/articles/s41586-018-0361-2
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New directions in science are launched 
by new tools much more often than by 
new concepts. The effect of a concept-
driven revolution is to explain old 
things in new ways. The effect of a 
tool-driven revolution is to discover 
new things that have to be explained.

- Freeman Dyson
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8Studying Collisions
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9Data Analysis Workflow

Simulation𝜃

Data Analysis Result መ𝜃

Experiment

EPJC 80 (2020) 942

https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015


10This work very well!

ATL-PHYS-PUB-2022-009

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/


11What do we want from ML in High Energy Physics?

Complex Pattern Recognition Improved Measurement Precision

Broaden New Physics Searches Reduce Resource Demands

1909.02845

ATL-PHYS-PUB-2022-034 Figure Credit: CMS Experiment

Image Credit: CMS Experiment

https://arxiv.org/abs/1909.02845
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-034/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


12Machine Learning Across Data Analysis

Simulation𝜃

Data Analysis Result መ𝜃

Experiment

Simulation Data Acquisition Reconstruction Inference 
Low-Latency Real-Time 

Decision Making
Fast Simulation and

Sampling
Particle / Event Pattern Rec.

Anomaly Detection

Parameter Estimation
Unfolding

2008.03833Khoda, …, MK, et. al, MLST 2023 ATLAS-PLOTS-FTAG-2023-01 Vandegar, MK, et al. AISTATS 2021

https://arxiv.org/abs/2008.03833
https://iopscience.iop.org/article/10.1088/2632-2153/acc0d7
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://proceedings.mlr.press/v130/vandegar21a.html
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What kinds of ML models are used?



14Reconstruction



15Reconstruction

Pattern Recognition in

Sparse high dimensional data

Irregular detector geometry

Goal: 
Turn low-level data 
(i.e. measurements of energy deposition) 
into estimates of particle energy, 
momentum, direction, trajectory, …
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17Reconstruction

Pattern Recognition in

Sparse high dimensional data

Irregular detector geometry

Goal: 
Turn low-level data 
(i.e. measurements of energy deposition) 
into estimates of particle energy, 
momentum, direction, trajectory, …



18What kind of data is used in Reconstruction?

Images Sequences Sets Graphs & Point Clouds

2203.01189

Data on regular grid, 

translation 
equivariance on grid
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Data ordered
as sequence,

translation 
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“time”

Data distributed 
in “space”

permutation 
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geometric relations 

De Oliviera, MK, et al. 1511.05190

https://arxiv.org/abs/2203.01189
https://arxiv.org/abs/1511.05190


19What kind of ML models work best for Reconstruction?

Images Sequences Sets Graphs & Point Clouds

1810.05165ATL-PHYS-PUB-2017-003

…

2202.03772

Convolutional NN Recurrent NN Deep Sets Graphs NNs & 
Transformers

De Oliviera, MK, et al. 1511.05190

https://arxiv.org/abs/1810.05165
https://cds.cern.ch/record/2255226
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/1511.05190


20Graph Neural Networks and Transformers

Good fit for sparsity, irregular geometry, and variable cardinality of HEP data

Image credit: MLST 2 021001

Tracking: Finding Trajectories from space-points

Calorimeter cluster analysis

Classifying Jets (streams of particles)

Classifying Events

https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a


21Evolution of models for jet classification

Top-quark jets classification

b/c-quark jets 
classification

ATLAS-PLOTS-FTAG-2023-01
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Phys. Rev. D 109, 054009

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.054009


22Bigger, more complex, multi-component ML Pipelines

Figure Credit: D. MurmaneGraph-based Tracking

Neutrino End-to-End Reconstruction

2102.01033

https://indico.cern.ch/event/948465/contributions/4323753/attachments/2246789/3810686/Physics%20and%20Computing%20Performance%20of%20the%20ExaTrkX%20TrackML%20Pipeline.pdf
https://arxiv.org/abs/2102.01033


23Event Classification

→
What kind of interaction event

happened in the collision?



24Event Classification

EPJC 80 (2020) 942

Given a set of events where we have 
reconstructed the particles:

Past: Think hard about good variables, 
for data selection & statistical inference

This is “Tabular data”

• Features engineered by physicists

https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015


25Event Classification

Given a set of events where we have 
reconstructed the particles:

Past: Think hard about good variables, 
for data selection & statistical inference

This is “Tabular data”

• Features engineered by physicists

Combine many variables in MVA?

Decision Tree based models tend
to work very well for tabular tasks

Nature 560, 41–48 (2018)

https://www.nature.com/articles/s41586-018-0361-2


26Event Classification

Instead of ML on tabular features…

Can use set of particles and their features

“Lower-level” than engineered features

• A particle has meaning when considered 
in relation to other particles in event

Neural networks used more and more, 
especially graph & transformer models

• May need to deal with gemoetric 
relationships, variable length inputs, …

Low-level processing is what NNs good at

Image: PRD 104, 056003 (2021)

Image: MLST 2 021001 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.056003
https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a


27Simulation
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LHCC-2022-005

https://cds.cern.ch/record/2802918?ln=en


29ML for Simulation

Deep Generative Models

Learn to create “plausible” data 
by transforming random noise

Model structure depends on 
training method

Architecture choice 
depends on data type, 

• Just like reconstruction

Image credit: Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


30Deep Generative Models For Speeding Up Simulation

Image credit: 1705.02355

2005.05334

2109.02551

Detector Simulation

Matrix Elements & 
Event Generators

2311.01548
2203.11110

Detector Design Optimization

Shirobokov, MK, et al.
NeurIPS 33, 14650-14662 (2020

Heinrich, MK, 2203.00057

https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2005.05334
https://arxiv.org/abs/2109.02551
https://arxiv.org/abs/2311.01548
https://arxiv.org/abs/2203.11110
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html
https://arxiv.org/abs/2203.00057


31Conclusion

Long history of ML in HEP, and the recent ML 
advancements have made major impacts on HEP

Complexity of HEP data warrants careful consideration 
about how are where to apply ML

• What kind of data? How much data? 
How to frame the task of interest?

Can build sophisticated systems to approach complex 
challenges and address completely new questions!

But… for low-latency models, 
hardware constraints→architecture design constraints 

• Lots more information from the rest of the talks!
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Backup



33High Energy Physics – What We Know
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34High Energy Physics – Big Questions

Why is the Higgs so light? What is Dark Matter?
What is Dark Energy?

Why is there more matter than
anti-matter in the universe?
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Image source: Symmetry MagazineImage source: NASA/CXC/CFA/ M.MARKEVITCH

matter

antimatter



35Studying Physics at the Smallest Scales


