Dylan Rankin [UPenn] SmartHEP Edge Machine Learning School September 23rd, 2024

experiments

Introduction

- ML is becoming more and more popular, HEP and LHC is no exception
- HEP trends in ML towards bigger and more complicated models, more computing
- Availability of CPUs, GPUs, modern software has accelerated adoption

[2203.15823](https://arxiv.org/pdf/2203.15823) [2403.05618](https://arxiv.org/pdf/2403.05618) 2

HEP ML

- **• Majority of ML in physics is "off detector"**
	- System latency/resource limits are typically soft (if at all)
	- No radiation
	- Issues do not impact data collection
		- Can re-run algorithms/workflows

What if…

- What if:
	- System latency/resource limits are low?
	- High radiation?
	- No undo button?
- Requires dedicated hardware, strategies
- **• → Edge ML**
	- "Edge ML is the process of running ML algorithms on computing devices at the periphery of a network to make decisions and predictions as close as possible to the originating source of data."
	- Placing ML at sensors, running in real-time

Edge ML

- Want to focus on two main components of edge ML:
- Specialized hardware \rightarrow specialized tools
	- FPGAs, ASICs, GPUs (and more)
- Data source, format must be considered to be effective
	- How does data get to specialized device?
	- Does it arrive all at once?
	- Does it come with the features I want already?
	- Are there limitations from the environment/device/task?

Large Hadron Collider (LHC)

1011 proton bunch

LHOD

 \simeq ALICE

27 km

 GMS

1011 proton bunch

25 ns 40 MHz

CONTRACTOR

- **Level-1 Trigger** (FPGAs, ASICs) O(μs) hard latency
- **High Level Trigger** (CPUs, GPUs, FPGAs?) O(100 ms) soft latency
- **Offline** (CPUs, GPUs) → 1 s latencies

- **Level-1 Trigger** O(μs) latency
- **High Level Trigger** O(100 ms) latency
- **Offline** \rightarrow 1 s latencies

If we don't interesting identify events in trigger we lose them forever!

- **Level-1 Trigger** O(μs) latency
- **High Level Trigger** O(100 ms) latency
- **Offline** \rightarrow 1 s latencies

9

If we don't interesting identify events in trigger we lose them forever!

What is an FPGA?

- **F**ield-**p**rogrammable **g**ate **a**rray
- Building blocks:
	- **• Multiplier units (DSPs) [arithmetic]**
	- **• Look Up Tables (LUTs) [logic]**
	- **• Flip-flops (FFs) [registers]**
	- **• Block RAMs (BRAMs) [memory]**
- Algorithms are wired onto the chip
	- Can only use the resources on the chip
- Run at high frequency: hundreds of MHz, O(ns) runtime

11

Inference on FPGAs

- Each part of network must be placed on the FPGA, connected together
- Cannot implement an algorithm if there are no resources left
	- Cannot just run things slower (25 ns!)

• NNs:

• Boosted Decision Trees (BDTs):

- Different tools have different methodology, target different designs/problems
- Entirely non-exhaustive list…

Many Tools (Tutorials this week)

12

arXiv: 2004.03021

arXiv: 2002.02534 arXiv: 2104.03408

arXiv: 1804.06913

ML Size / Complexity

- Regardless of toolkit, limitation of doing edge ML is device size
	- Bigger device \rightarrow more resources \rightarrow more computation \rightarrow larger ML models

- Alternatively, is it possible to reduce network size without hurting performance?
	- *Pruning* and *quantization* are two potential ways

13

Xilinx Virtex Ultrascale+ VU13P 12288 Multipliers 1.7M LUTs 3.4M FFs 95 Mb BRAM

• Are all the pieces a given network necessary?

Pruning

- Are all the pieces a given network necessary?
- Many different types of pruning
- Magnitude-based:
	- Use regularization (penalty term in loss function for large weights)
	- Remove smallest weights
	- Repeat
- Multiplications by 0 can be completely removed from FPGA design

 $20 -$

 10^{-7}

 10^{-6}

Absolute Relative Weights

 10^{-4}

 10^{-5}

 10^{-3}

 10^{-2}

 10^{-1}

 $10⁰$

- Are all the pieces a $g \bigg| \bigg|^{160} \bigg| \bigg| \bigg|$ fc2_relu
- Many different types ¹⁴⁰
- Magnitude-based:
	- function for large $w_{\mathbb{B}}$
	- Remove smallest $v^{\frac{3}{2}}$ 60
	- Repeat
- Multiplications by 0^d ²⁰ from FPGA design

- Are all the pieces a $g \bigg| \begin{array}{c} 160 \\ \hline \end{array} \bigg| \begin{array}{c} \hline \end{array}$ fc2_relu
- Many different types
- Magnitude-based:
	- function for large $w_{\mathbf{a}}^{\mathbf{w}}$
	- Remove smallest $v^{\bar{z}}$ 60
	- Repeat
- Multiplications by $0²⁰$ from FPGA design

- Are all the pieces a $g|_{60}$ and m fc2_relu
- Many different types $\Big|$ 50
- Magnitude-based:
- Example 1 Algoritude-based:
• Use regularization
function for large with a set function for large $w_1 \stackrel{\overline{w}}{=} 30$
	- Remove smallest $v_1 \sim 20$
	- **Repeat**
- Multiplications by 0 d from FPGA design

- Are all the pieces a $g|_{60}$ and $g|_{\overline{163}$ relationships network netwo
- Many different types 50
- Magnitude-based:
- Example 1 Algoritude-based:
• Use regularization
• function for large with $\frac{1}{2}$ function for large $w_{\frac{1}{2}}$ 30
	- Remove smallest $v_1 \sim 20$
	- Repeat
- Multiplications by 0 d from FPGA design

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
	- Can be combined with other customizations
- [Quantization-awar](https://arxiv.org/pdf/2006.10159.pdf)e training
[\[arXiv:2006.10159\]](https://arxiv.org/pdf/2006.10159.pdf)
	- Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance,
- resour \cdot Ca_l **b b c c c c c c f c f c f** customizations and the contract of the contrac • [Quantization-awar](https://arxiv.org/pdf/2006.10159.pdf)e training [\[arXiv:2006.10159\]](https://arxiv.org/pdf/2006.10159.pdf) • Ca $_i$ greatly reduce size of i tra with knowledge of v

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, **performance**, resources)
	- Can be combined with other customizations
- Quantization-aware training [\[arXiv:2006.10159\]](https://arxiv.org/pdf/2006.10159.pdf)
	- Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, **resources**)
	- Can be combined with other customizations
- Quantization-aware training [\[arXiv:2006.10159\]](https://arxiv.org/pdf/2006.10159.pdf)
	- Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
	- Can be combined with other customizations
- **Quantization-aware training** [\[arXiv:2006.10159\]](https://arxiv.org/pdf/2006.10159.pdf)
	- Can greatly reduce size of network by training with knowledge of quantization

LHC Applications

Particle Identification

- LHC triggers must differentiate different collections of particles / detector signals from overwhelming backgrounds
	- τ lepton, bottom quark
	- Light quarks, gluons, noise, combinatorics
- Edge ML can enable this faster / better

L1 τ Identification

- **NN algorithm** capable of accepting more τ leptons than traditional **cut-based method**
- Network is 3 layer dense model, uses information about particle p_T , n , φ , and type
- Outputs decision in 38 ns (9 clocks @ 240 MHz)

CMS TDR-021

L1 b-quark Identification

- NN trained to identify b-quarks using collection of particles
- Architecture includes featurizers that act on each particle individual
- **• Significantly improved acceptance for HH→bbbb events** … particles … **with low MHH** (compared to (6 features/particle) traditional cut-(20 features/particle) based methods)(5 features/particle) (50 features) (20 features)

(1 feature) b-tag score

Pointwise convolution (per particle dense layer)

b

 $\frac{1}{4}$ ml

bls

L1 Electron Identification

- Electrons are complex signatures
	- Multiple sub detectors (tracker & calorimeter)
	- Undergo bremsstrahlung $(e \rightarrow e + \gamma)$
- Edge ML well-suited to electron ID
	- Handles correlations between different inputs
	- 5-10% improvement in plateau efficiency
- Important for many different physics signatures

L1 Anomaly Detection Trigger

- What if we don't know exactly what new physics looks like?
	- $\bullet \rightarrow$ anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly

Train on ZeroBias LHC data

Bottleneck: autoencoder learns to compress high dimensional inputs into low dimensional latent space

 $x - \hat{x}$ represents degree of abnormality

T. Aarrestad, CMS ML Townhall

T. Aarrestad, CMS ML Townhall

L1 Anomaly Detection Trigger

- What if we don't know exactly what new physics looks like?
	- $\bullet \rightarrow$ anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly

Bottleneck: autoencoder learns to compress high dimensional inputs into low dimensional latent space

 $x - \hat{x}$ represents degree of abnormality

T. Aarrestad, CMS ML Townhall

T. Aarrestad, CMS ML Townhall

L1 Anomaly Detection Trigger

- What if we don't know exactly what new physics looks like?
	- $\bullet \rightarrow$ anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly (allows to achieve <50 ns latency)

Train on ZeroBias LHC data

L1 Anomaly Detection Trigger

- What if we don't know exactly what new physics looks like?
	- $\bullet \rightarrow$ anomaly detection (AD)
- Can reduce network size by training student network to predict teacher network MSE

L1 AD Trigger

- CMS has already deployed multiple AD algorithms in trigger
	- AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA [CMS DP-2023/086]
- Currently collecting interesting events that would have been missed
	- Network preferentially identifies large multiplicity events
	- Potentially large gains in new physics acceptance

- detector in the first place?!
	-
-
- ASIC, logic triplicated) [\[2105.01683\]](https://arxiv.org/pdf/2105.01683)

LAr Peak Finding

- ATLAS LAr calorimeter needs to measure time and energy of pulses
	- Overlapping pulses difficult for simple, fast algorithms to handle $(150 \text{ ns} = 6 \text{ BXs})$
- CNN and LSTM architectures both able to significantly improve performance
	- Well-suited for data structure, able to account for non-linear correlations

 $|0.8$

 0.6

 $|0.4|$

 0.2

٥I

LAr Peak Finding

- ATLAS LAr calorimeter needs to measure time and energy of pulses
	- Overlapping pulses difficult for simple, fast algorithms to handle $(150 \text{ ns} = 6 \text{ BXs})$
- CNN and LSTM architectures both able to significantly improve performance
	- Well-suited for data structure, able to account for non-linear correlations

- **Level-1 Trigger** O(μs) latency
- **High Level Trigger** O(100 ms) latency
- **Offline** \rightarrow 1 s latencies

38

If we don't interesting identify events in trigger we lose them forever!

LHC Data Processing / Readout

Trigger

1 us 1 ns

40 MHz

39

• **Level-1 Trigger**

• **High Level Trigger**

• **Offline**

If we don't interesting identify events in trigger we lose them forever!

HLT b-tagging

- Early usage of ML at LHC for b-tagging
	- High complexity, physics motivation \rightarrow significant ML gains
- Algorithms have to evolve quickly to keep up with modern ML
	- BDTs \rightarrow MLPs & DeepSets \rightarrow GNNs (+ attention)
- Tiered reconstruction/filtering allows running computationally intensive algorithms in trigger

[ATLAS BJet Trigger Public Results](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults)

GNN Tracking

- Tracking is an incredibly hard problem, tracking in HLT even harder
	- Huge combinatorics, only going to get worse
- GNNs show promise for HL-LHC
- -

[ATL-COM-DAQ-2024-004](https://cds.cern.ch/record/2888383/files/ATL-COM-DAQ-2024-004.pdf)

LHC Data Processing / Readout

Trigger

1 us 1 ns

40 MHz

42

• **Level-1 Trigger**

• **High Level Trigger**

• **Offline**

If we don't interesting identify events in trigger we lose them forever!

GNN Tracking (LHCb)

- LHCb must do tracking at 30 MHz
	- Exploring use of **GNNs** [\[2407.12119\]](https://arxiv.org/abs/2407.12119)
- Demonstrated good performance possible
- Achieving necessary throughput is a challenging problem

Lipschitz Monotonic NN

- On-detector ML is not just about speed
	- Robustness and understandability are also very important
- Networks can be made provably monotonic [[2112.00038](https://arxiv.org/pdf/2112.00038)]
- LHCb has used this technique to design NNs for use in HLT
	- Eg. smooth dependence on flight distance for heavy flavor decays

Continual Learning

- On-detector ML has no re-do button
	- Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
	- Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

Continual Learning

- On-detector ML has no re-do button
	- Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
	- Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

Continual Learning

- On-detector ML has no re-do button
	- Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
	- Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

Conclusions

- Increasingly possible and necessary to perform real time edge ML in LHC experiments
	- FPGA and GPUs are main hardware tools but not only ones!
- ML o ffers improved performance over traditional algorithms
	- With advancing ML o ff-detector brings better alignment of o ffline and online algorithms
- Applications in many other fields, areas too!

BACKUP

A Toroidal LHC ApparatuS (ATLAS)

ATLAS Slice

ATLAS Slice

L1 AD

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

Jannicke Pearkes

Reuse

- For lowest latency, compute all multiplications at once
	- Reuse = 1 (fully parallel)
 \rightarrow latency = # layers)
- Larger reuse implies more serialization
- Allows trading higher latency for lower resource usage

Heterogeneous Computing

- Direct connect
	- Simple connections
	- Reduced network load
- **• As-a-service (aaS)**
	- Simple support for mixed hardware
	- Scaleable
	- Throughput optimizations for multiple-client
	- Simple client-side

As-a-service computing

• Biggest gains come from algorithms that are faster to run on accelerator, workflows that can be parallelized

As-a-service computing

• Biggest gains come from algorithms that are faster to run on accelerator, workflows that can be parallelized

Processor as-a-Service

