

Dylan Rankin [UPenn] SmartHEP Edge Machine Learning School September 23rd, 2024

experiments

Introduction

- ML is becoming more and more popular, HEP and LHC is no exception
- HEP trends in ML towards bigger and more complicated models, more computing
- Availability of CPUs, GPUs, modern software has accelerated adoption

2203.15823

2403.05618

HEP ML

- Majority of ML in physics is "off detector"
 - System latency/resource limits are typically soft (if at all)
 - No radiation
 - Issues do not impact data collection
 - Can re-run algorithms/workflows

What if...

- What if:
 - System latency/resource limits are low?
 - High radiation?
 - No undo button?
- Requires dedicated hardware, strategies
- \rightarrow Edge ML
 - "Edge ML is the process of running ML algorithms on computing devices at the periphery of a network to make decisions and predictions as close as possible to the originating source of data."
 - Placing ML at sensors, running in real-time

Edge ML

- Want to focus on two main components of edge ML:
- Specialized hardware → specialized tools
 - FPGAs, ASICs, GPUs (and more)
- Data source, format must be considered to be effective
 - How does data get to specialized device?
 - Does it arrive all at once?
 - Does it come with the features I want already?
 - Are there limitations from the environment/device/task?

Large Hadron Collider (LHC)

bunch

LHGb

ALICE

10¹¹ proton bunch

25 ns 40 MHz

GMS

- Level-1 Trigger (FPGAs, ASICs) O(μs) hard latency
- High Level Trigger (CPUs, GPUs, FPGAs?) O(100 ms) soft latency
- Offline (CPUs, GPUs) \rightarrow 1 s latencies

1 ms

- Level-1 Trigger O(µs) latency
- High Level Trigger O(100 ms) latency
- Offline \rightarrow 1 s latencies

1 ms

If we don't interesting identify events in trigger we lose them forever!

- Level-1 Trigger O(µs) latency
- High Level Trigger O(100 ms) latency
- Offline \rightarrow 1 s latencies

If we don't interesting identify events in trigger we lose them forever!

What is an FPGA?

- Field-programmable gate array
- Building blocks:
 - Multiplier units (DSPs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- Algorithms are wired onto the chip
 - Can only use the resources on the chip
- Run at high frequency: hundreds of MHz, O(ns) runtime

Inference on FPGAs

- Each part of network must be placed on the FPGA, connected together
- Cannot implement an algorithm if there are no resources left
 - Cannot just run things slower (25 ns!)

Many Tools (Tutorials this week)

• NNs:

arXiv: 1804.06913

Boosted Decision Trees (BDTs):

arXiv: 2002.02534

- Different tools have different methodology, target different designs/problems
- Entirely non-exhaustive list...

arXiv: 2004.03021

arXiv: 2104.03408

ML Size / Complexity

- Regardless of toolkit, limitation of doing edge ML is device size
 - Bigger device \rightarrow more resources \rightarrow more computation \rightarrow larger ML models

Xilinx Virtex Ultrascale+ VU13P 12288 Multipliers 1.7M LUTs 3.4M FFs 95 Mb BRAM

- Alternatively, is it possible to reduce network size without hurting performance?
 - Pruning and quantization are two potential ways

• Are all the pieces a given network necessary?

- Are all the pieces a given network necessary?
- Many different types of pruning
- Magnitude-based:
 - Use regularization (penalty term in loss) function for large weights)
 - Remove smallest weights
 - Repeat
- Multiplications by 0 can be completely removed from FPGA design

20 -

 10^{-7}

 10^{-6}

 10^{-4}

Absolute Relative Weights

 10^{-5}

10-3

10-2

 10^{-1}

 10^{0}

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization 5
 function for large w 3
 - Remove smallest v
 - Repeat
- Multiplications by 0 c from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization
 function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 c from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 c from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 c from FPGA design

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance,
- resou • Ca CU Quan integer [arXiv tra

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training
 [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

LHC Applications

Particle Identification

- LHC triggers must differentiate different collections of particles / detector signals from overwhelming backgrounds
 - τ lepton, bottom quark
 - Light quarks, gluons, noise, combinatorics
- Edge ML can enable this faster / better

L1 T Identification

- NN algorithm capable of accepting more τ leptons than traditional cut-based method
- Network is 3 layer dense model, uses information about particle p_T , η , ϕ , and type
- Outputs decision in 38 ns (9 clocks @ 240) MHz)

CMS TDR-021

L1 b-quark Identification

- NN trained to identify b-quarks using collection of particles
- Architecture includes featurizers that act on each particle individual
- Significantly improved acceptance for HH→bbbb events with low mHH (compared to traditional cut-based methods)
 (a features/particle) (5 features/particle) (50 features)

(1 feature) b-tag score

Pointwise convolution (per particle dense layer)

b

4

hls

L1 Electron Identification

- Electrons are complex signatures
 - Multiple sub detectors (tracker & calorimeter)
 - Undergo bremsstrahlung ($e \rightarrow e + \gamma$)
- Edge ML well-suited to electron ID
 - Handles correlations between different inputs
 - 5-10% improvement in plateau efficiency
- Important for many different physics signatures

- What if we don't know exactly what new physics looks like?
 - \rightarrow anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly

- What if we don't know exactly what new physics looks like?
 - \rightarrow anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly

Train on ZeroBias LHC data

Bottleneck: autoencoder learns to compress high dimensional inputs into low dimensional latent space

 $x - \hat{x}$ represents degree of abnormality

T. Aarrestad, CMS ML Townhall

T. Aarrestad, CMS ML Townhall

- What if we don't know exactly what new physics looks like?
 - \rightarrow anomaly detection (AD)
- Can reduce network size by removing decoder, using latent space directly (allows to achieve <50 ns latency)

Train on ZeroBias LHC data

Bottleneck: autoencoder learns to compress high dimensional inputs into low dimensional latent space

 $x - \hat{x}$ represents degree of abnormality

T. Aarrestad, CMS ML Townhall

T. Aarrestad, CMS ML Townhall

- What if we don't know exactly what new physics looks like?
 - \rightarrow anomaly detection (AD)
- Can reduce network size by training student network to predict teacher network MSE

L1 AD Trigger

- CMS has already deployed multiple AD algorithms in trigger
 - AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA [CMS DP-2023/086]
- Currently collecting interesting events that would have been missed
 - Network preferentially identifies large multiplicity events
 - Potentially large gains in new physics acceptance

- detector in the first place?!
- ASIC, logic triplicated) [2105.01683]

LAr Peak Finding

- ATLAS LAr calorimeter needs to measure time and energy of pulses
 - Overlapping pulses difficult for simple, fast algorithms to handle (150 ns = 6 BXs)
- CNN and LSTM architectures both able to significantly improve performance
 - Well-suited for data structure, able to account for non-linear correlations

LAr Peak Finding

- ATLAS LAr calorimeter needs to measure time and energy of pulses
 - Overlapping pulses difficult for simple, fast algorithms to handle (150 ns = 6 BXs)
- CNN and LSTM architectures both able to significantly improve performance
 - Well-suited for data structure, able to account for non-linear correlations

- Level-1 Trigger O(µs) latency
- High Level Trigger O(100 ms) latency
- Offline \rightarrow 1 s latencies

If we don't interesting identify events in trigger we lose them forever!

LHC Data Processing / Readout

Trigger

1 us 1 ns

40 MHz

• Level-1 Trigger

High Level Trigger

• Offline

If we don't interesting identify events in trigger we lose them forever!

HLT b-tagging

- Early usage of ML at LHC for b-tagging
 - High complexity, physics motivation \rightarrow significant ML gains
- Algorithms have to evolve quickly to keep up with modern ML
 - BDTs \rightarrow MLPs & DeepSets \rightarrow GNNs (+ attention)
- Tiered reconstruction/filtering allows running computationally intensive algorithms in trigger

ATLAS BJet Trigger Public Results

GNN Tracking

- Tracking is an incredibly hard problem, tracking in HLT even harder
 - Huge combinatorics, only going to get worse
- GNNs show promise for HL-LHC

ATL-COM-DAQ-2024-004

LHC Data Processing / Readout

Trigger

1 us 1 ns

40 MHz

• Level-1 Trigger

High Level Trigger

• Offline

If we don't interesting identify events in trigger we lose them forever!

GNN Tracking (LHCb)

- LHCb must do tracking at 30 MHz
 - Exploring use of GNNs [2407.12119]
- Demonstrated good performance possible
- Achieving necessary throughput is a challenging problem

Lipschitz Monotonic NN

- On-detector ML is not just about speed
 - Robustness and understandability are also very important
- Networks can be made provably monotonic [2112.00038]
- LHCb has used this technique to design NNs for use in HLT
 - Eg. smooth dependence on flight distance for heavy flavor decays

Continual Learning

- On-detector ML has no re-do button
 - Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
 - Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

CMS DP-2023/022

Continual Learning

- On-detector ML has no re-do button
 - Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
 - Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

CMS DP-2023/022

Continual Learning

- On-detector ML has no re-do button
 - Cannot just reprocess with new network if conditions change
- Continual learning method uses mix of original and new data to retrain model
 - Better performance than simple retraining (or no retraining)
- Important consideration especially when conditions can change significantly
- Example from CMS considers degradations in L1 tracking

CMS DP-2023/022

Conclusions

- Increasingly possible and necessary to perform real time edge ML in LHC experiments
 - FPGA and GPUs are main hardware tools but not only ones!
- ML offers improved performance over traditional algorithms
 - With advancing ML off-detector brings better alignment of offline and online algorithms
- Applications in many other fields, areas too!

BACKUP

A Toroidal LHC ApparatuS (ATLAS)

ATLAS Slice

ATLAS Slice

L1 AD

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

Jannicke Pearkes

Reuse

- For lowest latency, compute all multiplications at once
 - Reuse = 1 (fully parallel)
 → latency = # layers)
- Larger reuse implies more serialization
- Allows trading higher latency for lower resource usage

Heterogeneous Computing

- Direct connect
 - Simple connections
 - Reduced network load
- As-a-service (aaS)
 - Simple support for mixed hardware
 - Scaleable
 - Throughput optimizations for multiple-client
 - Simple client-side

As-a-service computing

 Biggest gains come from algorithms that are faster to run on accelerator, workflows that can be parallelized

As-a-service computing

 Biggest gains come from algorithms that are faster to run on accelerator, workflows that can be parallelized

Processor as-a-Service

