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Introduction
• ML is becoming more and more popular, HEP and LHC is no exception


• HEP trends in ML towards bigger and more complicated models, more computing


• Availability of CPUs, GPUs, modern software has accelerated adoption

22403.05618 2203.15823 

https://arxiv.org/pdf/2403.05618
https://arxiv.org/pdf/2203.15823


HEP ML
• Majority of ML in physics is “off detector” 

• System latency/resource limits are  
typically soft (if at all)


• No radiation


• Issues do not impact data  
collection


• Can re-run  
algorithms/workflows

31909.12285

https://arxiv.org/pdf/1909.12285


What if…
• What if:


• System latency/resource limits are low?


• High radiation?


• No undo button?


• Requires dedicated  
hardware, strategies


• → Edge ML 

• “Edge ML is the process of running ML 
algorithms on computing devices at the 
periphery of a network to make decisions and 
predictions as close as possible to the 
originating source of data.”


• Placing ML at sensors, running in real-time
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Edge ML
• Want to focus on two main components of edge ML:


• Specialized hardware → specialized tools


• FPGAs, ASICs, GPUs (and more)


• Data source, format must be considered to be effective


• How does data get to specialized device?


• Does it arrive all at once?


• Does it come with the features I want already?


• Are there limitations from the environment/device/task?
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Large Hadron Collider (LHC)
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27 km
1011 proton 

bunch

1011 proton 
bunch

25 ns 
40 MHz



LHC Data Processing / Readout

• Level-1 Trigger (FPGAs, ASICs) - O(μs) hard latency


• High Level Trigger (CPUs, GPUs, FPGAs?) - O(100 ms) soft latency


• Offline (CPUs, GPUs) → 1 s latencies
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LHC Data Processing / Readout
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• High Level Trigger - O(100 ms) latency


• Offline → 1 s latencies

If we don’t interesting 
identify events in trigger 

we lose them forever!
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What is an FPGA?
• Field-programmable gate array


• Building blocks:


• Multiplier units (DSPs) [arithmetic] 

• Look Up Tables (LUTs) [logic] 

• Flip-flops (FFs) [registers] 

• Block RAMs (BRAMs) [memory] 

• Algorithms are wired onto the chip


• Can only use the resources  
on the chip


• Run at high frequency:   
hundreds of MHz,  
O(ns) runtime
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Xilinx Virtex Ultrascale+ VU13P 
12288 Multipliers


1.7M LUTs

3.4M FFs


95 Mb BRAM
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Inference on FPGAs
Inputs

Outputs

• Each part of network 
must be placed on the 
FPGA, connected 
together


• Cannot implement an 
algorithm if there are no 
resources left


• Cannot just run things 
slower (25 ns!)



• NNs:


• Boosted Decision Trees (BDTs):


• Different tools have different methodology, target different designs/problems


• Entirely non-exhaustive list…

Many Tools (Tutorials this week)
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arXiv: 2004.03021
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ML Size / Complexity
• Regardless of toolkit, limitation of doing edge ML is device size


• Bigger device → more resources → more computation → larger ML models


• Alternatively, is it possible to reduce network size without hurting performance?


• Pruning and quantization are two potential ways
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• Are all the pieces a given network necessary?


• Many different types of pruning


• Magnitude-based:


• Use regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• Multiplications by 0 can be completely removed 
from FPGA design

Pruning
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Pruning
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Lλ(w) = L(w) + λ∥w∥

• Are all the pieces a given network necessary?


• Many different types of pruning


• Magnitude-based:


• Use regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• Multiplications by 0 can be completely removed 
from FPGA design

>70% initial 
weights removed



Quantization
• FPGAs are well suited to fixed-point 

numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization
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• FPGAs are well suited to fixed-point 
numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization

Worse 
performance

https://arxiv.org/pdf/2006.10159.pdf


Quantization
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• FPGAs are well suited to fixed-point 
numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization

Better

https://arxiv.org/pdf/2006.10159.pdf


Quantization
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LHC Applications
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Particle Identification
• LHC triggers must differentiate 

different collections of particles / 
detector signals from 
overwhelming backgrounds


• τ lepton, bottom quark


• Light quarks, gluons, noise, 
combinatorics


• Edge ML can enable this faster / 
better
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L1 τ Identification
• NN algorithm capable of accepting more τ 

leptons than traditional cut-based method


• Network is 3 layer dense model, uses 
information about particle pT, η, φ, and type


• Outputs decision in 38 ns (9 clocks @ 240 
MHz)
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CMS TDR-021

τ

NN 

Cut-based 

Calorimeter-only



L1 b-quark Identification

28CMS DP-2022/021

… particles …

b

• NN trained to identify b-quarks using collection of particles


• Architecture includes featurizers that act on each particle individual


• Significantly improved  
acceptance for  
HH→bbbb events  
with low mHH  
(compared to  
traditional cut- 
based methods)



L1 Electron Identification
• Electrons are complex signatures


• Multiple sub detectors (tracker & 
calorimeter)


• Undergo bremsstrahlung (e → e + γ)


• Edge ML well-suited to electron ID


• Handles correlations between different 
inputs


• 5-10% improvement in plateau efficiency


• Important for many different physics 
signatures

29CMS DP-2023/047



L1 Anomaly Detection Trigger
• What if we don’t know exactly what new physics looks like?


• → anomaly detection (AD)


• Can reduce network size by removing decoder, using latent 
space directly
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Bkgd

Signal

L1 Anomaly Detection Trigger
• What if we don’t know exactly what new physics looks like?


• → anomaly detection (AD)


• Can reduce network size by removing decoder, using latent 
space directly (allows to achieve <50 ns latency)
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L1 Anomaly Detection Trigger
• What if we don’t know exactly what new physics looks like?


• → anomaly detection (AD)


• Can reduce network size by training student network to 
predict teacher network MSE
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ℒ = ∥x − xteacher
pred ∥2

Teacher network

Student network
ℒ = ∥( ) − xstudent

pred ∥2∥x − xteacher
pred ∥2



L1 AD Trigger
• CMS has already deployed multiple AD algorithms in trigger


• AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA 
[CMS DP-2023/086]


• Currently collecting interesting events that would have been missed


• Network preferentially identifies large multiplicity events


• Potentially large gains in new physics acceptance
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Data Compression
• What if there’s simply too much data to get off the 

detector in the first place?!


• CMS High Granularity Calorimeter will have 6.5 million 
readout channels, 50 layers → need some compression


• AEs well-suited (only transmit latent space)


• Model must be run in high radiation environment (ECON-T 
ASIC, logic triplicated) [2105.01683]
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https://arxiv.org/pdf/2105.01683


LAr Peak Finding
• ATLAS LAr calorimeter needs to measure  

time and energy of pulses


• Overlapping pulses difficult for simple,  
fast algorithms to handle (150 ns = 6 BXs)


• CNN and LSTM architectures both able to significantly  
improve performance


• Well-suited for data structure, able to account for non-linear 
correlations

362111.08590, ATLAS LAr Public Results

https://arxiv.org/pdf/2111.08590
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade
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LHC Data Processing / Readout
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• Level-1 Trigger - O(μs) latency


• High Level Trigger - O(100 ms) latency


• Offline → 1 s latencies

If we don’t interesting 
identify events in trigger 

we lose them forever!



LHC Data Processing / Readout
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• Level-1 Trigger


• High Level Trigger


• Offline

If we don’t interesting 
identify events in trigger 

we lose them forever!



HLT b-tagging
• Early usage of ML at LHC for b-tagging


• High complexity, physics motivation → significant ML gains


• Algorithms have to evolve quickly to keep up with modern ML


• BDTs → MLPs & DeepSets → GNNs (+ attention)


• Tiered reconstruction/filtering allows running computationally intensive algorithms in trigger
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ATLAS BJet Trigger Public Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults


GNN Tracking
• Tracking is an incredibly hard problem, tracking in 

HLT even harder


• Huge combinatorics, only going to get worse


• GNNs show promise for HL-LHC


• FLOPs/power important considerations


• Pruning one potential option for reduction
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ATL-COM-DAQ-2024-004 

https://cds.cern.ch/record/2888383/files/ATL-COM-DAQ-2024-004.pdf


LHC Data Processing / Readout
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• Level-1 Trigger


• High Level Trigger


• Offline
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LHC Data Processing / Readout
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• High Level Trigger (GPU)


• High Level Trigger (CPU)


• Offline 

If we don’t interesting 
identify events in trigger 

we lose them forever!

High Level 

Trigger 

(GPU)
30 MHz

1 MHz
100 kHz 
10 GB/s



GNN Tracking (LHCb)
• LHCb must do tracking at 30 MHz


• Exploring use of GNNs [2407.12119]


• Demonstrated good performance possible


• Achieving necessary throughput is a challenging problem
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https://arxiv.org/abs/2407.12119


Lipschitz Monotonic NN
• On-detector ML is not just about speed


• Robustness and understandability are also very important


• Networks can be made provably monotonic [2112.00038]


• LHCb has used this technique to design NNs for use in HLT


• Eg. smooth dependence on flight distance for heavy 
flavor decays


• Improved stability
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2306.09873 , 2312.14265 

https://arxiv.org/pdf/2112.00038
https://arxiv.org/abs/2306.09873
https://arxiv.org/abs/2312.14265


Continual Learning
• On-detector ML has no re-do button


• Cannot just reprocess with new network if 
conditions change


• Continual learning method uses mix of original and 
new data to retrain model


• Better performance than simple retraining (or no 
retraining)


• Important consideration especially when conditions 
can change significantly


• Example from CMS considers degradations in L1 
tracking

46CMS DP-2023/022
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Conclusions
• Increasingly possible and necessary 

to perform real time edge ML in LHC 
experiments


• FPGA and GPUs are main hardware 
tools but not only ones!


• ML offers improved performance over 
traditional algorithms


• With advancing ML off-detector 
brings better alignment of offline 
and online algorithms


• Applications in many other fields, 
areas too!
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BACKUP
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A Toroidal LHC ApparatuS (ATLAS)
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ATLAS Slice
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ATLAS Slice
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Neutrino: missing 
transverse energy (MET)



ATLAS Slice
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Neutrino: missing 
transverse energy (MET)

p4 = (pT, η, φ, E)

η = 0

η = 1.5

η = 3

φ

pT



L1 AD
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Reuse
• For lowest latency, 

compute all 
multiplications at once


• Reuse = 1 (fully parallel) 
→ latency = # layers)


• Larger reuse implies more 
serialization


• Allows trading higher 
latency for lower resource 
usage
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Layer 1 Layer 2



Applications
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arXiv: 2111.08590

Eur. Phys. J. C (2021) 81 :969 CMS-DP-2021-035



Heterogeneous Computing
• Direct connect


• Simple connections


• Reduced network load


• As-a-service (aaS) 

• Simple support for mixed 
hardware


• Scaleable


• Throughput optimizations for 
multiple-client


• Simple client-side
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CPU 
Inputs

Outputs
CoprocessorPCI express

CPU 
Request

Response
CoprocessorNetwork Server 

PCI-e



As-a-service computing
• Biggest gains come from algorithms that are faster to run on 

accelerator, workflows that can be parallelized
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