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.= Agenda of the day

. Intro to GPUs (11:15 to 12:00)
. Model compression overview (13:30 to14:30)

. Practical tutorial about model compression (14:30 to

16:30)
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.= Agenda of introduction

What's a GPU?

Memory versus compute

Is NVIDIA just a hardware company?
Training and inferencing LLMs

Model architectures
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Differences between a CPU and a GPU

There are many types of GPUs! Let’s see an example of one

pal

ALU: Arithmetic Logic Unit

Control

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

DRAM

CPU

H

GPU

Hide latency to access data

ﬁ

Many operations in parallel

Image from book “Learn CUDA programming: a beginners guide to GPU programming and parallel computing”
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Getting Million-X Speedups to Power Al and Scientific Computing

Accelerated Computing + Al Provides the Compute Required
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Getting Million-X Speedups to Power Al and Scientific Computing
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What’s a GPU?

There are many types of GPUs! Let’s see an example of one

NVIDIA Grace Hopper Superchip
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Choose the right GPU for your task
e E Bw| K5 T || O IS

DLTraining DLInference HPC / Al Omniverse / Virtual Virtual Mainstream Far Edge
& DA Render Farms Workstation Desktop (VDI) Acceleration Acceleration

PCIE

O

A40

®

Al6

Graphics / Compute

L4

A2

Small Form Factor
Compute/Graphics

T4

‘ ‘ Price-performance comparison ineach product group (Compute, Graphics &
Compute, SFF Com pute & Graphics) and workload column
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Moving data and computing

A multiprocessor spends time on two operations

High Bandwidth

Memory (HBM)

1. Loading data from GPU memory to

the computing unit’s SRAM and registers

at a specified bandwidth

A streaming multiprocessor (SM) of the NVIDIA H100, with four sub-cores

3.5TB/s

LO Instruction Cache LO Instruction Cache
Warp Scheduler (32 thread/cik) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 PR32 P4 PR32 FPea
P32 FPI2 P4 FP32  FPes

FP32 PR32 FPes PR32 FPes

FP32 PR32 P4 FP32  FPes

FP32 PR32 FPes PR32 FPes

P2 FPI2  FPes PR32 FPes

FP32 PR32 FP4 PR32 FPed

FP32 PR32 FPe4 TENSOR CORE PR32 FPe4 TENSOR CORE
FP32 PR32 Fres 4™ GENERATION PPz Fres 4™ GENERATION
FP32 PR32 P4 0 PR32 FPes

FPX2 FPI2  FPes FP32  FPed

P32 PR32 FPed PR32 FPes

FP32 PR32 FPe4 FP32  FPes

P32 FP32 P4 PR32 FPes

FP32 PR32 P84 FPe4

P32 PR32 P4

W u Lo w U Lo/

L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/cik) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

¥PI2 FP32 P4 P32 FPes
FPI2 FP32 PS4 P32 FP6s
FP32 FP32  FPE4 FP32 FPes
FP32 P32 FPe4 P32 FPea
FP2 FP32 PS4 P32 FPes
P32 FP32 P4 P32 FPea
FPI2 FP32  FPe4 P32 FPes
FP32 FP32 FP&4 TENSOR CORE FP32 P64 TENSOR CORE
FP32 FP32 FP64 4™ GENERATION FP32 FP64 4" GENERATION
FPI2 FP32  FPE4 P32
FP2 FP32  FPe4 P32
FPI2 FP32  FPe4 FP32
FP32 FP32  FPe4 P32
FPI2 FP32 PB4 P32
FP2 FP32 PS4 P32
FPI2 FP32 PS4 FP32
o L Lo
T st

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core
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https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core

Moving data and computing

A multiprocessor spends time on two operations

A tensor core of NVIDIA H100

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64

3.5 TB/S INT32 FP32 FP32 FP64
——————————————  LLE IR T FP64

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE

INT32 FP32 FP32 FP64 4™ GENERATION

High Bandwidth
Memory (HBM)

2. Mathematical operations, INT32 FP32 FP32 FP64
. . . . INT32 FP32 FP32 FP64
like matrix-matrix or matrix- INT32 FP32 EP32 EPe4
vector multiplications taking INTS2 FP32 FP32 FP64
) INT32 FP32 FP32 FP64

place in the tensor cores INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64
€.8. 133'8 TFLOPS for LD/ LD/ LD/ LD/ LD/ LD/ LD/ LDI
ST St | BE || BT g5 | | 8T | 8 28T
FP16

SFU

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core EnVIDIA
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Which of the two is faster?

Depends on the kernel under consideration

1. Memory bandwidth

3.5TB/s

—

High Bandwidth
Memory (HBM)

2. Mathematical operations,

eg. 133.8 TFLOPS for
FP16

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

A tensor core of NVIDIA H100

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64 TENSOR CORE
FP32 FP32 FP64 4™ GENERATION
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP84

LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core EnVIDIA
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A job is memory bandwidth bound if the bandwidth cannot keep up with the
computations — the cores are waiting idle

A tensor core of NVIDIA H100

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

1. Memory bandwidth Register File (16,384 x 32-bit)
3.5 TB/S INT32 FP32 FP32 FP64
. . INT32 FP32 FP32 FP64
ngh Bandwidth INT32 FP32 FP32 FP64
— INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
MemOry (H BM) INT32 FP32 FP32 FP64
2. Mathematical operations, INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 TENSOR CORE

e.e. 133.8 TFLOPS for | il i Ol e 127 e

INT32 FP32 FP32 FP64
F P 1 6 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core ENVIDIA I
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A job is compute bound if the cores cannot keep up with the bandwidth — the
bottleneck is in the FLOPS

A tensor core of NVIDIA H100

LO Instruction Cache

1. Memory bandwidth

35 TB/S INT32 FP32

INT32 FP32 3
INT32 FP32 FP64

— INT32 FP32 FP64

INT32 FP32 FP64

High Bandwidth
Memory (HBM)

INT32 FP32 FP64

2. ical operations INT32 FP32 FP64
Mathematical op ’ INT32 FP32 FP64 TENSOR CORE
e.e. 133.8 TFLOPS for |l FPe4 4™ GENERATION

INT32 FP32 FP64
F P16 INT32 FP32 FP64

INT32 FP32 FP64
INT32 FP32 FP64
INT32 FP32 FP64

INT32 FP32 FP64
INT32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core <nvibiA
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Understanding if your job is memory or compute-bound

Roofline model

Arithmetic intensity of a kernel 4 Ridge Point

Peak ops/s \v

-y -

-

number of operations to compute a kernel

bytes read from the DRAM memory

O
Kernel 3

O
Kernel 2

Attainable ops/s

Bandwidth-Bound
<}

Compute-Bound
Ji

>
Arithmetic Intensity (ops/byte)

Image from book “Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production” EnVIDIA I



https://deeplearningsystems.ai/

Understanding if your job is memory or compute-bound

Roofline model

Arithmetic intensity of a kernel 4 Ridge Point

Peak ops/s \'v :

number of operations to compute a kernel NG
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Image from book “Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production” EnVIDIA I
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Is NVIDIA just a hardware company?
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The focus for today:
Inference and model compression



The LLM cycle of life

Build, customize, and deploy generative Al models with NVIDIA NeMo

S- %% I m( ) | (2
L i il

NeMo Curator NeMo Customizer NeMo Evaluator NeMo Retriever NeMo Guardrails NVIDIA NIM

e

Data Prep Training and Customization Deployment
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NVIDIA Supports Al Model Landscape

NVIDIA Al Inference Platform supports entire
landscape of Al

Traditional models for Computer Vision, NLP,
recommenders, speech Al

Latest LLM transformer models for Generative Al

Decade+ of NVIDIA software investment and libraries

CNNs TRANSFORMERS RNNs

GNN DECISION TREES
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Training Compute (petaFLOPs)
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