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Supporting delivery of AI / Deep Learning solutions

- Covering inference, customization, evaluation and  RAG systems
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delivery of AI / Deep Learning solutions
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• Intro to GPUs (11:15 to 12:00)

• Model compression overview (13:30 to14:30)

• Practical tutorial about model compression (14:30 to 

16:30)

Agenda of the day 



• What’s a GPU?

• Memory versus compute

• Is NVIDIA just a hardware company?

• Training and inferencing LLMs

• Model architectures

Agenda of introduction



Differences between a CPU and a GPU
There are many types of GPUs! Let’s see an example of one

ALU: Arithmetic Logic Unit

Hide latency to access data Many operations in parallel

Image from book “Learn CUDA programming: a beginners guide to GPU programming and parallel computing”



Getting Million-X Speedups to Power AI and Scientific Computing
Accelerated Computing + AI Provides the Compute Required
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What’s a GPU?
There are many types of GPUs! Let’s see an example of one



Choose the right GPU for your task
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Moving data and computing
A multiprocessor spends time on two operations

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core 

High Bandwidth 
Memory (HBM)

3.5 TB/s

1. Loading data from GPU memory to 
the computing unit’s SRAM and registers 

at a specified bandwidth 

A streaming multiprocessor (SM) of the NVIDIA H100, with four sub-cores 

https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core


Moving data and computing
A multiprocessor spends time on two operations

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core  

High Bandwidth 
Memory (HBM)

3.5 TB/s

2. Mathematical operations, 
like matrix-matrix or matrix-
vector multiplications taking 

place in the tensor cores 

e.g. 133.8 TFLOPS for 
FP16

A tensor core of NVIDIA H100

https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core


Which of the two is faster?
Depends on the kernel under consideration

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core  

High Bandwidth 
Memory (HBM)

1. Memory bandwidth

3.5 TB/s

2. Mathematical operations, 

e.g. 133.8 TFLOPS for 
FP16

A tensor core of NVIDIA H100

https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core


A job is memory bandwidth bound if the bandwidth cannot keep up with the 
computations — the cores are waiting idle

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core  

High Bandwidth 
Memory (HBM)

1. Memory bandwidth

3.5 TB/s

2. Mathematical operations, 

e.g. 133.8 TFLOPS for 
FP16

A tensor core of NVIDIA H100

https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core


A job is compute bound if the cores cannot keep up with the bandwidth — the 
bottleneck is in the FLOPS

Inspired by https://linden-li.github.io/posts/inference-slides, image from https://resources.nvidia.com/en-us-tensor-core  

High Bandwidth 
Memory (HBM)

1. Memory bandwidth

3.5 TB/s

2. Mathematical operations, 

e.g. 133.8 TFLOPS for 
FP16

A tensor core of NVIDIA H100

https://linden-li.github.io/posts/inference-slides
https://resources.nvidia.com/en-us-tensor-core


Understanding if your job is memory or compute-bound
Roofline model

Image from book “Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production”
”

Arithmetic intensity of a kernel

number of operations to compute a kernel
bytes read from the DRAM memory

Arithmetic

https://deeplearningsystems.ai/


Understanding if your job is memory or compute-bound
Roofline model

Image from book “Deep Learning Systems: Algorithms, Compilers, and Processors for Large-Scale Production”
”

Arithmetic intensity of a kernel

number of operations to compute a kernel
bytes read from the DRAM memory

Arithmetic

What can you say about 
kernel 1, 2 and 3?

https://deeplearningsystems.ai/


Is NVIDIA just a hardware company?



NVIDIA Scientific Computing Platform

APPLICATIONS

PLATFORM

SYSTEM SOFTWARE

HARDWARE

NVIDIA HPC NVIDIA AI NVIDIA Omniverse

RTX CUDA-X PHYSX DOCA BASE 
COMMAND CLOUD NATIVE

LOVELACE GRACE HOPPER 
SUPERCHIP

GRACE CPU 
SUPERCHIP

BLUEFIELDQUANTUMHOPPER



The focus for today: 
Inference and model compression



The LLM cycle of life
Build, customize, and deploy generative AI models with NVIDIA NeMo

DeploymentTraining and CustomizationData Prep

NeMo Curator NeMo Customizer

…

TensorRT / Triton /
NVIDIA NIMNeMo Evaluator NeMo Retriever NeMo Guardrails



NVIDIA Supports AI Model Landscape
Traditional and generative AI / LLM model evolution 

• NVIDIA AI Inference Platform supports entire 
landscape of AI

• Traditional models for Computer Vision, NLP, 
recommenders, speech AI

• Latest LLM transformer models for Generative AI 

• Decade+ of NVIDIA software investment and libraries

CNNs TRANSFORMERS RNNs

GNN DECISION TREES
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