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• The inference workflow

• Inference optimization with TensorRT

• Inference server with Triton

• NIM to simplify inference

Agenda of ML for 
inference



Challenges of AI Inference
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AI Inference Workflow
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TensorRT and TensorRT-LLM
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Data Center

Data Center 
GPUs

NVIDIA TensorRT

Optimize and deploy neural networks in production.

Maximize throughput for latency-critical apps with compiler and runtime.

Optimize every network, including CNNs, RNNs, and Transformers.

1. Reduced mixed precision: FP32, TF32, FP16, and INT8

2. Layer and tensor fusion: Optimizes use of GPU memory bandwidth

3. Kernel auto-tuning: Select best algorithm on target GPU

4. Dynamic tensor memory: Deploy memory-efficient apps

5. Multi-stream execution: Scalable design to process multiple streams.

6. Time fusion: Optimizes RNN over time steps

SDK for High-Performance Deep Learning Inference

https://developer.nvidia.com/tensorrt
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https://developer.nvidia.com/tensorrt
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TensorRT-LLM
LLM specific optimizations:
• KV Caching
• Multi-GPU, Muti-Node
• Custom MHA optimizations
• Paged KV Cache (Attention)
• etc…

TensorRT-LLM in the DL Compiler Ecosystem
TensorRT-LLM builds on TensorRT Compilation

TensorRT
General Purpose Compiler
• Optimized GEMMs & general kernels
• Kernel Fusion
• Auto Tuning
• Memory Optimizations
• Multi-stream execution



TensorRT-LLM Optimizing LLM Inference
SoTA Performance for Large Language Models for Production Deployments

Ease ExtensionSoTA Performance
Add new operators or models in Python to quickly 

support new LLMs with optimized performance
Leverage TensorRT compilation & kernels from 
FasterTransformers, CUTLASS, OAI Triton, ++

# define a new activation
def silu(input: Tensor) → Tensor:
    return input * sigmoid(input)

#implement models like in DL FWs
class LlamaModel(Module)

def __init__(…)
self.layers = ModuleList([…])

def forward (…)
hidden = self.embedding(…)

for layer in self.layers:
hidden_states = layer(hidden)
 

return hidden

Numbers are preliminary based on internal evaluation on Llama 7B on H100

LLM Batching with Triton

Maximize throughput and GPU utilization through 
new scheduling techniques for LLMs



TensorRT and TensorRT-LLM model compression



Efficient inference
Why is it challenging?

Memory Operations



Memory for Inference
Even small LLMs are large

• Each billion parameters is ~2GB of memory

• Llama 8B is ~16GB of memory + the KV cache

• A H100 has 80GB of memory and finite bandwidth

• How can we make the most out of this memory?

Image from book “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”
”

https://arxiv.org/abs/2205.14135


Operations for Inference
Billiions of operations increase the cost

• Larger models perform better, but are costly

• Smaller LLMs can be a good tradeoff between cost and quality

• More efficient models drive the cost of inference down

• Can we make the inference computations cheaper?



Model Compression Strategies

Quantization

Distillation

Pruning

Sparsity



Quantization
Supported Precisions & Models

• Utilizes Hopper FP8 “Transfomer Engine”

• Support many 8bit & 4bit methods
• FP8, INT8/INT4 Weight only, INT8 Smooth Quant, AWQ, GPTQ
• Support varies by model

• Reduced model size, memory bandwidth, & compute
• Improves performance & allows for larger models per GPU

• Model optimization toolkit to quantize pre-trained models
• Allows for per layer quantization strategies

• Currently requires all weights to be in same precision
• Would like to relax this constraint going forward

• Precision documentation

Quantization Examples
Supported Models

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/precision.md
https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/quantization
https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/precision.md


Images from https://resources.nvidia.com/en-us-tensor-core  

Quantization of FP Formats

https://resources.nvidia.com/en-us-tensor-core


Images from https://resources.nvidia.com/en-us-tensor-core  

Comparison of Throughput Across FP Formats

https://resources.nvidia.com/en-us-tensor-core


Quantization
How to Chose a Precision

• Best precision varies by application
• FP8 activations generally provides best performacne

• Weight quantization reduces memory footprint & traffic
• Reduces latency
• Can fit larger models
• Costs compute time to unpack the weights

• Activation quantization saves on compute
• Improves throughput
• Can run larger batch sizes

• WXAY = weights quantized to X bits, and activations to Y

• Quantization Guide

Method
Performance Improvement

Accuracy impact Calibration timesmall batch
BS <=4

large batch 
BS>=16

FP8
(W8A8) Medium Medium Very low / None O(1min)

INT8 SQ
(W8A8) Medium Medium Medium O(1min)

INT8 WO
(W8A16) Medium None Low None

INT4 WO 
(W4A16) High None High None

INT4 AWQ 
(W4A16) High None Low O(10min)

INT4 GPTQ
(W4A16) High None Low O(10min)

INT4-FP8 AWQ 
(W4A8) High Medium Low O(10min)

SQ  = Smooth Quant
WO = Weight Only
AWQ = Activation Aware Quantization

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/quantization-in-TRT-LLM.md


NVIDIA Triton Inference Server



Triton Inference Server
Open-Source Software For Fast, Scalable, Simplified Inference Serving

Optimized for Real Time, 
Batch, Streaming, 

Ensemble Inferencing

Integration With 
Kubernetes, KServe, 

Prometheus & Grafana

 Available Across All Major 
Cloud AI Platforms

Any Framework

Supports Multiple 
Framework Backends 

Natively e.g., TensorFlow, 
PyTorch, TensorRT, 

XGBoost, ONNX, Python & 
More

Any Query Type Any Platform

X86 CPU | Arm CPU | 
NVIDIA GPUs | MIG

Linux | Windows | 
Virtualization

Public Cloud, Data Center 
and Edge/Embedded 

(Jetson)

DevOps & MLOps Performance & 
Utilization

Model Analyzer for 
Optimal Configuration

Optimized for High 
GPU/CPU Utilization, High 

Throughput & Low 
Latency



Delivering High Performance Across Frameworks
Triton’s architecture

Kubernetes, 
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…
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Multiple GPU & CPU 
Backends

Custom

Utilization, Throughput, Latency Metrics
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Result
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Python/C++ 
Client Library

Query

Result
Python/C++ 

Client Library

Query

Result
Python/C++ 

Client Library

Many 
active 
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Model analyzer Model orchestration 

CPUGPU



Supports Multiple Model Execution Backends

Faster Transformer
Multi-GPU, multi-node inferencing for 
large transformer models (GPT and T5)

TensorFlow 1.x/2.x
Any Model

SavedModel | GraphDef 

PyTorch
Any model

JIT/Torchscript | Python 

TensorRT
All TensorRT optimized models

OpenVINO
OpenVINO optimized models on Intel 

architecture

FIL (RAPIDS)
Tree based models 

(e.g., XgBoost, Scikit-learn RandomForest, 
LightGBM)

ONNX RT
ONNX format

Python
Custom code in Python e.g., 

pre/post processing, any 
Python model 

Custom C++ Backend
 Custom framework in C++ 

DALI
Preprocessing logic using DALI 

operators

TF-TensorRT & TorchTRT
Any TensorFlow and PyTorch 

model

NVTabular
Feature engineering and 

preprocessing library for tabular data

HugeCTR
Recommender model with large 

embeddings

Paddle Paddle
Paddle paddle models



Concurrent Model Execution

Inference 
Requests

Triton Inference Server

V100 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent 
requests

Deep Rec
Request 
Queue

5 concurrent 
requests

ResNet50
Request 
Queue



Framework Backend

Dynamic Batcher

Runtime

Context

Context

Batch-1 
RequestBatch-4 

Request

Triton Inference Server

Dynamic Batching
Group requests to form larger batches, increase GPU utilization

▪ Client sends independent requests

▪ Triton groups requests into a single batch to 
increase overall throughput

▪ Preferred batch size and waiting time are 
configuration options 



Model Pipelines: Ensembles & Business Logic Scripting

✓Models from any framework ✓ GPU shared memory for optimal 
performance

✓ Run on GPU or CPU



NIM: fastest path to AI inference  



NVIDIA NIM is the Fastest Path to AI Inference
Reduces engineering resources required to deploy optimized, accelerated models

NVIDIA NIM Triton + TRT-LLM Opensource

5 minutes ~1 week

Industry standard protocol
OpenAI for LLMs, Google Translate Speech

User creates a shim layer (reducing performance) or
modify Triton to generate custom endpoints

Pre-built TRT-LLM engines for NV and community models User converts checkpoint to TRT-LLM format and creates and runs 
sweeps through different parameters to find the optimal config

Pre-built with TRT-LLM to handle pre/post 
processing (tokenization) User manually sets up + configures

Automated User manually sets up + configures

Supported – P-tuning and LORA, more planned User needs to create custom logic

Pre-validated with QA testing No pre-validation

NVIDIA AI Enterprise - Security and CVE 
scanning/patching and tech support No enterprise support

Deployment Time

API Standardization

Pre-Built Engine

Triton Ensemble/  BLS 
Backend

Triton Deployment

Customization

Container Validation

Support

Llama 2 Nemotron



NVIDIA NIM Optimized Inference Microservices
Accelerated runtime for generative AI

Simplified development of AI application that 
can run in enterprise environments

Day 0 support for all generative AI models providing 
choice across the ecosystem

Best accuracy for enterprise by enabling tuning with 
proprietary data sources

Improved TCO with best latency and throughput running 
on accelerated infrastructure

Enterprise software with feature branches, validation 
and support

Deploy anywhere and maintain control of 
generative AI applications and data

Optimized inference engines

NVIDIA NIM

Domain specific code

Support for custom models

Industry standard APIs

DGX & 
DGX Cloud

Prebuilt container and Helm chart



Inference Microservices for Generative AI
NVIDIA NIM is the fastest way to deploy AI models on accelerated infrastructure across cloud, data center, and PC

MIXTRAL 8x7B VISTA-3D DIFFDOCKGEMMA 7B FUYU AI GENERATOR KOSMOS 2 AUDIO2FACE ESM FOLD MolMIMNEMO RETRIEVER 3D GENERATOR

NVIDIA API Catalog 



NVIDIA NIM for LLM Architecture

• HTTP REST API conforms to OpenAI 
specification for easy developer 
integration

• Liveness, health check and metrics 
endpoints for monitoring and 
enterprise management

• NVIDIA NIM includes multiple LLM 
runtimes

• TensorRT-LLM and vLLM
• Runtime is selected based on 

detected hardware and available 
optimized engines, with preference 
given to optimized engines

NIM Base Container

OpenAI Compatible API

FastAPI

/v1/completions /v1/chat/completions

LLM Executor

TensorRT-LLM Runtime

TensorRT-LLM & TensorRT

vLLM Runtime

vLLM & Torch

Client API

/v1/models /v1/metrics/v1/health/ready

HTTP
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