
ML Inference on GPUs
Ziv Ilan - Solution Architect, NVIDIA

Sergio Perez - Solution Architect, NVIDIA
Harshita Seth - Solution Architect, NVIDIA

• The inference workflow

• Inference optimization with TensorRT

• Inference server with Triton

• NIM to simplify inference

Agenda of ML for
inference

Challenges of AI Inference

AI INFERENCE

MODELS FRAMEWORKS

MIDDLEWARE

PROCESSORS

Real Time

V100
GPU

x86 CPUA30 GPU A100
GPU

Arm CPU

Cloud

Batch Streaming

APP
CONSTRAINTS

DEPLOYMENT

Data Center EmbeddedEdge

Azure
Machine
Learning

Google
Vertex AI

Amazon
SageMaker

CNNs TRANSFORMERS RNNs

GNN DECISION TREES

AI Inference Workflow

Trained
Models

Model
Optimization

Inference
Serving

Query

Result

Model
Repo

Data Scientist |
ML Engineer

ML Engineer, MLOPS,
DevOps, SRE

AI Application

App Developer,
DevOps, SREML Engineer Business Owner

(LOB)

IT, Platform

Choice of ML, DL
framework and

model for different
use cases

Optimize For Multiple
Constraints For High

Perf. Inference

Scaled Inferences
with High Perf. &

Utilization On
GPU/CPU

Fast rollouts and
business SLAs

Improved business metrics e.g.
90% fraud accurately detected
real time, 30% customer issues

resolved with chatbot

Infrastructure

Support AI workflows cost
efficiently with SLAs on

CPU, GPU, public cloud, on-
prem, virtualized platforms

TensorRT and TensorRT-LLM

Accuracy Response
Time

Memory

Throughput Model
Architectures

Inference is Complex
Real-Time | Competing Constraints | Rapid Updates

Inference Inference
Serving

Low-Latency Inference,
Every Framework

Large Trained Models

Result

Query

TensorRT Triton

Data
Center

Jetson

DRIVE

FRAMEWORKS CONSTRAINTS HARDWARE

Data Center

Data Center
GPUs

NVIDIA TensorRT

Optimize and deploy neural networks in production.

Maximize throughput for latency-critical apps with compiler and runtime.

Optimize every network, including CNNs, RNNs, and Transformers.

1. Reduced mixed precision: FP32, TF32, FP16, and INT8

2. Layer and tensor fusion: Optimizes use of GPU memory bandwidth

3. Kernel auto-tuning: Select best algorithm on target GPU

4. Dynamic tensor memory: Deploy memory-efficient apps

5. Multi-stream execution: Scalable design to process multiple streams.

6. Time fusion: Optimizes RNN over time steps

SDK for High-Performance Deep Learning Inference

https://developer.nvidia.com/tensorrt

TensorRT
Optimizer

TensorRT
Runtime

Trained
DNN

Embedded

Jetson

Application

RTX GPUs

https://developer.nvidia.com/tensorrt

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

TensorRT-LLM
LLM specific optimizations:
• KV Caching
• Multi-GPU, Muti-Node
• Custom MHA optimizations
• Paged KV Cache (Attention)
• etc…

TensorRT-LLM in the DL Compiler Ecosystem
TensorRT-LLM builds on TensorRT Compilation

TensorRT
General Purpose Compiler
• Optimized GEMMs & general kernels
• Kernel Fusion
• Auto Tuning
• Memory Optimizations
• Multi-stream execution

TensorRT-LLM Optimizing LLM Inference
SoTA Performance for Large Language Models for Production Deployments

Ease ExtensionSoTA Performance
Add new operators or models in Python to quickly

support new LLMs with optimized performance
Leverage TensorRT compilation & kernels from
FasterTransformers, CUTLASS, OAI Triton, ++

define a new activation
def silu(input: Tensor) → Tensor:
 return input * sigmoid(input)

#implement models like in DL FWs
class LlamaModel(Module)

def __init__(…)
self.layers = ModuleList([…])

def forward (…)
hidden = self.embedding(…)

for layer in self.layers:
hidden_states = layer(hidden)

return hidden

Numbers are preliminary based on internal evaluation on Llama 7B on H100

LLM Batching with Triton

Maximize throughput and GPU utilization through
new scheduling techniques for LLMs

TensorRT and TensorRT-LLM model compression

Efficient inference
Why is it challenging?

Memory Operations

Memory for Inference
Even small LLMs are large

• Each billion parameters is ~2GB of memory

• Llama 8B is ~16GB of memory + the KV cache

• A H100 has 80GB of memory and finite bandwidth

• How can we make the most out of this memory?

Image from book “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”
”

https://arxiv.org/abs/2205.14135

Operations for Inference
Billiions of operations increase the cost

• Larger models perform better, but are costly

• Smaller LLMs can be a good tradeoff between cost and quality

• More efficient models drive the cost of inference down

• Can we make the inference computations cheaper?

Model Compression Strategies

Quantization

Distillation

Pruning

Sparsity

Quantization
Supported Precisions & Models

• Utilizes Hopper FP8 “Transfomer Engine”

• Support many 8bit & 4bit methods
• FP8, INT8/INT4 Weight only, INT8 Smooth Quant, AWQ, GPTQ
• Support varies by model

• Reduced model size, memory bandwidth, & compute
• Improves performance & allows for larger models per GPU

• Model optimization toolkit to quantize pre-trained models
• Allows for per layer quantization strategies

• Currently requires all weights to be in same precision
• Would like to relax this constraint going forward

• Precision documentation

Quantization Examples
Supported Models

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/precision.md
https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/quantization
https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/precision.md

Images from https://resources.nvidia.com/en-us-tensor-core

Quantization of FP Formats

https://resources.nvidia.com/en-us-tensor-core

Images from https://resources.nvidia.com/en-us-tensor-core

Comparison of Throughput Across FP Formats

https://resources.nvidia.com/en-us-tensor-core

Quantization
How to Chose a Precision

• Best precision varies by application
• FP8 activations generally provides best performacne

• Weight quantization reduces memory footprint & traffic
• Reduces latency
• Can fit larger models
• Costs compute time to unpack the weights

• Activation quantization saves on compute
• Improves throughput
• Can run larger batch sizes

• WXAY = weights quantized to X bits, and activations to Y

• Quantization Guide

Method
Performance Improvement

Accuracy impact Calibration timesmall batch
BS <=4

large batch
BS>=16

FP8
(W8A8) Medium Medium Very low / None O(1min)

INT8 SQ
(W8A8) Medium Medium Medium O(1min)

INT8 WO
(W8A16) Medium None Low None

INT4 WO
(W4A16) High None High None

INT4 AWQ
(W4A16) High None Low O(10min)

INT4 GPTQ
(W4A16) High None Low O(10min)

INT4-FP8 AWQ
(W4A8) High Medium Low O(10min)

SQ = Smooth Quant
WO = Weight Only
AWQ = Activation Aware Quantization

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/quantization-in-TRT-LLM.md

NVIDIA Triton Inference Server

Triton Inference Server
Open-Source Software For Fast, Scalable, Simplified Inference Serving

Optimized for Real Time,
Batch, Streaming,

Ensemble Inferencing

Integration With
Kubernetes, KServe,

Prometheus & Grafana

 Available Across All Major
Cloud AI Platforms

Any Framework

Supports Multiple
Framework Backends

Natively e.g., TensorFlow,
PyTorch, TensorRT,

XGBoost, ONNX, Python &
More

Any Query Type Any Platform

X86 CPU | Arm CPU |
NVIDIA GPUs | MIG

Linux | Windows |
Virtualization

Public Cloud, Data Center
and Edge/Embedded

(Jetson)

DevOps & MLOps Performance &
Utilization

Model Analyzer for
Optimal Configuration

Optimized for High
GPU/CPU Utilization, High

Throughput & Low
Latency

Delivering High Performance Across Frameworks
Triton’s architecture

Kubernetes,
Prometheus

Metrics

Standard
HTTP/gRPC

Or

In-Process API
(directly integrate into
client app via C or Java

API)

Dynamic Batching
(Real time, Batch, Stream)

Per Model Scheduler
Queues

…

Flexible Model Loading
(All, Selective)

Multiple GPU & CPU
Backends

Custom

Utilization, Throughput, Latency Metrics

Model
Repository

Query

Result

Multiple Client
Applications

Python/C++
Client Library

Query

Result
Python/C++

Client Library

Query

Result
Python/C++

Client Library

Many
active

models

Model analyzer Model orchestration

CPUGPU

Supports Multiple Model Execution Backends

Faster Transformer
Multi-GPU, multi-node inferencing for
large transformer models (GPT and T5)

TensorFlow 1.x/2.x
Any Model

SavedModel | GraphDef

PyTorch
Any model

JIT/Torchscript | Python

TensorRT
All TensorRT optimized models

OpenVINO
OpenVINO optimized models on Intel

architecture

FIL (RAPIDS)
Tree based models

(e.g., XgBoost, Scikit-learn RandomForest,
LightGBM)

ONNX RT
ONNX format

Python
Custom code in Python e.g.,

pre/post processing, any
Python model

Custom C++ Backend
 Custom framework in C++

DALI
Preprocessing logic using DALI

operators

TF-TensorRT & TorchTRT
Any TensorFlow and PyTorch

model

NVTabular
Feature engineering and

preprocessing library for tabular data

HugeCTR
Recommender model with large

embeddings

Paddle Paddle
Paddle paddle models

Concurrent Model Execution

Inference
Requests

Triton Inference Server

V100 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent
requests

Deep Rec
Request
Queue

5 concurrent
requests

ResNet50
Request
Queue

Framework Backend

Dynamic Batcher

Runtime

Context

Context

Batch-1
RequestBatch-4

Request

Triton Inference Server

Dynamic Batching
Group requests to form larger batches, increase GPU utilization

▪ Client sends independent requests

▪ Triton groups requests into a single batch to
increase overall throughput

▪ Preferred batch size and waiting time are
configuration options

Model Pipelines: Ensembles & Business Logic Scripting

✓Models from any framework ✓ GPU shared memory for optimal
performance

✓ Run on GPU or CPU

NIM: fastest path to AI inference

NVIDIA NIM is the Fastest Path to AI Inference
Reduces engineering resources required to deploy optimized, accelerated models

NVIDIA NIM Triton + TRT-LLM Opensource

5 minutes ~1 week

Industry standard protocol
OpenAI for LLMs, Google Translate Speech

User creates a shim layer (reducing performance) or
modify Triton to generate custom endpoints

Pre-built TRT-LLM engines for NV and community models User converts checkpoint to TRT-LLM format and creates and runs
sweeps through different parameters to find the optimal config

Pre-built with TRT-LLM to handle pre/post
processing (tokenization) User manually sets up + configures

Automated User manually sets up + configures

Supported – P-tuning and LORA, more planned User needs to create custom logic

Pre-validated with QA testing No pre-validation

NVIDIA AI Enterprise - Security and CVE
scanning/patching and tech support No enterprise support

Deployment Time

API Standardization

Pre-Built Engine

Triton Ensemble/ BLS
Backend

Triton Deployment

Customization

Container Validation

Support

Llama 2 Nemotron

NVIDIA NIM Optimized Inference Microservices
Accelerated runtime for generative AI

Simplified development of AI application that
can run in enterprise environments

Day 0 support for all generative AI models providing
choice across the ecosystem

Best accuracy for enterprise by enabling tuning with
proprietary data sources

Improved TCO with best latency and throughput running
on accelerated infrastructure

Enterprise software with feature branches, validation
and support

Deploy anywhere and maintain control of
generative AI applications and data

Optimized inference engines

NVIDIA NIM

Domain specific code

Support for custom models

Industry standard APIs

DGX &
DGX Cloud

Prebuilt container and Helm chart

Inference Microservices for Generative AI
NVIDIA NIM is the fastest way to deploy AI models on accelerated infrastructure across cloud, data center, and PC

MIXTRAL 8x7B VISTA-3D DIFFDOCKGEMMA 7B FUYU AI GENERATOR KOSMOS 2 AUDIO2FACE ESM FOLD MolMIMNEMO RETRIEVER 3D GENERATOR

NVIDIA API Catalog

NVIDIA NIM for LLM Architecture

• HTTP REST API conforms to OpenAI
specification for easy developer
integration

• Liveness, health check and metrics
endpoints for monitoring and
enterprise management

• NVIDIA NIM includes multiple LLM
runtimes

• TensorRT-LLM and vLLM
• Runtime is selected based on

detected hardware and available
optimized engines, with preference
given to optimized engines

NIM Base Container

OpenAI Compatible API

FastAPI

/v1/completions /v1/chat/completions

LLM Executor

TensorRT-LLM Runtime

TensorRT-LLM & TensorRT

vLLM Runtime

vLLM & Torch

Client API

/v1/models /v1/metrics/v1/health/ready

HTTP

	Introduction to GPUs
	Slide 1: Introduction to GPUs, Inference and Model Compression
	Slide 2: About Us
	Slide 3
	Slide 4
	Slide 5: Differences between a CPU and a GPU
	Slide 6: Getting Million-X Speedups to Power AI and Scientific Computing
	Slide 7: Getting Million-X Speedups to Power AI and Scientific Computing
	Slide 8: What’s a GPU?
	Slide 9
	Slide 10: Moving data and computing
	Slide 11: Moving data and computing
	Slide 12: Which of the two is faster?
	Slide 13: A job is memory bandwidth bound if the bandwidth cannot keep up with the computations — the cores are waiting idle
	Slide 14: A job is compute bound if the cores cannot keep up with the bandwidth — the bottleneck is in the FLOPS
	Slide 15: Understanding if your job is memory or compute-bound
	Slide 16: Understanding if your job is memory or compute-bound
	Slide 17
	Slide 18: NVIDIA Scientific Computing Platform
	Slide 19
	Slide 20: The LLM cycle of life
	Slide 21: NVIDIA Supports AI Model Landscape

	ML Inference on GPUs
	Slide 22: ML Inference on GPUs
	Slide 23
	Slide 24: Challenges of AI Inference
	Slide 25: AI Inference Workflow
	Slide 26
	Slide 27: Inference is Complex
	Slide 28: NVIDIA TensorRT
	Slide 29: TensorRT-LLM in the DL Compiler Ecosystem
	Slide 30: TensorRT-LLM Optimizing LLM Inference
	Slide 31
	Slide 32: Efficient inference
	Slide 33: Memory for Inference
	Slide 34: Operations for Inference
	Slide 35: Model Compression Strategies
	Slide 36: Quantization
	Slide 37: Quantization of FP Formats
	Slide 38: Comparison of Throughput Across FP Formats
	Slide 39: Quantization
	Slide 40
	Slide 41: Triton Inference Server
	Slide 42: Delivering High Performance Across Frameworks
	Slide 43: Supports Multiple Model Execution Backends
	Slide 44: Concurrent Model Execution
	Slide 45: Dynamic Batching
	Slide 46: Model Pipelines: Ensembles & Business Logic Scripting
	Slide 47
	Slide 48: NVIDIA NIM is the Fastest Path to AI Inference
	Slide 49: NVIDIA NIM Optimized Inference Microservices
	Slide 50: Inference Microservices for Generative AI
	Slide 51: NVIDIA NIM for LLM Architecture

	Tutorial on GPU optimization
	Slide 52: Tutorial on GPU Optimization
	Slide 53
	Slide 54: How to connect to your tutorial instance?
	Slide 55
	Slide 56: Demo Video
	Slide 57: MMLU Overview
	Slide 58: Quantization
	Slide 59
	Slide 60: Distilling the Knowledge of LLMs into SLMs
	Slide 61: FP4 Format Supported in Blackwell Platform
	Slide 62: The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating
	Slide 63: Thank you!
	Slide 64
	Slide 65: LAYER & TENSOR FUSION
	Slide 66: KERNEL AUTO-TUNING
	Slide 67: DYNAMIC TENSOR MEMORY
	Slide 68: DYNAMIC TENSOR MEMORY
	Slide 69: TIME FUSION
	Slide 70: QUANTIZATION AWARE TRAINING
	Slide 71: LoRA & Customization
	Slide 72: KV Cache & Attention Techniques
	Slide 73: KV Cache Reusage
	Slide 74: Inflight Batching
	Slide 75: KV Cache Optimizations
	Slide 76: Multi-Modal Support
	Slide 77: Optimized Attention
	Slide 78: Multi-GPU Multi-Node

