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• Demo of TensorRT + Triton

• Build a TensorRT-LLM engine of Gemma 2B

• Evaluate the engine on MMLU

• Launch the Triton inference server

• Measure the throughput of Triton inference server

• Optional - Compare to quantized versions of Gemma 

2B

Agenda of the tutorial



How to connect to your tutorial instance?

•Create your NVIDIA account https://learn.nvidia.com/join
•Navigate to https://learn.nvidia.com/dli-event
•Enter the event code: CERN_XLAB_SE24
•Click on Start – this will spin up an Nvidia A10 32GB cloud instance

• It takes 10-15 minutes for the environment and the model artifacts to load



Demo: LLaMA 7B with TensorRT-LLM 
+ Triton 

Source code available in our Github repo

https://github.com/triton-inference-server/tutorials/blob/main/Popular_Models_Guide/Llama2/trtllm_guide.md


Demo Video



MMLU Overview
Academic benchmarks to evaluate LLMs

The MMLU (Measuring Massive Multitask Language Understanding) 
metric is a benchmark designed to evaluate the performance of large 
language models across a wide range of tasks and domains, providing a 
comprehensive assessment of a model's general knowledge, reasoning, 
and language understanding abilities.



Quantization
How to Choose a Precision

• Best precision varies by application
• FP8 activations generally provides best performacne

• Weight quantization reduces memory footprint & traffic
• Reduces latency
• Can fit larger models
• Costs compute time to unpack the weights

• Activation quantization saves on compute
• Improves throughput
• Can run larger batch sizes

• WXAY = weights quantized to X bits, and activations to Y

• Quantization Guide

Method
Performance Improvement

Accuracy impact Calibration timesmall batch
BS <=4

large batch 
BS>=16

FP8
(W8A8) Medium Medium Very low / None O(1min)

INT8 SQ
(W8A8) Medium Medium Medium O(1min)

INT8 WO
(W8A16) Medium None Low None

INT4 WO 
(W4A16) High None High None

INT4 AWQ 
(W4A16) High None Low O(10min)

INT4 GPTQ
(W4A16) High None Low O(10min)

INT4-FP8 AWQ 
(W4A8) High Medium Low O(10min)

SQ  = Smooth Quant
WO = Weight Only
AWQ = Activation Aware Quantization

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/quantization-in-TRT-LLM.md


Wrapping up: Trends in model compression



See blog https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/ 
See paper https://arxiv.org/pdf/2407.14679 

Distilling the Knowledge of LLMs into SLMs
Train only the largest LLM and get smaller models with similar quality

https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
https://arxiv.org/pdf/2407.14679


See blog https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/ 

FP4 Format Supported in Blackwell Platform
New FP4 format for inference

https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/


The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating
Take your next steps in one of the following platforms

https://developer.nvidia.com/ https://build.nvidia.com/​ https://learn.nvidia.com/



Thank you!
Ziv Ilan - Solution Architect, NVIDIA 

Sergio Perez - Solution Architect, NVIDIA 

Harshita Seth - Solution Architect, NVIDIA 



Extra slides about TensorRT features



LAYER & TENSOR FUSION

▪ Combines successive nodes into a single node, making single 
kernel execution

▪ Significantly reduces number of layers to compute, resulting in 
faster performance 

▪ Eliminates unnecessary memory traffic by removing 
concat/slice layers

▪ See the supported fusion list 

Optimizes use of GPU memory and bandwidth by fusing nodes 
in a kernel

developer.nvidia.com/tensorrt
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https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://developer.nvidia.com/tensorrt


KERNEL AUTO-TUNING

▪ Hundreds of specialized kernels optimized for every GPU Platform

▪ TensorRT optimizer uses runtime profile to select the best performance 
kernels

▪ Ensures best performance for specific deployment platform and 
specific neural network

Selects best data layers and algorithms based on the target GPU 
platform



DYNAMIC TENSOR MEMORY

▪ Reduces memory footprint and improves memory re-use 

▪ Graph optimizer combines tensors into regions

▪ Region lifetime is a section of network execution time

▪ Memory Optimizer assigns regions to blocks; regions assigned 
to a block have disjoint lifetimes

▪ Just like register allocation

Minimizes memory footprint and reuses memory for tensors 
efficiently

developer.nvidia.com/tensorrt
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TIME FUSION

▪ Recurrent Neural Network Optimizations

▪ Deploy highly optimized ASR and TTS

▪ Compiler fuses pointwise ops, fuses GEMMs and compute 
efficiently across time steps

Optimizes recurrent neural networks over time steps with 
dynamically generated kernels

developer.nvidia.com/tensorrt

Pointwise fusion
Fused GEMMs

https://developer.nvidia.com/tensorrt


QUANTIZATION AWARE TRAINING

▪ Better accuracy compared to Post Training Quantization (PTQ)

▪ Quantize state of the art models with minimal loss of accuracy

▪ TensorRT optimizes the Q/DQ graph for inference without 
compromising performance

▪ Quantization Toolkit available for PyTorch and TensorFlow in OSS 
supporting QAT, PTQ and export to ONNX

Improved accuracy for INT8 inference

developer.nvidia.com/tensorrt
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https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization


LoRA & Customization
Efficiently Supporting Customer User Experience

• LoRA & Prompt tuned models are support in TRT-LLM

• Support mulitple customers with a single model

• Dynamically swap LoRA’s at runtime

• SLoRA / LoRAx caching adapters on device

• Base model can be quantized for memory savings
• QLoRA in progress

Dynamically Swap LoRAs based on User

Base Model 

LoRAN

UserN Input

UserN Specific Output

User Specif ic LoRAs

LoRA2 LoRA3LoRA1

…
LoRAY LoRAZLoRAX



KV Cache & Attention Techniques
(Sliding) Window Attention, & Streaming LLM

• Allow for longer (sometimes unlimited) sequence length

• Reduces KV Cache Memory usage

• Avoids OOM Errors

• (Sliding) Windowed Attention evict tokens based on arrival
• Significantly reduces memory usage
• Can negatively impact accuracy or require recomputing KV

• Streaming-LLM allows for unlimited sequence length
• Does not evict Attention Sinks (important elements)
• KV Cache stays constant size
• Does not require recompute & does not impact accuracy
• Particulary beneficial for multi-turn (ie. chat) usecases

Attention KV Cache Usage (Less is Better)

Dense Windowed

Sliding Window StreamingLLM

Free Prev. Tokens Curr. Token Attn. Sync

https://github.com/mit-han-lab/streaming-llm


KV Cache Reusage
System Prompt Caching & Block reusage

Allows for interactive/ turn based systems & System Prompts

• Load prior KV cachce blocks to avoid recomupation
• Saves significant compute
• Reduces Start-up time

• Block resuage allows for turn-based (chat) applications
• Allows for additional options for intelligently reusing blocks

• System prompts allows for a preset KV cache for the LLM
• E.g. to give rules, personality, or prior knowledge

?
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!



Inflight Batching
Maximing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU 
utilization during LLM Serving

• Replaces completed requests in the batch
• Evicts requests after EoS & inserts a new request

• Improves throughput, time to first token, & GPU utilizaiton

• Integrated directly into the TensorRT-LLM Triton backend

• Accessible though the TensorRT-LLM Batch Manager
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KV Cache Optimizations
Paged & Quantized KV Cache

Paged KV Cache improves memory consumption & utilization
• Stores keys & values in non-contiguous memory space

• Allows for reduced memory consumption of KV cache

• Allocates memory on demand

Quantized KV Cache improves memory consumption & perf
• Reduces KV Cache elements from 16b to 8b (or less!)

• Reduces memory transfer improving performance

• Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

Block 0 TensorRT LLM is …
Block 1
Block 2 Hello World
Block 3

Traditional KV Caching

B0 TensorRT LLM is …
B1

B2 Hello World
B3

Paged KV Cache

B0 TRT LLM is …

B1

B2 Hello World

B3

Quantized Paged KV Cache

Request 
1

Request 
2

Wasted Free

KV Cache Contents: 
TensorRT-LLM optimizes inference on 
NVIDIA GPUs …



Multi-Modal Support
Current support & adding more

• TensorRT-LLM supports BLIP, LLaVa, & Nougat VLMs
• Including many derivatives of these models

• Utilizes TensorRT & TensorRT-LLM
• Vision encoder in TensorRT

• Standard ONNX export path to TRT
• LLM running in TensorRT-LLM
• Output of Vision encoder passed to TensorRT-LLM

• Any model similar to the supported can be added
• Replace vision encoder or LLM with appropriate model
• See examples/multimodal

Multi-Modal Examples

https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal
https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/quantization


Optimized Attention
Custom Implementations for Attention

• Custom optimized CUDA kernels for Attention
• Similar to FlashAttentionV2

• Optimized for A100 & H100

• Kernels for Encoder & Decoder, as well as context & prefill

• Supports MHA, MQA, GQA



Multi-GPU Multi-Node
Sharding Models across GPUs

• Supports Tensor & Pipeline parallelism

• Allows for running very large models (tested up to 530B)

• Supports multi-GPU (single node) & multi-node

• TensorRT-LLM handles communication between GPUs

• Examples are parametrized for sharding across GPUs

Mult i-Node Mult i-GPU

Tensor Parallel Pipeline Parallel

✂

✂

No Parallelism
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