

Tutorial on GPU Optimization

Ziv Ilan- Solution Architect, NVIDIA Sergio Perez - Solution Architect, NVIDIA Harshita Seth - Solution Architect, NVIDIA

Agenda of the tutorial

- Demo of TensorRT + Triton
- Build a TensorRT-LLM engine of Gemma 2B
- Evaluate the engine on MMLU
- Launch the Triton inference server
- Measure the throughput of Triton inference server
- Optional Compare to quantized versions of Gemma 2B

How to connect to your tutorial instance?

- Create your NVIDIA account https://learn.nvidia.com/join
- Navigate to https://learn.nvidia.com/dli-event
- Enter the event code: CERN_XLAB_SE24
- Click on Start this will spin up an Nvidia A10 32GB cloud instance
- It takes 10-15 minutes for the environment and the model artifacts to load

Demo: LLaMA 7B with TensorRT-LLM + Triton

Source code available in our Github repo

Demo Video

A REAL PROPERTY AND A REAL PROPERTY.				
		Leveloptz-und C bok micesteren		
6 but record (new bac plan	neo gagoze rakit (opt) trounierver (est)	81	ceregepe-roeit (workgabe jain)	a.c
6 DUC Second trout has type	FLOWE.	loot16 to1 park8 madea		
[62/23/2624-13:23:07] [1X1-L	DAT the send "sends and the side	reacto_tbt_ranke.engine		
102/23/2024-13:23:07 [1X]	Wi There a short postcion_tas	this is a second on and other the second	and the last for and had an encount	
[02/23/2024-13:29:09] [TAT]	[T] [New Records and Tail a Blassia Blassia	Stelling Telling Celling and Stell 17627 Cell 2	e-time, but is not being renoved.	
[02/23/2024-13:23:07] [IN]	[1] [MenUsageChange] Intt cubLAS/cubLA	SEC: CPU +1, VPU +04, NOW: CPU 17687, UPU 2	313 (MLB)	
[62/23/2624-13:29.07] [141]	[1] [Menusugechange] Intt cubin. CPU +.	S, Gru +/0, now. Cru 1/090, Gru 2369 (M.B)		
[02/23/2024-13:29:09] [TRT]	[m] Tersork was tirked against cubie t	0.9.0 Dut Loaded Cubin 0.9.2		
[02/23/2024-13:23:07] [131]	[1] Global Clining coone in use. Profili	ing results in this builder pass will be st	DICO.	
[02/23/2024 13:25:17] [11]	[1] [Graphiceducetion] The approximate re	egion cut reduction algorithm is called.		
[62/23/2624 13:29:17] [TRI]	[1] Detoceds 105 inputs and 1 output n	atmark tensors.		
[02/23/2024-13:29:21] [TRT]	[1] Total Hest Persistent Memory: 6175	2		
[02/23/2029-13:29:21] [1K]	[1] Total Device Persistent Memory: 9			
[02/23/2024-13:29:21] [1K]	[1] Total Scretch Memory: Meades/944	black shifts This will take 550 store to		
[02/23/2024-13:29:21] [TRT]	[1] [BlockAssignment] Started assigning	g DLDCK SMLPTS. THIS WILL TOKE 550 STEPS TO	complete.	
[02/23/2024-13:29:21] [TRI]	[1] [BIOCKASSIGNMENT] ALGORITHM SHITH	cpuown took re. // set to assign 11 blocks	to ese nones requiring 6/91330304 bytes.	
	[1] Total Activation Menory: 5/9135850	• .		
	[1] Intal weights Memory: 194/6451/3/	And the state of the second state areas a	E 217 (16 (1)	
[W2723/7W24-13:24:22] [[K]]	[1] [Memusagethange] Init custas/custa	SET: CPU +0, GPU +04, HOW: CPU 17767, GPU 1	5511 (MLS)	
	[1] [Memusageunange] Init cuanw: LPD +4	W, GPU 472, NOW: LPU 17757, GPU 15583 (MIE)		
[02/23/2024-13:25:22] [141]	[M] Personal was linked appliest cuban a	5.9.5 BUT LODGED CUDAN 8.9.2		
[02/23/2024-13:29:22] [TKT]	[1] Engine generation completed in 12.	1/25 seconds.		
[02/23/2024-13:29:22] [1K1]	[1] [Memusagestucs] Peak memory usage (OF IKI CHUY GRU MEMORY ALLOCATORS: CHU SAN M	LS, GPU D0040 MIS	
102/23/2024-13:29:22 [IKI]	[1] [Menusageunange] Tensorki-hanagea (attocation in pullaing engine: cru +0, oru	+12655, HOW: CPU W, GPU 12655 (MLD)	
[02/23/2024-13:29:25] [TKT]	[1] [Menusugestuits] Peak menury usage (during Englie Bullaing and Sertalization. C	PJ. 44033 MLD	
[00/03/0004-13:29:03 [IKI-L	LMG [1] Total time of building liana_p	flouille_tpl_runwe.engthe: 00:00.15		
[62/23/2624-13:25:25] [1KI-L	[4] [1] Coning saved to rengthes/1-gou	contrig.json.		
[02/23/0024 13:25:25] [IKI]	[1] Doubes engine size: izeso Mit	SIAN (THI NO. (THI NO. (THI 17000 (THI 1	5101 (0.6.2)	
[02/23/2024-13:23:20] [[R]]	[1] [Membragethange] Init cubiAS/cubiAS	0 CDU (64 mm) CDU 17638 CDU 17638, GPU 1	arar (ara)	
[02/23/2024 12:20:20] [13]	DW TexcerPT was linked easings of the	a G E but landed cutthe 8 0 2		
[62/23/2624 13:25:26] [[R]]	[M] Tersonic was innied against cubin a	allocation in angine dependent allocation (MU)	0 (01 152952 mm Call 6 (01 12952 (160)	
[02/23/2024 13:25:26] [IRI]	[1] [Monusagechange] Tensorki-Managea (a Nin	e, and 122632, news CPU e, and 12852 (MIB)	
[02/23/2024-13:29:20] [IRI-L	ING TT Waights parameters 12000 214			
[62/23/2024-13:29:26] [[K]-L	ING TT May NU Cache manager circus 10210	0.00.14.2		
[62/23/2624-13:29:26] [IKI-L	INT TT Estincted any manory size: 1024	e.ee His		
102/23/2624-13:29:26 [IRI-L	INT Fastes is successfully built	LA COLLARS START CO OF COLLARS and the second	amon inflamancing on way chang	
102/23 (2024-13:29:26) [[RI-[INI INI Since manad by sacks is cathled	d the ary (U facto accord size is a state	when underencing on max shape.	ar month mant pres
Texts 2 years and a figural	ing ful since pagen_ev_facte is enobled	a, the most of them memory size is a estimation	te for very excess cases, it's possible that nost case	S HUT T BEET DUN
[R2/23/2R24-13:29:26] [IRI-L	LM] [1] Semidlizing engine to /engines/	/l-gpu/llama_bfloat16_tp1_ronk0.engine		

MMLU Overview

Academic benchmarks to evaluate LLMs

The MMLU (Measuring Massive Multitask Language Understanding) metric is a benchmark designed to evaluate the performance of large language models across a wide range of tasks and domains, providing a comprehensive assessment of a model's general knowledge, reasoning, and language understanding abilities.

Quantization

How to Choose a Precision

- Best precision varies by application
 - FP8 activations generally provides best performacne
- Weight quantization reduces memory footprint & traffic
 - Reduces latency
 - Can fit larger models
 - Costs compute time to unpack the weights
- Activation quantization saves on compute
 - Improves throughput
 - Can run larger batch sizes
- WXAY = weights quantized to X bits, and activations to Y
- Quantization Guide

Method	Performance small batch BS <=4	Improvement large batch BS>=16	Accuracy impact Calibration time	
FP8 (W8A8)	Medium	Medium	Very low / None	O(1min)
INT8 SQ (W8A8)	Medium	Medium	Medium	O(1min)
INT8 WO (W8A16)	Medium	None	Low	None
INT4 WO (W4A16)	High	None	High	None
INT4 AWQ (W4A16)	High	None	Low	O(10min)
INT4 GPTQ (W4A16)	High	None	Low	O(10min)
INT4-FP8 AWQ (W4A8)	High	Medium	Low	O(10min)

SQ = Smooth QuantWO = Weight OnlyAWQ = Activation Aware Quantization

Wrapping up: Trends in model compression

Distilling the Knowledge of LLMs into SLMs

Train only the largest LLM and get smaller models with similar quality

How to Prune and Distill Llama-3.1 8B to an NVIDIA Llama-3.1-Minitron 4B Model

Aug 14, 2024

🖒 +32 Like 🛛 🔎 Discuss (5)

By Sharath Sreenivas, Vinh Nguyen, Saurav Muralidharan, Marcin Chochowski and Raviraj Joshi

FP4 Format Supported in Blackwell Platform

New FP4 format for inference

Data Center / Cloud

English \checkmark

NVIDIA Blackwell Platform Sets New LLM Inference Records in MLPerf Inference v4.1

Aug 28, 2024

🖒 +19 Like 🛛 🗏 Discuss (1)

By Ashraf Eassa, Ashwin Nanjappa, Zhihan Jiang, Yiheng Zhang, Jun Yang, Zihao Kong and Shengliang Xu

See blog https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/

The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating

Take your next steps in one of the following platforms

https://learn.nvidia.com/

Thank you!

Ziv Ilan - Solution Architect, NVIDIA Sergio Perez - Solution Architect, NVIDIA Harshita Seth - Solution Architect, NVIDIA Extra slides about TensorRT features

LAYER & TENSOR FUSION

Optimizes use of GPU memory and bandwidth by fusing nodes in a kernel

- Combines successive nodes into a single node, making single kernel execution
- Significantly reduces number of layers to compute, resulting in faster performance
- Eliminates unnecessary memory traffic by removing concat/slice layers
- See the <u>supported fusion list</u>

KERNEL AUTO-TUNING

Selects best data layers and algorithms based on the target GPU platform

- Hundreds of specialized kernels optimized for every GPU Platform
- TensorRT optimizer uses runtime profile to select the best performance kernels
- Ensures best performance for specific deployment platform and specific neural network

DYNAMIC TENSOR MEMORY

Minimizes memory footprint and reuses memory for tensors efficiently

- Reduces memory footprint and improves memory re-use
- Graph optimizer combines tensors into regions
- Region lifetime is a section of network execution time
- Memory Optimizer assigns regions to blocks; regions assigned to a block have disjoint lifetimes
- Just like register allocation

DYNAMIC TENSOR MEMORY

Minimizes memory footprint and reuses memory for tensors efficiently

- Reduces memory footprint and improves memory re-use
- Graph optimizer combines tensors into regions
- Region lifetime is a section of network execution time
- Memory Optimizer assigns regions to blocks; regions assigned to a block have disjoint lifetimes
- Just like register allocation

TIME FUSION

Optimizes recurrent neural networks over time steps with dynamically generated kernels

- Recurrent Neural Network Optimizations
- Deploy highly optimized ASR and TTS
- Compiler fuses pointwise ops, fuses GEMMs and compute efficiently across time steps

QUANTIZATION AWARE TRAINING

Improved accuracy for INT8 inference

- Better accuracy compared to Post Training Quantization (PTQ)
- Quantize state of the art models with minimal loss of accuracy
- TensorRT optimizes the Q/DQ graph for inference without compromising performance
- Quantization Toolkit available for PyTorch and TensorFlow in OSS supporting QAT, PTQ and export to ONNX

LoRA & Customization

Efficiently Supporting Customer User Experience

- LoRA & Prompt tuned models are support in TRT-LLM
- Support mulitple customers with a single model
- Dynamically swap LoRA's at runtime
- SLORA / LORAx caching adapters on device
- Base model can be quantized for memory savings
 - QLoRA in progress

User Specific LoRAs

Dynamically Swap LoRAs based on User

KV Cache & Attention Techniques

(Sliding) Window Attention, & Streaming LLM

- Allow for longer (sometimes unlimited) sequence length
 - Reduces KV Cache Memory usage
 - Avoids OOM Errors
- (Sliding) Windowed Attention evict tokens based on arrival
 - Significantly reduces memory usage
 - Can negatively impact accuracy or require recomputing KV
- <u>Streaming-LLM</u> allows for unlimited sequence length
 - Does not evict Attention Sinks (important elements)
 - KV Cache stays constant size
 - Does not require recompute & does not impact accuracy
 - Particulary beneficial for multi-turn (ie. chat) usecases

Attention KV Cache Usage (Less is Better)

ᇗ NVIDIA.

KV Cache Reusage

System Prompt Caching & Block reusage

Allows for interactive/ turn based systems & System Prompts

- Load prior KV cachce blocks to avoid recomupation
 - Saves significant compute
 - Reduces Start-up time
- Block resuage allows for turn-based (chat) applications
 - Allows for additional options for intelligently reusing blocks
- System prompts allows for a preset KV cache for the LLM
 - E.g. to give rules, personality, or prior knowledge

Inflight Batching

Maximing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU utilization during LLM Serving

- Replaces completed requests in the batch
 - Evicts requests after EoS & inserts a new request
- Improves throughput, time to first token, & GPU utilizaiton
- Integrated directly into the TensorRT-LLM Triton backend
- Accessible though the TensorRT-LLM Batch Manager

Static Batching

Inflight Batching

KV Cache Optimizations

Paged & Quantized KV Cache

Paged KV Cache improves memory consumption & utilization

- Stores keys & values in non-contiguous memory space
- Allows for reduced memory consumption of KV cache
- Allocates memory on demand

Quantized KV Cache improves memory consumption & perf

- Reduces KV Cache elements from 16b to 8b (or less!)
- Reduces memory transfer improving performance
- Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

KV Cache Contents: TensorRT-LLM optimizes inference on NVIDIA GPUs ...

Traditional KV Caching

Paged KV Cache

Quantized Paged KV Cache

Multi-Modal Support

Current support & adding more

- TensorRT-LLM supports BLIP, LLaVa, & Nougat VLMs
 - Including many derivatives of these models
- Utilizes TensorRT & TensorRT-LLM
 - Vision encoder in TensorRT
 - Standard ONNX export path to TRT
 - LLM running in TensorRT-LLM
 - Output of Vision encoder passed to TensorRT-LLM
- Any model similar to the supported can be added
 - Replace vision encoder or LLM with appropriate model
 - See <u>examples/multimodal</u>

Multi-Modal

This document shows how to run multimodal pipelines with TensorRT-LLM, e.g. from image+text input modalities to text output.

Multimodal models' LLM part has an additional parameter --max_multimodal_len compared to LLM-only build commands. Under the hood, max_multimodal_len and max_prompt_embedding_table_size are effectively the same concept, i.e., prepended/concatenated embeddings (either multimodal feature embeddings or prompt tuning embeddings) to the LLM input embeddings. The multimodal features from the visual encoder of shape [batch_size, num_visual_features, visual_hidden_dim] is flattened as [batch_size * num_visual_features, visual_hidden_dim] and passed like a prompt embedding table.

We first describe how to run each model on a single GPU. We then provide general guidelines on using tensor parallelism for LLM part of the pipeline.

|--|

BLIP2-OPT

LLaVA and VILA

Nougat

Enabling tensor parallelism for multi-GPU

SLIP2-T5

Download Huggingface weights and convert original checkpoint to TRT-LLM checkpoint format following example in examples/enc_dec/README.md .

wort MODEL_NAME=flan-t5-xl

```
Multi-Modal Examples
```

2. Build TRT-LLM engine from TRT-LLM checkpoint

```
ython ../enc_dec/build.py --model_type t5 \
--weight_din tmp/trt_models/${MODEL_NAME}/tp1 \
--output_din trt_engines/${MODEL_NAME}/1-gpu \
--remove_input_padding \
--use_bert_attention_plugin \
--use_gemm_plugin \
--use_gemm_plugin \
--dtype bfloat16 \
--max_batch_size 8 \
--max_encoder_input_len 924 \
--max_output_len 100 \
```

-max_multimodal_len 256 # 8 (max_batch_size) * 32 (num_visual_features)

NOTE: max_multimodal_len = max_batch_size * num_visual_features , so if you change max_batch_size, max multimodal length MUST be changed accordingly.

The built T5 engines are located in ./trt_engines/\${MODEL_NAME}/1-gpu/bfloat16/tp1

3. Build TensorRT engines for visual components

Optimized Attention

Custom Implementations for Attention

- Custom optimized CUDA kernels for Attention
 - Similar to FlashAttentionV2
- Optimized for A100 & H100
- Kernels for Encoder & Decoder, as well as context & prefill
- Supports MHA, MQA, GQA

Multi-GPU Multi-Node

Sharding Models across GPUs

- Supports Tensor & Pipeline parallelism
- Allows for running very large models (tested up to 530B)
- Supports multi-GPU (single node) & multi-node
- TensorRT-LLM handles communication between GPUs
- Examples are parametrized for sharding across GPUs

No Parallelism

Tensor Parallel

Pipeline Parallel