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Agenda of the tutorial

*  Demo of TensorRT + Triton

. Build a TensorRT-LLM engine of Gemma 2B

. Evaluate the engine on MMLU

*  Launch the Triton inference server

. Measure the throughput of Triton inference server

Optional - Compare to quantized versions of Gemma

2B
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How to connect to your tutorial instance?

Create your NVIDIA account https://lea rn.nvidia.com/join
Navigate to https://learn.nvidia.com/dli-event
Enter the event code: CERN_XLAB_SE24

Click on Start — this will spin up an Nvidia A10 32GB cloud instance

It takes 10-15 minutes for the environment and the model artifacts to load

NVIDIA



Demo: LLaMA 7B with TensorRT-LLM
+ Triton

Source code available in our Github repo



https://github.com/triton-inference-server/tutorials/blob/main/Popular_Models_Guide/Llama2/trtllm_guide.md

Demo Video
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MMLU Overview

The MMLU (Measuring Massive Multitask Language Understanding)
metric is a benchmark designed to evaluate the performance of large
language models across a wide range of tasks and domains, providing a
comprehensive assessment of a model's general knowledge, reasoning,
and language understanding abilities.
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Quantization

How to Choose a Precision

Performance Improvement

. . . . Method small batch large batch ~ Accuracy impact Calibration time
*  Best precision varies by application BS <=4 BS>=16

*  FP8 activations generally provides best performacne FPS
(W8AS)

: N . : INT8 SQ . . :
*  Weight quantization reduces memory footprint & traffic (W8AS)
(W8A16) Medium

*  Canfit larger models

Medium Medium Very low / Noné O(1min)

O(1min)

_ _ INT4 WO

*  Costs compute time to unpack the weights (W4A16)
INT4 AWQ

¢ Activation quantization saves on compute (Wiaa16)
INT4 GPTQ

*  Improves throughput (W4A16)

*  Canrun larger batch sizes INT4-FP8 AWQ .
Medium
(W4A8)

*  WXAY = weights quantized to X bits, and activations to Y

SQ =Smooth Quant
* Quantization Guide WO = Weight Only
AWQ = Activation Aware Quantization
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https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/quantization-in-TRT-LLM.md

Wrapping up: Trends in model compression



Distilling the Knowledge of LLMs into SLMs

Train only the largest LLM and get smaller models with similar quality

How to Prune and Distill Llama-3.1 8B
to an NVIDIA Llama-3.1-Minitron 4B

Model

Aug 14, 2024
By Sharath Sreenivas, Vinh Nguyen, Saurav Muralidharan, Marcin Chochowski and Raviraj Joshi

¢ +32 Like ~ Discuss (5)

See blog https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
See paper https://arxiv.org/pdf/2407.14679
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https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
https://arxiv.org/pdf/2407.14679

FP4 Format Supported in Blackwell Platform

New FP4 format for inference

Data Center / Cloud English v

NVIDIA Blackwell Platform Sets New
LLM Inference Records in MLPerf
Inference v4.1

Aug 28, 2024 ¢ +19 Like Discuss (1)

By Ashraf Eassa, Ashwin Nanjappa, Zhihan Jiang, Yiheng Zhang, Jun Yang, Zihao Kong and Shengliang Xu

~

See blog https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-lim-inference-records-in-mlperf-inference-v4-1/
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https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/

The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating

<A NVIDIA DEVELOPER
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NVIDIA and Llamalndex
Developer Contest

Join global innovators in developing large language model
applications with NVIDIA and LLamalndex technologies for a

chance to win exciting prizes.
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Thank you!

Ziv llan - Solution Architect, NVIDIA
Sergio Perez - Solution Architect, NVIDIA
Harshita Seth - Solution Architect, NVIDIA




Extra slides about TensorRT features



LAYER & TENSOR FUSION

Optimizes use of GPU memory and bandwidth by fusing nodes
in a kernel

= Combines successive nodes into a single node, making single
kernel execution

= Significantly reduces number of layers to compute, resulting in
faster performance

= Eliminates unnecessary memory traffic by removing
concat/slice layers

= See the supported fusion list

developer.nvidia.com/tensorrt

MatMul (Q)

Transpose

Eltwise

— Scale
MatMul (K) Transpose

Transpose >
MatMul (V)

Scaled
MatMul Softmax
Transpose
(QKV)



https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://developer.nvidia.com/tensorrt

KERNEL AUTO-TUNING

Selects best data layers and algorithms based on the target GPU
platform

= Hundreds of specialized kernels optimized for every GPU Platform

= TensorRT optimizer uses runtime profile to select the best performance
kernels

= Ensures best performance for specific deployment platform and
specific neural network




DYNAMIC TENSOR MEMORY

Minimizes memory footprint and reuses memory for tensors
efficiently

= Reduces memory footprint and improves memory re-use

00?0?

Graph optimizer combines tensors into regions l
Region 1

Region lifetime is a section of network execution time

L . . . . Tensor A Tensor B Tensor C
Memory Optimizer assigns regions to blocks; regions assigned \
to a block have disjoint lifetimes

Region 2 Block 0
Just like register allocation / S
> Block 1

Tensor D >

Region

Ew

developer.nvidia.com/tensorrt



https://developer.nvidia.com/tensorrt

DYNAMIC TENSOR MEMORY

Minimizes memory footprint and reuses memory for tensors
efficiently

= Reduces memory footprint and improves memory re-use

Graph optimizer combines tensors into regions

Region lifetime is a section of network execution time

Memory Optimizer assigns regions to blocks; regions assigned
to a block have disjoint lifetimes

Just like register allocation

developer.nvidia.com/tensorrt
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https://developer.nvidia.com/tensorrt

TIME FUSION

Optimizes recurrent neural networks over time steps with
dynamically generated kernels

= Recurrent Neural Network Optimizations

e{-|e

= Deploy highly optimized ASR and TTS

Pointwise fusion
B Fused GEMMs

= Compiler fuses pointwise ops, fuses GEMMs and compute
efficiently across time steps

developer.nvidia.com/tensorrt



https://developer.nvidia.com/tensorrt

Training with Q/DQ

FP32 FP32 FP32 FP32 FP32
Conv Conv Conv

QUANTIZATION AWARE TRAINING — E

Improved accuracy for INT8 inference

= Better accuracy compared to Post Training Quantization (PTQ) O PYTO rCh 1'3J TensorFlow

= Quantize state of the art models with minimal loss of accuracy GitHub GitHub

= TensorRT optimizes the Q/DQ graph for inference without

compromising performance
2x accurate on INT8

= Quantization Toolkit available for PyTorch and TensorFlow in OSS
supporting QAT, PTQ and export to ONNX I

Accuracy

FP32/FP16 QAT
Network: EfficientNet-BO, Framework: PyTorch

developer.nvidia.com/tensorrt



https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization

LoRA & Customization

Efficiently Supporting Customer User Experience Usery SpeCﬁC Output

Base Model

*  LoRA & Prompt tuned models are support in TRT-LLM

*  Support mulitple customers with a single model

*  Dynamically swap LoRA’s at runtime ﬁ
& Iﬁ <

*  SLoRA / LoRAXx caching adapters on device S

* Base model can be quantized for memory savings
* QLoRAin progress

User Specific LoORAs

Dynamically Swap LoRAs based on User

I <AnVIDIA



KV Cache & Attention Techniques

(Sliding) Window Attention, & Streaming LLM

I <A nNVIDIA

* Allow for longer (sometimes unlimited) sequence length
* Reduces KV Cache Memory usage

* Avoids OOM Errors

*  (Sliding) Windowed Attention evict tokens based on arrival
*  Significantly reduces memory usage
*  Can negatively impact accuracy or require recomputing KV

*  Streaming-LLIM allows for unlimited sequence length

*  Does not evict Attention Sinks (important elements)

* KV Cache stays constant size

*  Does not require recompute & does not impact accuracy
*  Particulary beneficial for multi-turn (ie. chat) usecases

Attention KV Cache Usage (Less is Better)

EEEEEEN
Dense

Sliding Window

Free W Prev. Tokens

Windowed

StreamingLLM

B Curr. Token B Attn. Sync


https://github.com/mit-han-lab/streaming-llm

KV Cache Reusage

System Prompt Caching & Block reusage Prior Session

I <AnVIDIA

Previous
KV Cache

Allows for interactive/ turn based systems & System Prompts

* Load prior KV cachce blocks to avoid recomupation
*  Saves significant compute

*  Reduces Start-up time

New Session

New Request

—

Based on Previous
Conversation

*  Block resuage allows for turn-based (chat) applications
*  Allows for additional options for intelligently reusing blocks

*  System prompts allows for a preset KV cache for the LLM
* E.g.togive rules, personality, or prior knowledge




Inflight Batching

Maximing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU
utilization during LLM Serving

Replaces completed requests in the batch
Evicts requests after EoS & inserts a new request

Improves throughput, time to first token, & GPU utilizaiton
Integrated directly into the TensorRT-LLM Triton backend

Accessible though the TensorRT-LLM Batch Manager

I <AnVIDIA
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KV Cache Optimizations

Paged & Quantized KV Cache

I <A nNVIDIA

Paged KV Cache improves memory consumption & utilization
*  Stores keys & values in non-contiguous memory space

*  Allows for reduced memory consumption of KV cache

*  Allocates memory on demand

Quantized KV Cache improves memory consumption & perf
*  Reduces KV Cache elements from 16b to 8b (or less!)

*  Reduces memory transfer improving performance
*  Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

KV Cache Contents:
TensorRT-LIM optimizes inference on
NVIDIA GPUs ..

Q) TensorRTY IIM _§ is J .|
e ¢ § J
oY Hello J World §  J
Block 3 NN IR DN D

Traditional KV Caching

M TensorRT) LM _J _is _J ..

By

B,

Bs

Paged KV Cache

B C | .|

B,

B,

B;

Quantized Paged KV Cache

R t § R t




Multi-Modal Support

TensorRT-LLM supports BLIP, LLaVa, & Nougat VLMs
Including many derivatives of these models

Utilizes TensorRT & TensorRT-LLM
Vision encoder in TensorRT
Standard ONNX export path to TRT
LLM running in TensorRT-LLM
Output of Vision encoder passed to TensorRT-LLM

Any model similar to the supported can be added

Replace vision encoder or LLM with appropriate model

See

NVIDIA

Multi-Modal

This document shows how to run multimodal pipelines with TensorRT-LLM, e.g. from image+text input modalities to text output.

Multimodal models' LLM part has an additional parameter --max_multimodal len compared to LLM-only build commands. Under the hood,
max_multimodal len and max_prompt_embedding table size are effectively the same concept, i.e., prepended/concatenated embeddings (either
multimodal feature embeddings or prompt tuning embeddings) to the LLM input embeddings. The multimodal features from the visual
encoder of shape [batch_si num_visual features, visual hidden_dim] is flattened as [batch_size * num_visual features,

visual _hidden dim] and passed like a prompt embedding table.

We first describe how to run each model on a single GPU. We then provide general

Multi-Modal Examples

NOTE: max_multimodal len = max_batch size * num_visual features , so if you change max_batch_size, max multimodal length MUST be

changed accordingly.
The built T5 engines are located in  ./trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1 .

. Build TensorRT engines for visual components



https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal
https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/quantization

Optimized Attention

Custom Implementations for Attention

I <AnVIDIA

*  Custom optimized CUDA kernels for Attention
Similar to FlashAttentionV2

*  Optimized for A100 & H100

*  Kernels for Encoder & Decoder, as well as context & prefill

*  Supports MHA, MQA, GQA

Grouped-Query Multi-head
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Multi-GPU Multi-Node

Sharding Models across GPUs

I <A nNVIDIA

*  Supports Tensor & Pipeline parallelism

*  Allows for running very large models (tested up to 530B)

*  Supports multi-GPU (single node) & multi-node

*  TensorRT-LLM handles communication between GPUs

*  Examples are parametrized for sharding across GPUs

Multi-Node

= = = =
SE0EC— HEME
Multi-GPU

No Parallelism

e

Tensor Parallel

.
DR

Pipeline Parallel
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