
Tutorial on GPU Optimization
Ziv Ilan- Solution Architect, NVIDIA

Sergio Perez - Solution Architect, NVIDIA

Harshita Seth - Solution Architect, NVIDIA

• Demo of TensorRT + Triton

• Build a TensorRT-LLM engine of Gemma 2B

• Evaluate the engine on MMLU

• Launch the Triton inference server

• Measure the throughput of Triton inference server

• Optional - Compare to quantized versions of Gemma

2B

Agenda of the tutorial

How to connect to your tutorial instance?

•Create your NVIDIA account https://learn.nvidia.com/join
•Navigate to https://learn.nvidia.com/dli-event
•Enter the event code: CERN_XLAB_SE24
•Click on Start – this will spin up an Nvidia A10 32GB cloud instance

• It takes 10-15 minutes for the environment and the model artifacts to load

Demo: LLaMA 7B with TensorRT-LLM
+ Triton

Source code available in our Github repo

https://github.com/triton-inference-server/tutorials/blob/main/Popular_Models_Guide/Llama2/trtllm_guide.md

Demo Video

MMLU Overview
Academic benchmarks to evaluate LLMs

The MMLU (Measuring Massive Multitask Language Understanding)
metric is a benchmark designed to evaluate the performance of large
language models across a wide range of tasks and domains, providing a
comprehensive assessment of a model's general knowledge, reasoning,
and language understanding abilities.

Quantization
How to Choose a Precision

• Best precision varies by application
• FP8 activations generally provides best performacne

• Weight quantization reduces memory footprint & traffic
• Reduces latency
• Can fit larger models
• Costs compute time to unpack the weights

• Activation quantization saves on compute
• Improves throughput
• Can run larger batch sizes

• WXAY = weights quantized to X bits, and activations to Y

• Quantization Guide

Method
Performance Improvement

Accuracy impact Calibration timesmall batch
BS <=4

large batch
BS>=16

FP8
(W8A8) Medium Medium Very low / None O(1min)

INT8 SQ
(W8A8) Medium Medium Medium O(1min)

INT8 WO
(W8A16) Medium None Low None

INT4 WO
(W4A16) High None High None

INT4 AWQ
(W4A16) High None Low O(10min)

INT4 GPTQ
(W4A16) High None Low O(10min)

INT4-FP8 AWQ
(W4A8) High Medium Low O(10min)

SQ = Smooth Quant
WO = Weight Only
AWQ = Activation Aware Quantization

https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/quantization-in-TRT-LLM.md

Wrapping up: Trends in model compression

See blog https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
See paper https://arxiv.org/pdf/2407.14679

Distilling the Knowledge of LLMs into SLMs
Train only the largest LLM and get smaller models with similar quality

https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
https://arxiv.org/pdf/2407.14679

See blog https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/

FP4 Format Supported in Blackwell Platform
New FP4 format for inference

https://developer.nvidia.com/blog/nvidia-blackwell-platform-sets-new-llm-inference-records-in-mlperf-inference-v4-1/

The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating
Take your next steps in one of the following platforms

https://developer.nvidia.com/ https://build.nvidia.com/​ https://learn.nvidia.com/

Thank you!
Ziv Ilan - Solution Architect, NVIDIA

Sergio Perez - Solution Architect, NVIDIA

Harshita Seth - Solution Architect, NVIDIA

Extra slides about TensorRT features

LAYER & TENSOR FUSION

▪ Combines successive nodes into a single node, making single
kernel execution

▪ Significantly reduces number of layers to compute, resulting in
faster performance

▪ Eliminates unnecessary memory traffic by removing
concat/slice layers

▪ See the supported fusion list

Optimizes use of GPU memory and bandwidth by fusing nodes
in a kernel

developer.nvidia.com/tensorrt

MatMul (Q)

Input MatMul (K)

MatMul (V)

Transpose

Transpose

Transpose

MUL
Eltwise
Scale Softmax

MUL

Input MatMul
(QKV)

Transpose
MUL

Scaled
Softmax

MUL

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://developer.nvidia.com/tensorrt

KERNEL AUTO-TUNING

▪ Hundreds of specialized kernels optimized for every GPU Platform

▪ TensorRT optimizer uses runtime profile to select the best performance
kernels

▪ Ensures best performance for specific deployment platform and
specific neural network

Selects best data layers and algorithms based on the target GPU
platform

DYNAMIC TENSOR MEMORY

▪ Reduces memory footprint and improves memory re-use

▪ Graph optimizer combines tensors into regions

▪ Region lifetime is a section of network execution time

▪ Memory Optimizer assigns regions to blocks; regions assigned
to a block have disjoint lifetimes

▪ Just like register allocation

Minimizes memory footprint and reuses memory for tensors
efficiently

developer.nvidia.com/tensorrt

Region 1

Tensor A Tensor C

Block 0

Block 1

Region 2

Tensor D

Region
3

Tensor E

Tensor B

A

B

C

E G

D

F

Outpu
t

https://developer.nvidia.com/tensorrt

DYNAMIC TENSOR MEMORY

▪ Reduces memory footprint and improves memory re-use

▪ Graph optimizer combines tensors into regions

▪ Region lifetime is a section of network execution time

▪ Memory Optimizer assigns regions to blocks; regions assigned
to a block have disjoint lifetimes

▪ Just like register allocation

Minimizes memory footprint and reuses memory for tensors
efficiently

developer.nvidia.com/tensorrt

Block 0

Block 1

Region
2

Tensor D

Region 1

Tensor GTensor F

A

B

C

E G

D

F

Outpu
t

https://developer.nvidia.com/tensorrt

TIME FUSION

▪ Recurrent Neural Network Optimizations

▪ Deploy highly optimized ASR and TTS

▪ Compiler fuses pointwise ops, fuses GEMMs and compute
efficiently across time steps

Optimizes recurrent neural networks over time steps with
dynamically generated kernels

developer.nvidia.com/tensorrt

Pointwise fusion
Fused GEMMs

https://developer.nvidia.com/tensorrt

QUANTIZATION AWARE TRAINING

▪ Better accuracy compared to Post Training Quantization (PTQ)

▪ Quantize state of the art models with minimal loss of accuracy

▪ TensorRT optimizes the Q/DQ graph for inference without
compromising performance

▪ Quantization Toolkit available for PyTorch and TensorFlow in OSS
supporting QAT, PTQ and export to ONNX

Improved accuracy for INT8 inference

developer.nvidia.com/tensorrt

Training with Q/DQ

Conv Conv Conv QDQQDQ

Weights
FP32 QDQ

FP32 FP32 FP32 FP32 FP32

FP32FP32

FP32

Network: EfficientNet-B0, Framework: PyTorch

0

40

80

QATPTQFP32/FP16

2x accurate on INT8

Ac
cu

ra
cy

GitHub GitHub

https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/tensorflow-quantization

LoRA & Customization
Efficiently Supporting Customer User Experience

• LoRA & Prompt tuned models are support in TRT-LLM

• Support mulitple customers with a single model

• Dynamically swap LoRA’s at runtime

• SLoRA / LoRAx caching adapters on device

• Base model can be quantized for memory savings
• QLoRA in progress

Dynamically Swap LoRAs based on User

Base Model

LoRAN

UserN Input

UserN Specific Output

User Specif ic LoRAs

LoRA2 LoRA3LoRA1

…
LoRAY LoRAZLoRAX

KV Cache & Attention Techniques
(Sliding) Window Attention, & Streaming LLM

• Allow for longer (sometimes unlimited) sequence length

• Reduces KV Cache Memory usage

• Avoids OOM Errors

• (Sliding) Windowed Attention evict tokens based on arrival
• Significantly reduces memory usage
• Can negatively impact accuracy or require recomputing KV

• Streaming-LLM allows for unlimited sequence length
• Does not evict Attention Sinks (important elements)
• KV Cache stays constant size
• Does not require recompute & does not impact accuracy
• Particulary beneficial for multi-turn (ie. chat) usecases

Attention KV Cache Usage (Less is Better)

Dense Windowed

Sliding Window StreamingLLM

Free Prev. Tokens Curr. Token Attn. Sync

https://github.com/mit-han-lab/streaming-llm

KV Cache Reusage
System Prompt Caching & Block reusage

Allows for interactive/ turn based systems & System Prompts

• Load prior KV cachce blocks to avoid recomupation
• Saves significant compute
• Reduces Start-up time

• Block resuage allows for turn-based (chat) applications
• Allows for additional options for intelligently reusing blocks

• System prompts allows for a preset KV cache for the LLM
• E.g. to give rules, personality, or prior knowledge

?

!

New Session

Prior Session

Previous
KV Cache

New Request

New Response
Based on Previous

Conversation

?

!

Inflight Batching
Maximing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU
utilization during LLM Serving

• Replaces completed requests in the batch
• Evicts requests after EoS & inserts a new request

• Improves throughput, time to first token, & GPU utilizaiton

• Integrated directly into the TensorRT-LLM Triton backend

• Accessible though the TensorRT-LLM Batch Manager

1 2 3 4 5 6 7 8 9 …

R1 END R5 …

R2 END R6 …

R3 END R7 …

R4 END R8 …Ba
tc

h
El

em
en

ts

Static Batching

1 2 3 4 5 6 7 8 9 …

R1 END R7 …

R2 END R5 …

R3 END R6 END R8 …

R4 END R9 …Ba
tc

h
El

em
en

ts

Inflight Batching

Context Gen EoS NoOp

Iteration

Iteration

KV Cache Optimizations
Paged & Quantized KV Cache

Paged KV Cache improves memory consumption & utilization
• Stores keys & values in non-contiguous memory space

• Allows for reduced memory consumption of KV cache

• Allocates memory on demand

Quantized KV Cache improves memory consumption & perf
• Reduces KV Cache elements from 16b to 8b (or less!)

• Reduces memory transfer improving performance

• Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

Block 0 TensorRT LLM is …
Block 1
Block 2 Hello World
Block 3

Traditional KV Caching

B0 TensorRT LLM is …
B1

B2 Hello World
B3

Paged KV Cache

B0 TRT LLM is …

B1

B2 Hello World

B3

Quantized Paged KV Cache

Request
1

Request
2

Wasted Free

KV Cache Contents:
TensorRT-LLM optimizes inference on
NVIDIA GPUs …

Multi-Modal Support
Current support & adding more

• TensorRT-LLM supports BLIP, LLaVa, & Nougat VLMs
• Including many derivatives of these models

• Utilizes TensorRT & TensorRT-LLM
• Vision encoder in TensorRT

• Standard ONNX export path to TRT
• LLM running in TensorRT-LLM
• Output of Vision encoder passed to TensorRT-LLM

• Any model similar to the supported can be added
• Replace vision encoder or LLM with appropriate model
• See examples/multimodal

Multi-Modal Examples

https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal
https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/quantization

Optimized Attention
Custom Implementations for Attention

• Custom optimized CUDA kernels for Attention
• Similar to FlashAttentionV2

• Optimized for A100 & H100

• Kernels for Encoder & Decoder, as well as context & prefill

• Supports MHA, MQA, GQA

Multi-GPU Multi-Node
Sharding Models across GPUs

• Supports Tensor & Pipeline parallelism

• Allows for running very large models (tested up to 530B)

• Supports multi-GPU (single node) & multi-node

• TensorRT-LLM handles communication between GPUs

• Examples are parametrized for sharding across GPUs

Mult i-Node Mult i-GPU

Tensor Parallel Pipeline Parallel

✂

✂

No Parallelism

	Introduction to GPUs
	Slide 1: Introduction to GPUs, Inference and Model Compression
	Slide 2: About Us
	Slide 3
	Slide 4
	Slide 5: Differences between a CPU and a GPU
	Slide 6: Getting Million-X Speedups to Power AI and Scientific Computing
	Slide 7: Getting Million-X Speedups to Power AI and Scientific Computing
	Slide 8: What’s a GPU?
	Slide 9
	Slide 10: Moving data and computing
	Slide 11: Moving data and computing
	Slide 12: Which of the two is faster?
	Slide 13: A job is memory bandwidth bound if the bandwidth cannot keep up with the computations — the cores are waiting idle
	Slide 14: A job is compute bound if the cores cannot keep up with the bandwidth — the bottleneck is in the FLOPS
	Slide 15: Understanding if your job is memory or compute-bound
	Slide 16: Understanding if your job is memory or compute-bound
	Slide 17
	Slide 18: NVIDIA Scientific Computing Platform
	Slide 19
	Slide 20: The LLM cycle of life
	Slide 21: NVIDIA Supports AI Model Landscape

	ML Inference on GPUs
	Slide 22: ML Inference on GPUs
	Slide 23
	Slide 24: Challenges of AI Inference
	Slide 25: AI Inference Workflow
	Slide 26
	Slide 27: Inference is Complex
	Slide 28: NVIDIA TensorRT
	Slide 29: TensorRT-LLM in the DL Compiler Ecosystem
	Slide 30: TensorRT-LLM Optimizing LLM Inference
	Slide 31
	Slide 32: Efficient inference
	Slide 33: Memory for Inference
	Slide 34: Operations for Inference
	Slide 35: Model Compression Strategies
	Slide 36: Quantization
	Slide 37: Quantization of FP Formats
	Slide 38: Comparison of Throughput Across FP Formats
	Slide 39: Quantization
	Slide 40
	Slide 41: Triton Inference Server
	Slide 42: Delivering High Performance Across Frameworks
	Slide 43: Supports Multiple Model Execution Backends
	Slide 44: Concurrent Model Execution
	Slide 45: Dynamic Batching
	Slide 46: Model Pipelines: Ensembles & Business Logic Scripting
	Slide 47
	Slide 48: NVIDIA NIM is the Fastest Path to AI Inference
	Slide 49: NVIDIA NIM Optimized Inference Microservices
	Slide 50: Inference Microservices for Generative AI
	Slide 51: NVIDIA NIM for LLM Architecture

	Tutorial on GPU optimization
	Slide 52: Tutorial on GPU Optimization
	Slide 53
	Slide 54: How to connect to your tutorial instance?
	Slide 55
	Slide 56: Demo Video
	Slide 57: MMLU Overview
	Slide 58: Quantization
	Slide 59
	Slide 60: Distilling the Knowledge of LLMs into SLMs
	Slide 61: FP4 Format Supported in Blackwell Platform
	Slide 62: The GPU Journey Continues: Stay Ahead of the Curve and Keep Innovating
	Slide 63: Thank you!
	Slide 64
	Slide 65: LAYER & TENSOR FUSION
	Slide 66: KERNEL AUTO-TUNING
	Slide 67: DYNAMIC TENSOR MEMORY
	Slide 68: DYNAMIC TENSOR MEMORY
	Slide 69: TIME FUSION
	Slide 70: QUANTIZATION AWARE TRAINING
	Slide 71: LoRA & Customization
	Slide 72: KV Cache & Attention Techniques
	Slide 73: KV Cache Reusage
	Slide 74: Inflight Batching
	Slide 75: KV Cache Optimizations
	Slide 76: Multi-Modal Support
	Slide 77: Optimized Attention
	Slide 78: Multi-GPU Multi-Node

