
Introduction to FPGA,

FINN and Brevitas

Dr. Mario Ruiz

AMD University Program

2 |

[Public]

AUP Vision

Empower academics with

AMD technology to enhance

teaching and learning

experiences and advance

state-of-the-art research.

3 |

[Public]

Dedicated world-wide

technical team

25+ years experience

working with academia

Supporting High Performance

and Adaptive Compute

Americas
(San Jose/Austin,

USA)

EMEA
(Dublin, Ireland)

APAC
(Shanghai,

China)

Our Team

4 |

[Public]

What We Offer

Research

Programs

Donation

Program

Teaching

Resources

Training
Academic

Solutions
Support

5 |

[Public]

HACCs: Heterogeneous Accelerated Compute Clusters

www.amd-haccs.io

Remote access to

Adaptive Compute hardware

Access to AMD researchers

HACC user group meetings

Collaboration opportunities

Newest HACC at IISc, Bangalore

http://www.amd-haccs.io/

6 |

[Public]

HACC Adaptive Computing Hardware

• HACC hardware consists of:

• Compute and Alveo nodes (initially U250 and U280 with HBM)

• Latest heterogeneous nodes (SMC 4124GS) include:

- 2 EPYC 3rd generation CPUs

- 4 AMD Instinct MI210 GPUs

- 2 Alveo U55C FPGA with HBM

- 2 VCK5000 Versal Adaptive SoC with AIEs

- Run-time via AMD ROCm , XRT

- SW development via HIP, Vitis, frameworks

• 100G network

• Community hub for researchers

• Support from in-house AMD research groups

• Reproducible results & experiments

7 |

[Public]

Contact Us

• Discover our research programs

• Access educational resources

• Submit a donation request

• Find training & other events

Visit our website to:

aup@amd.com

Email us:

www.amd.com/AUP

mailto:amd_university_program@amd.com
http://www.amd.com/AUP

8 |

[Public]

What is Adaptive Computing?

APPLICATION DOMAIN

ADAPTIVE ARCHITECTURE

(After Programming)

Matching the Architecture to the Application

Custom Data Flow, Custom Memory Hierarchy, Custom Precision

Optimize for the Workload
Domain-Specific Architecture for your exact

requirements, accelerating the whole application

Adapt as Algorithms Change
Re-implement the silicon after deployment,

adapting to evolving use cases

Accelerate Pace of Innovation
Keep pace with fast moving markets and rapid

innovation cycles, e.g., AI algorithms

9 |

[Public]

Evolution to Heterogeneous Platforms

▪ From FPGAs to adaptive SoCs  matching the engine to the workload

▪ Balancing diverse technologies for domain-specific requirements

Domain Specific Optimization

Programmable

Logic

Embedded

Processors

Cache

CPU CPU

CPU CPU

Domain-Specific

Acceleration

Unified Software Methodology

Integrated Accelerators

(e.g., AI Engines)

10 |

[Public]

Field Programmable Gate Array (FPGA)

• Semiconductor devices

• Programmed and reprogrammed by a user

• Configuration attributes manipulated after

manufacturing

• Matrix of configurable logic blocks (CLBs)

• Dedicated specialized logic

• Flexible programmable interconnects

• Ideal fit for many different workloads

• Massive parallelism

• Hardware adaptability is a unique differentiator

from CPUs and GPUs

• Invented in 1985

Applications

• Automotive

• Broadcast & Pro AV

• Consumer Electronics

• Data Center

• High Performance Computing and Data Storage

• Industrial

• Medical

• Video & Image Processing

• Wired Communications

• Wireless Communications

11 |

[Public]

Core Adaptable Hardware Technologies

FPGAs Adaptive SoCsSoCs

From high-bandwidth

connectivity to massive

compute engines

Multi-processing subsystem
with Arm® cores and integrated

FPGA logic

Adaptive Compute Acceleration

Platforms for any application,

any developer

12 |

[Public]

Three Ages of FPGAs

• A Retrospective on the First Thirty Years of FPGA Technology

• S. M. Trimberger, "Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology,"

in Proceedings of the IEEE, vol. 103, no. 3, pp. 318-331, March 2015, DOI:

10.1109/JPROC.2015.2392104

13 |

[Public]

FPGA: 7-Series Architecture

• Logic elements distributed on regular columns

• Scalability from low-cost to high-performance

• High-speed IO

• Clock management

• Interconnect matrix

• Routing resources

Artix-7 Architecture Overview

14 |

[Public]

Configurable Logic Block (CLB)

• Primary resource for design in AMD FPGAs

• Combinatorial functions

• Flip-flops

• CLB contains two slices

• Connected to switch matrix for routing to other

FPGA resources

• Carry chain runs vertically

15 |

[Public]

Two Types of CLB Slices

• SLICEM: Full slice

• Can be used for logic, memory and shift register LUT

• Has wide multiplexers and carry chain

• SLICEL: Logic and arithmetic only

• LUT can only be used for logic (not memory)

• Has wide multiplexers and carry chain

16 |

[Public]

Slice Resource

• Four six-input Look-Up Tables (LUT)

• Multiplexers

• Carry chains

• Four flip-flops/latches

• Four additional flip-flops

• The implementation tool will pack multiple slices

in the same CLB if certain rules are followed

17 |

[Public]

6-Input LUT with Dual Output

• LUTs can be two 5-input LUTs with common input

• Minimal speed impact to a 6-input LUT

• One or two outputs

• Any combinatorial function of six variables or two functions of five variables

18 |

[Public]

Slice Flip-Flops and Flip-Flop/Latches

• Each slice has four flip-flop/latches (FF/L)

• Can be configured as either flip-flops or latches

• Each slice also has four flip-flops (FF)

19 |

[Public]

Slice Flip-Flop Capabilities

• All flip-flops are D type

• Q output

• All flip-flops have a single clock input (CK)

• All flip-flops have an active high chip enable (CE)

• All flip-flops have an active high SR input

• Input can be synchronous or asynchronous

• Sets the flip-flop value to a pre-determined

20 |

[Public]

7-Series FPGA I/O

• Wide range of voltages

• 1.2V to 3.3V operation

• Wide I/O standards support

• Single ended and differential

• Referenced voltage inputs

• 3-state capability

• Very high performance

• Up to 1600 Mbps LVDS

• Up to 1866 Mbps single-ended for DDR3

• Easy memory interfacing

• Hardware support for QDRII+ and DDR3

• Digitally controlled impedance

• Power reduction features

21 |

[Public]

7-Series Block RAM and FIFO

• Fully synchronous operation

• Outputs are latched

• Optional internal pipeline register

• Higher frequency operation

• Two independent ports access common data

• Individual address, clock, write enable, clock enable

• Independent data widths for each port

22 |

[Public]

7-Series Block RAM and FIFO

• Multiple configuration options

• True dual-port, simple dual-port, single-port

• Integrated cascade logic

• Byte-write enable in wider configurations

• Integrated control for fast and efficient FIFOs

• Integrated 64/72-bit Hamming error correction

23 |

[Public]

7-Series DSP48E1 Slice

24 |

[Public]

7-Series FPGAs Clock Management

• Global clock buffers

• High fanout clock distribution buffer

• Low-skew clock distribution

• Regional clock routing

• Clock regions

• Each clock region is 50 CLBs high and spans half

the device

• Clock management tile (CMT)

• One Mixed-Mode Clock Managers (MMCMs) and

one Phase Locked Loop (PLL) in each Clock

• Performs frequency synthesis, clock de-skew, and

jitter-filtering

• High input frequency range

25 |

[Public]

Programming Model

Hardware Description Languages (HDL)

• Verilog

• VHDL

• System Verilog

• Closer to the metal

• Low level abstraction

• Describe the behaviour

High-Level Synthesis (HLS)

• C/C++

• High level of abstraction

• Write algorithms

• Vitis HLS generates the architecture

• Guided by user directives

26 |

[Public]

VHLD/Verilog counter

module counter(
input clk,
input rst,
output reg [7:0] count
);

always @(posedge(clk)) begin

if (rst)
count <= 0;

else
count <= count + 1;

end
endmodule

Verilog

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity counter is

Port (clk: in std_logic;
rst: in std_logic;
cout: out std_logic_vector(3 downto 0)

);
end counter;
architecture rtl of counter is
signal counter_up: std_logic_vector(3 downto 0);
begin

process(clk)
begin
if(rising_edge(clk)) then

if(rst='1') then
counter_up <= x"0";

else
counter_up <= counter_up + x"1";

end if;
end if;
cout <= counter_up;
end process;

end rtl;

VHDL

27 |

[Public]

Vitis HLS Vector addition

void vadd(const int* in1, // Read-Only Vector 1
const int* in2, // Read-Only Vector 2
int* out, // Output Result
int elements // Number of elements
) {

// Simple vector addition kernel.
vadd1:

for (int i = 0; i < elements; i++) {
out[i] = in1[i] + in2[i];

}
}

28 |

[Public]

What is AMD Vitis HLS and HLS Benefits

Structured

C/C++

RTL Code

Automated C/C++ to RTL Conversion

Allows Significantly Faster Design Iterations

Significantly Accelerates Simulation – Important

For Wireless, Video Applications

AI on FPGA

30 |

[Public]

DNNs and their Potential

 Requires little domain expertise

 NNs are a “universal approximation function”

 If you make it big enough and train it long enough

 Can outperform humans and existing algorithms on specific tasks

1.

2.

3.

… solve previously

unsolved problems

Will not only increasingly replace

other algorithms, but also…

Nature, Oct 2021

• ChatGPT, Copilot

• Stable diffusion

• Protein folding

Stable Diffusion Prompt: "Pencil sketch of an international

group of semiconductor research scientists, studio Ghibli"

31 |

[Public]

Spectrum of ML use case with very different requirements

Recommender, Computer Vision or

Natural Language Processing related DNNs

10s k infps

Cyber security

Communications

100s M infps

microsec latency

Sensor Intelligence

10k LUTs

10s infps

Latency sensitive

Orders of Magnitude

High energy particle physics

nsec latency

infps = inferences per second

32 |

[Public]

DNN Compute Requirements are Outpacing Moore’s Law

Source: https://blog.openai.com/ai-and-compute

Compute

Requirements

Petaflops/day

(log scale)

Time

Doubling every 3.4months

Since 2012

Moore’s Law

Doubling every 18months

https://blog.openai.com/ai-and-compute

Innovation is needed to provide the necessary

performance scalability

34 |

[Public]

Specialization Is #1 Industry Approach to

Achieve Performance Scalability and Energy Efficiency

Quantum

Computing

In-memory

computing

Wafer Scale

Computing

3D

Stacking

GPUs

Analog

computing

Specialized Architectures

DPU

(Deep Learning Processors)

35 |

[Public]

Adaptive Computing or Dedicated Silicon for DPUs

• With increasing specialization of the device, potential sales volume decreases

• Hard to amortize the increasing NRE costs involved in building ASSPs

• FPGAs become more attractive

• Increasing specialization scales performance for both ASSPs and FPGAs

Total

cost

Volume

ASSP

FPGA

Crossover point

specialization

Performance

Specialization

ASSP

FPGA

Crossover

point

Opportunity

for

FPGAs

• Programmable

interconnect

• Programmable

precision

• Programmable

operations

• …

• The opportunity for FPGAs lies in their ability to specialize

ASSP: Application Specific Standard Product

Vitis AI - ML in general

37 |

[Public]

Customization levels on Adaptive Computing

Custom Dataflow Quantization Sparsity

Buffer

MPE

Specialization/Performance/Efficiency

38 |

[Public]

Popular Approach: Matrix of Processing Engines (MPEs)

Specializing for AI in general

• Popular layer-by-layer compute

• Batching to achieve high compute efficiency

• At latency cost (latency ~ batch size)

• Specialized processing engines

• Operators

• ALU types
• tensor-, matrix- or vector-based

Buffer

PE

DNN

Matrix of Processing Engines (MPE)

“layer-by-layer” compute

• Customized for ML in general

• Designed to run any DNN

• Works really well for computer vision and natural

language processing (10s kinfps)

• Popular approach: Vitis AI (FPGA or AIE) as well

as majority of AI accelerators

39 |

[Public]

ZCU102

Domain-

Specific

Architectures

Embedded Deep Learning Processing Units

Runtime

Vitis AI

Tools &

Components

Compiler

Quantizer

Optimizer

ZCU104

Your Platform

Profiler

Data Center Deep Learning Processing Units

Kria K26

SOM
VCK190

Model Zoo Community or User Models

AMD VitisTM AI Integrated Development Environment
A Complete AI Stack for Adaptable AMD Targets

Optional 3rd Party Framework

Enablement

U50/C/LV VCK5000U200 / U250 U280

Libraries

Supported

AMD

Targets

40 |

[Public]

AI Model Zoo – Expanding to Diverse AI Applications

• A comprehensive AI model repository

• Open and free to download for any user

• State-of-the-art models from Pytorch, TF & TF2

• Retrainable, appliable to various data set & scenario

• Deployable on AMD FPGA and Versal Adaptive SoC

• New models in each release

41 |

[Public]

Extensive Application Coverage

• Bert-base

• Sentiment detection

• Customer satisfaction

• Open-information-extraction

• Textmountain, OCR

• RCAN

• SESR

• OFA-RCAN

• FADNet

• PSMNet

• PMG

Classification

Detection

Segmentation

Video Analytics

IndustrialVision/Robotics

Medical Image

NLP

Text-OCR

• Inception

• Mobilenet

• Resnet

• VGG

• EfficientNet

• MLPerf ResNet50

• OFA ResNet

• Vision Transformer

• Car Type classification

• Car Color classification

• ssd_mobilenet

• Yolov3

• Yolov4

• YoloX

• Refinedet

• EfficientDet

• Pointpillars

• Centerpoint

• CLOCs

• Pointpainting

• Multi-taskv3

• OFA-Yolo

• ENet

• Semantic FPN

• Salsanext

• Salsanextv2

• SOLO

• Mobilenetv2

• 2D-Unet

• FPN-ResNet18

• Unet-Chaos-CT

• HardNet

• Sa-Gate

• Face Recognition

• Face Quality

• Face ReID

• Person ReID

• FairMOT

• FaceMask Detection

• MoveNet

• Superpoint

• HFNet

• DRUnet

• SSR

• C2D2lite

42 |

[Public]

Compiling for DPU - an XIR-based Toolchain

• Xilinx Intermediate Representation (XIR)

• Graph-based intermediate representation of the AI algorithms

• Designed for compilation and efficient deployment of the DPU on the FPGA platform.

• XIR-based compilation flow

• First, transform the input models to XIR format

• Breaks up computing graph to subgraphs

• Execute DPU subgraph to a compiled xmodel file

Techniques for Further

Specialization with

Adaptive Compute Architectures

44 |

[Public]

Specialization beyond MPEs

Custom Dataflow Quantization Sparsity

Buffer

MPE

45 |

[Public]

Dataflow - Specializing for Individual Topologies

• Hardware instantiates the topology as a dataflow architecture

• Customize everything to the specifics of the given DNN, any

operation, any connectivity

• Benefits:

• Improved efficiency

• Low fixed latency

• Scale performance & resources to meet the application

requirements

• If resources allow, we can completely unfold to create a circuit that

inferences at clock speed and thereby meet these new throughput

requirements

FPGA

DNN
allocated resource ~

compute requirement

per layer

Dataflow can scale performance to meet the

application requirements

200Minfps200kinfps

46 |

[Public]

Specialization beyond MPEs

Custom Dataflow Quantization Sparsity

Buffer

MPE

47 |

[Public]

Customizing Arithmetic to Minimum Precision

• Popular approach which reduces bits in the data

representation of weights and activations while preserving

accuracy

• Reducing precision shrinks hardware cost/ scales

performance

• Instantiate n-times more compute within the same fabric, thereby

scale performance n-times

• Reduces memory footprint

• NN model can stay on-chip => no memory bottlenecks

• With dataflow: every layer has dedicated compute

resources, we can mix and match precision across layers

• Exploit custom arithmetic at a greater degree than MPEs

Precision Model size [MB]

(ResNet50)

1b 3.2

8b 25.5

32b 102.5

Reducing precision saves resources/ scales performance,

and reduces memory

However, it requires quantization support in the training software

C= f(size of accumulator, size of weight,size of activation)

48 |

[Public]

Specialization beyond MPEs

Custom Dataflow Quantization Sparsity

Buffer

MPE

49 |

[Public]

Sparsity

• DNNs are naturally sparse

• Sparse topologies result in irregular compute

patterns which are difficult to accelerate on

vector- or matrix-based execution units

• With streaming dataflow architectures, where

every neuron and synapse is represented in the

hardware, we can fully exploit this

FPGA Optimized

Dataflow

on FPGA

Taking it to the Extreme: LogicNets

51 |

[Public]

Specialization beyond MPEs

Custom Dataflow Quantization Sparsity
Full

co-design

52 |

[Public]

LogicNets with Adaptive Computing

convert

(enumerate

inputs)

Pick DNN

topology

Train

Optimize

hardware

Deploy

Adjust the parameters of DNN

while iterating on training

dataset until accuracy

Design a circuit

(=unrolled DNN)

Train

Deploy

Adjust the parameters of DNN

(=LUT contents) while iterating on

training dataset until accuracy

Maximum performance by design (classification at clock rate) [5]

Compared to unrolled DF: sparse to suit the interconnect

Typically sparse topologies

53 |

[Public]

Unique Opportunity for Adaptive Computing

• FPGAs can scale DNN performance through

extreme specialization

• Reduced precision arithmetic

• Arbitrary bitwidth

• Mix & match bitwidths between layers

• Fine-grained sparsity

• Scalable, layer-parallel streaming dataflow

QPSKFM

Reducing

connectivity to suit

the interconnect on

our devices

Reducing precision

f: < 8bit operations

FPGA

Mix & Match

precisions

Map each layer to

parallel hardware

High degree of specialization doesn’t make sense for ASSPs

How much do we get out of the different specializations?

55 |

[Public]

Deep Network Intrusion Detection System (NIDS)

FPGA

Traditional: Hand-coded rules

Emerging trend: Neural networks

Traffic

Classification

Identify malware

such as DOS,

fuzzers, worms, etc

Dataset: UNSW-NB15 Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion detection systems

(UNSW-NB15 network data set)." 2015 military communications and information systems conference (MilCIS). IEEE, 2015.

Goal: Implement NN-based traffic classifier delivering 100G line-rate throughput = 150 Mips

Latency sensitive (buffer 10s of MB/msec)

56 |

[Public]

Results – Implementations

Topology / #layers / #OPs

#inputs / neuron

#bits / weight & activation

Accuracy

MPE (VitisAI)

MLP / 3 / 92KOPs

64

8b & 8b

92.3%

FINN (fold 8, fold 1)

MLP / 3 / 92KOPs

64

2b & 2b

91.9%

Same network

LogicNet

Circuit / 4 / 15.4KOPs

7

2b & 32b

91.3%

New sparse

topology with

7 Inputs/LUT

6x less OPs

Generic ML

architecture

Specialized for topology

2 different folding factors
Fully

Co-designed

Reduced precision

4 implementations with varying degree of specialization

Specialization

Sparsity

57 |

[Public]

Results – Throughput and Latency

MPE SP (fold 8) SP (fold 1) LogicNet

1

100

10000

1000000

100000000

Throughput & Latency

22Kips @ 26us

25Mips @ 240ns
300Mips @ 18ns

471Mips @ 9ns

FINN DF LogicNet

Fold 8 Fold 1

Vitis AI MPE

Performance

Performance scaling

And latency reduction

through specialization

~1000x

Further unrolling

~8x

Full co-design ~ 2x

sparse connectivity suits the

interconnect
DF unrolling reduces

latency further Sparse topology reduces

#pipeline stages => latency

Classification ~ clock rate

Specialization scales performance and reduces latency

by orders of magnitude if application is amenable

58 |

[Public]

Resource Cost - Compute, Memory

Efficiency

VitisAI FINN (fold8) FINN (fold1) LogicNets

kLUTs 122 44 69 16

DSPs 1124 0 0 0

BRAM 290 166 0 0

URAM 92 0 0 0

0

200

400

600

800

1000

1200

Resources

kLUTs DSPs BRAM URAM

Reducing precision

reduces LUT & DSP cost,

even when further

parallelized (1000x

speedup)

8-69

Further unrolling costs

proportional to folding

factor, however synthesis

prunes!

Memory merged into logic

LogicNet

low compute cost

due to limited

connectivity

Customizing arithmetic, sparse implementations and learned circuits

greatly reduce resources and improve device efficiency

59 |

[Public]

Deep Network Intrusion Detection System (NIDS) Results

• This example illustrates the trade-offs between specialization and performance and efficiency

• Custom arithmetic is effective to scale performance and dataflow to reduce latency

• If application is amenable, custom arithmetic can meet extreme throughput requirements such as in NIDS

• Reduced precision, fine-granular sparsity & learned circuits can shrink the resource requirements despite

speedup

• These are some of the opportunities which make most sense to exploit with FPGAs

General Introduction to FINN

Project Mission and Key Techniques

62 |

[Public]

FINN – Project Mission

• Custom Specialization

• for creating high-throughput, ultra-low-latency DNN inference engines

• End-to-End

• flow for the easy creation of specialized hardware architectures for FPGAs

• Open Source

• for full transparency and flexibility to adapt to end user applications and

• for easy customer interactions

63 |

[Public]

Two Key Techniques for Customization in FINN

∑

+2

-4

+1

𝑓 .

∙ +1

+1

e.g. 1-bit weights

e.g. 3-bit activations

Custom Precision:

Few-bit Weights and Activations
Streaming Dataflow Architectures

for FPGAs

∙ −1

∙ −1

64 |

[Public]

Customized Dataflow Processing

versus More Generic Architectures

Matrix of Processing Engines (MPE)

(Vitis AI, TPUs, GPUs)
Dataflow Architectures

with FPGAs and FINN

Customized

Data path

MAC, Vector

Processor or VLIW

65 |

[Public]

Matrix of Processing Engines (MPEs)

Specializing for AI in General

• Popular layer-by-layer compute

• Batching to achieve high compute efficiency

• At latency cost (latency ~ batch size)

• Customized for ML in general

• Designed to run any DNN

• Specialized processing engines
• Operators

• ALU types

• Works really well for computer vision and natural language

processing

• Popular approach: Vitis AI (FPGA or AIE) as well as

majority of AI accelerators

Buffer

PE

DNN

Matrix of Processing Engines (MPE)

“layer-by-layer” compute

66 |

[Public]

Dataflow - Specializing for Individual Topologies

• Hardware instantiates the topology as a dataflow architecture

• Customize everything to the specifics of the given DNN, any

operation, any connectivity

• Benefits

• Improved efficiency

• Low fixed latency

• Scale performance and resources to meet the application

requirements

FPGA

allocated resource ~

compute requirement

per layer

Dataflow can scale performance to meet the

application requirements

DNN

67 |

[Public]

Dataflow Processing:

Scaling to Meet Performance and Resource Requirements

FPGA (fold 10)

RAM
RAM

LUTs,

DSP

LUTs,

DSP

FPGA (fold 1000)

RAM
RAM

LUTs,

DSP

FPGA (fold 1)

RAM
RAM

LUTs,

DSP

LUTs,

DSP

Scaling to fit into

available resources
Scaling to maximize

throughput

1. Scale performance and resources to meet the application requirements

2. If resources allow, we unfold completely, creating a circuit for inference at clock speed

200MRps 20MRps 200kRps

68 |

[Public]

Customized Dataflow Processing

versus More Generic Architectures
Matrix of Processing Engines (MPE)

(Vitis AI, TPUs, GPUs)
Dataflow Architectures

with FPGAs and FINN

Customized

Data path

• Customized for typical DNN operations

• e.g., multiply accumulate

• Lower throughput (~10KRps)

• Flexibility through programming

• Applications: CV, Speech

• Customized/adapted for specific DNN topologies

• Streaming interfaces

• Specialization -> higher efficiency

• Lower latency (no intermediate buffering)

• Higher throughput (~100MRps)

• Flexibility through reconfiguration

• Applications: radio, networking, material science,

particle physics – smaller DNNs

MAC, Vector

Processor or VLIW

69 |

[Public]

Quantization

• Reducing precision shrinks hardware cost/scales performance

• For integer datatypes, LUT cost proportional to both bitwidths in

weight and activations (e.g., INT8 : INT1 ≈ 70×)

• n-times more compute fits into the same fabric, thereby, scaling

performance n-times or shrinking hardware cost accordingly

• Energy

• Faster execution or smaller footprint → less energy (𝐸 = 𝑃 ∙ 𝑡𝑖𝑚𝑒)

• Using reduced precision operators saves energy

• Reduces memory footprint
• ResNet50 @ 32b: 102.5 MB, ResNet50 @ 2b: 6.4 MB

• NN model can stay on-chip → no external memory access → saves energy

1b

8b

32b

Precision
Model size [MB]

(ResNet50)

1b 3.2

8b 25.5

32b 102.5

The FINN Framework

71 |

[Public]

FINN Framework: From DNN to FPGA Deployment

• Train or even learn reduced precision DNNs

• Library of standard layers

• Pretrained examples

• Perform optimizations

• Assemble parameterized HLS/RTL modules

• Generate a DNN hardware IP

• Embed the DNN IP into an infrastructure design

• Generate a Python run-time

• Enable integration with your application

• System integration available for some embedded and

Alveo platforms, including HACC

FINN Compiler

Hardware Architecture

Build

Deployment

Brevitas

Training in PyTorch

Algorithmic optimizations

72 |

[Public]

Direct quantization → accuracy loss 

Brevitas:

A PyTorch Library for Quantization-Aware Training

Precision

Preset or

learned

Scaling Factors

Granularities,

strategies and

constraints

Target Tensors

Weights,

activations,

accumulators

Export to ONNX

To import into the

FINN compiler

add quantization

resize layers

change hyperparameters

retrain

FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

73 |

[Public]

FINN Compiler

Transform DNN into Custom Dataflow Architecture

Hardware Generation

FINN Compiler

QONNX representation of the quantized DNN

Stitched DNN accelerator IP

FINN

• Uses an ONNX-based network description as intermediate representation (IR)

• Is a Python library of graph transformations

• Generates a synthesizable description of each layer (HLS/RTL) encapsulated

as an IP block

• Produces a synthesized stitched IP block representing the complete network

74 |

[Public]

FINN Compiler - Network preparation

FINN Compiler 2. Adjust folding to suit performance/resource requirements

1. Import, streamlining, and other transformations

3. Generate IP cores and stitched IP design

NN exported from Brevitas

Stitched IP Design

QONNX

• Directly exported from Brevitas

• Input format to FINN compiler

• Quantization operator(s)
• Quant, BipolarQuant, Trunc

• No tensor annotations

FINN-ONNX

• Previously used as input format

• IR in the FINN compiler

• MultiThreshold to represent

activation quantization

• Custom datatype annotations on

tensor

75 |

[Public]

FINN Passes - ONNX Graph Transformations

Streamline() LowerConvsToMatMul()

simplified
Convolutions as

Im2Col + MatMul

StreamliningONNX-IR

ONNX-IR
...

76 |

[Public]

Corresponding to

finn-hlslib function call

or finn-rtllib module

template<
 unsigned MW, // Width of the input matrix
 unsigned MH, // Height of the input matrix
 unsigned SIMD, // Number of input columns computed in parallel
 unsigned PE, // Number of output rows computed in parallel
 typename TI, // Input Datatype
 typename TO, // Output Datatype
 typename TW, // Weight Datatype
 typename TA, // Activation Datatype
>
void Matrix_Vector_Activate_Batch(
 hls::stream<hls::vector<TI>> &in,
 hls::stream<hls::vector<TO>> &out,
 TW const &weights,
 TA const &activation
);

ConvertToHWLayers

and

SpecializeLayers

Optimization, lowering, code generation... are all transformations

FINN Passes - ONNX Graph Transformations

77 |

[Public]

SIMD

FINN Hardware Folding

FINN Compiler 2. Adjust folding to suit performance/resource requirements

1. Import, streamlining, and other transformations

3. Generate IP cores and stitched IP design

NN exported from Brevitas

Stitched IP Design

78 |

[Public]

AXI-Stream

FINN HLS/RTL Library - Parameterizable Kernel Library

• Kernels representing individual layers, a.k.a. Operators

• Flexible parametrization as for

• Degree of parallelism (output channels, input channels, kernel dimensions …)

• Datatypes (INT8, ternary, INT2, …)

• Behaviour (activation function)

• Instantiated and stitched by FINN compiler with AXI-Stream data path

• Implemented as synthesizable C++ (Vitis HLS) or SystemVerilog

L
a

y
e

r
(𝑖

−
1

)

L
a
y
e

r
(𝑖

+
1

)

AXI-Stream

template<
 unsigned MW, // Width of the input matrix
 unsigned MH, // Height of the input matrix
 unsigned SIMD, // Number of input columns computed in parallel
 unsigned PE, // Number of output rows computed in parallel
 typename TI, // Input Datatype
 typename TO, // Output Datatype
 typename TW, // Weight Datatype
 typename TA, // Activation Datatype
>
void Matrix_Vector_Activate_Batch(
 hls::stream<hls::vector<TI>> &in,
 hls::stream<hls::vector<TO>> &out,
 TW const &weights,
 TA const &activation
);

79 |

[Public]

FINN Compiler: IP Generation Flow

› Stream-in, stream-out FPGA IP block

» Easy "bump-in-the-wire" integration into streaming systems

» Simple data movement, fully deterministic

FINN Compiler 2. Adjust folding to suit performance/resource requirements

1. Import, streamlining, and other transformations

3. Generate IP cores and stitched IP design

NN exported from Brevitas

Stitched IP Design

80 |

[Public]

Deployment with for Python Productivity

• Use PYNQ-provided Python abstractions and drivers

• User provides NumPy array input, calls driver, retrieves NumPy array output

• Internally use PYNQ DMA driver to wr/rd NumPy arrays into I/O streams

instantiate the accelerator

accel = models.cnv_w2a2_cifar10()

generate an empty numpy array to use as input

dummy_in = np.empty(accel.ishape_normal, dtype=np.uint8)

perform inference and get output

dummy_out = accel.execute(dummy_in)

https://github.com/Xilinx/PYNQ

https://github.com/Xilinx/finn-examples

https://github.com/Xilinx/PYNQ
https://github.com/Xilinx/finn-examples

81 |

[Public]

FINN Dataflow Build Mode

FINN flow = Python script

making calls to FINN API

Produce output files from

input ONNX and config

Can be resumed from

intermediate steps

ONNX files act as checkpoints

Consists of a sequence of

steps, each step

• is a Python function

with a standardized

interface

• consumes and

produces ONNX

• may produce other files

• may be standard or

custom

• may have config-

dependent behavior

FINN Infrastructure and Workflow

83 |

[Public]

The FINN Ecosystem and Software Stack

project landing page: https://xilinx.github.io/finnFINN
• Quick Start, Documentation, Examples (Jupyter Notebooks)

• Links to Repos

qonnx

Core infrastructure

finn-hlslib brevitas

FrontendOperator library

finn-examples

Vitis HLS PyTorchONNX ONNX Runtime

finn

https://xilinx.github.io/finn/

84 |

[Public]

A FINN End-to-End Flow

Network of HLS layers
With C++ wrappers

Network of high-level ONNX layers

Streamlined network of high-level ONNX layers

Network of HW layers, maximum folding

Network of HLS/RTL layers, desired folding

Network of HLS/RTL layers, IP per layer

Network of HLS/RTL layers, stitched IP
Ready to be integrated in Vivado IPI

Trained Network in PyTorch/Brevitas

Brevitas FINN-ONNX Export

Streamlining Transformations

Convert to HW Layers

Adjust folding to maximize performance

Create IP per layer

Create stitched design

Prepare rtlsim
(stitched)

Prepare rtlsim
(layer by layer)

Prepare cppsim

Simulation using
Python

Full-network
Verilator model

Network of HLS/RTL layers
with Verilator models

Emulation (rtlsim) using PyVerilator

Run cppsim (HLS C++)

Simulation and Emulation Flows

Vivado HLS and IPI

Brevitas

Network Preparation

Traditional HW Design RTL Simulation

Specialize Layers

Network of HLS/RTL layers, maximum folding

85 |

[Public]

FINN Workflow

Network of HLS/RTL layers, stitched IP
Ready to be integrated in Vivado IPI

Brevitas FINN-ONNX Export

Streamlining Transformations

Convert to HW Layers

Adjust folding to maximize performance

Create IP per layer

Create stitched design

Vivado HLS and IPI

Brevitas

Network Preparation

Specialize Layers

Customization

of Arithmetic

Customization

of Hardware

Architecture

FINN and Brevitas can be used as co-design tools

to implement your DNN use case on an FPGA.

• Train a quantized neural network in PyTorch using Brevitas

• Converting trained QNN to Vivado IP

• Fine-tune model to meet resource/performance targets

• Integrate generated IP into a larger design

But you can leverage the infrastructure beyond that…

86 |

[Public]

Research in the FINN Ecosystem

System integration

Brevitas
Quantization training library

qonnx toolkit
Infrastructure for backend-agnostic, mathematically

preserving optimizations on (Q)ONNX models

finn compiler
Library of transformations/infrastructure to convert

QNNs to FPGA design

FINN library
FPGA dataflow specific

HW components

Explore new optimized

neural network layer

implementations

Infrastructure to enable research

on advanced quantization schemes

and analysis of quantized neural

networks

Enables early design space

exploration

Infrastructure for research on

neural network hardware design

Status and Outlook

88 |

[Public]

Status Summary

• Open-Source Adoption

• ~2k+ GitHub stars summarized across repos

• 250k+ Brevitas downloads

• ~200k QONNX downloads

• 17k+ FINN compiler downloads

• Academic Results

• ACM TRETS 2020, FPL’2020, DFT’2019 Best Paper awards

• 1000+ citations on original paper

• University Classes on computer architecture for ML with FINN

• Stanford, UNC Charlotte, NTNU in Norway, EPFL in Switzerland

• Regular tutorials, also available on YouTube: https://www.youtube.com/watch?v=zw2aG4PhzmA

• Business units providing customer support

• Lead engineering team: Custom and Strategic Engineering, Dublin

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn-hlslib

https://github.com/Xilinx/finn-examples

https://github.com/fastmachinelearning/qonnx

“The FINN toolset is showing huge potential using it in

upcoming SICK products.

It is easy to use and with an extraordinary performance

and very promising results.

In the future, flexible implementations of ML in our

products with FINN can be a great advantage and even

replace static architectures as they are currently used.

Thanks to the FINN team for the great cooperation”

– Sick AG

https://www.youtube.com/watch?v=zw2aG4PhzmA
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-examples

89 |

[Public]

FINN Layer Support
Layer Current Support Outlook

GEMM ✓

Conv1D and Conv2D ✓

- Dense ✓

- Depthwise ✓

- Separable (pointwise) ✓

Elementwise (add, sub) ✓ others easily doable

Activation ReLU, SeLU

BatchNorm ✓ (absorbed by streamlining)

Pooling ✓

Scale ✓ (absorbed by streamlining)

Concat ✓

Reshape ✓ (must be streamlinable)

Transpose ✓ (must be streamlinable)

Clip by Value ✓ (absorbed by streamlining)

TransposeConv2D ✓ optimized version (WIP)

UpSample ✓

DownSample ✓

90 |

[Public]

Brevitas Updates

• Targets the entire AMD product range

• First-class support for integer datatypes

• prototype support for minifloats (e.g., FP8)

• Supports PTQ and QAT

• Out of the box support for distributed training –

(e.g., DDP, interoperability with HuggingFace

Accelerate (PP))

• Interoperability with HuggingFace

Transformers

Precision

Preset or

learned

Data Formats

Integer or floating-point

FP32 INT

https://github.com/Xilinx/brevitas

Quantize

and

Calibrate

Export

Quantized

Model

Brevitas: Neural Network Quantization in PyTorch

PyTorch

https://github.com/Xilinx/brevitas

91 |

[Public]

FINN Compiler Updates

• Refactoring of operator instantiation infrastructure

• FINN compiler used to assume that hardware blocks are synthesized from HLS code

• New class hierarchy to facilitate integration of RTL components

• Provide users with an interface to override the compiler’s choice

for HLS vs. RTL implementation on a per-layer basis

• RTL component library optimizing the implementations of critical layers

• Efficient implementation of 4-bit and 8-bit compute leveraging DSP slices

• Efficient implementation of multi-level thresholding

• Eradication of (regularly long) HLS synthesis times for layers with an RTL option

• Compiler optimization pass for accumulator and weight bit width minimization

• Added board support in system integration flow

• RFSoC 4x2 and U55C (contributed by University of Paderborn)

FINN v0.10.1

Release

92 |

[Public]

FINN Technical Roadmap: Capabilities

• Operator Hardening

• Revised RTL Thresholding by binary search

• Ingestion of fp32 inputs

• DSP-enabled Generalized Datatype Support
• Efficient higher-precision integer compute: int4, int8, …, int16

• Small standard floating-point formats: float16, bfloat16

• Custom MiniFloats: fp4 – fp8

• Internal clock pumping of DSP datapaths to increase their operational density

We are aiming at a standard operational frequency around 500 MHz

• New Operators

• Optimized transposed convolution

• Fallback float layers to mitigate streamlining limits

93 |

[Public]

FINN Technical Roadmap: Ease of Use

• FINN Library
• Refactoring of streamed layer interfaces

• Packed flat ap_uint<W> → explicit hls::vector<T, N>

• Combining HLS and RTL components into one FINN Library

• FINN Examples
• MobileNet-v1 and VGG10-RadioML with efficient DSP compute

• New example: German Traffic Sign Recognition Benchmark

FINN-examples v0.0.7

Release

94 |

[Public]

Resources

• https://github.com/Xilinx/brevitas

https://github.com/Xilinx/finn

• https://github.com/Xilinx/finn-hlslib

• https://github.com/Xilinx/finn-examples

• https://github.com/fastmachinelearning/qonnx

• https://amd.com/aup

https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-examples
https://github.com/fastmachinelearning/qonnx
https://www.amd.com/en/corporate/university-program.html

Q & A

96 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Default Section
	Slide 1: Introduction to FPGA, FINN and Brevitas

	AUP
	Slide 2: AUP Vision
	Slide 3: Our Team
	Slide 4: What We Offer
	Slide 5: HACCs: Heterogeneous Accelerated Compute Clusters
	Slide 6: HACC Adaptive Computing Hardware
	Slide 7: Contact Us

	Adaptive Computing
	Slide 8: What is Adaptive Computing?
	Slide 9: Evolution to Heterogeneous Platforms
	Slide 10: Field Programmable Gate Array (FPGA)
	Slide 11
	Slide 12: Three Ages of FPGAs
	Slide 13: FPGA: 7-Series Architecture
	Slide 14: Configurable Logic Block (CLB)
	Slide 15: Two Types of CLB Slices
	Slide 16: Slice Resource
	Slide 17: 6-Input LUT with Dual Output
	Slide 18: Slice Flip-Flops and Flip-Flop/Latches
	Slide 19: Slice Flip-Flop Capabilities
	Slide 20: 7-Series FPGA I/O
	Slide 21: 7-Series Block RAM and FIFO
	Slide 22: 7-Series Block RAM and FIFO
	Slide 23: 7-Series DSP48E1 Slice
	Slide 24: 7-Series FPGAs Clock Management
	Slide 25: Programming Model
	Slide 26: VHLD/Verilog counter
	Slide 27: Vitis HLS Vector addition
	Slide 28: What is AMD Vitis™ HLS and HLS Benefits

	motivate ai
	Slide 29: AI on FPGA
	Slide 30: DNNs and their Potential
	Slide 31: Spectrum of ML use case with very different requirements
	Slide 32: DNN Compute Requirements are Outpacing Moore’s Law
	Slide 33: Innovation is needed to provide the necessary performance scalability
	Slide 34: Specialization Is #1 Industry Approach to Achieve Performance Scalability and Energy Efficiency
	Slide 35: Adaptive Computing or Dedicated Silicon for DPUs
	Slide 36: Vitis AI - ML in general
	Slide 37: Customization levels on Adaptive Computing
	Slide 38: Popular Approach: Matrix of Processing Engines (MPEs) Specializing for AI in general
	Slide 39: AMD VitisTM AI Integrated Development Environment A Complete AI Stack for Adaptable AMD Targets
	Slide 40: AI Model Zoo – Expanding to Diverse AI Applications
	Slide 41: Extensive Application Coverage
	Slide 42: Compiling for DPU - an XIR-based Toolchain
	Slide 43: Techniques for Further Specialization with Adaptive Compute Architectures
	Slide 44: Specialization beyond MPEs
	Slide 45: Dataflow - Specializing for Individual Topologies
	Slide 46: Specialization beyond MPEs
	Slide 47: Customizing Arithmetic to Minimum Precision
	Slide 48: Specialization beyond MPEs
	Slide 49: Sparsity
	Slide 50: Taking it to the Extreme: LogicNets
	Slide 51: Specialization beyond MPEs
	Slide 52: LogicNets with Adaptive Computing
	Slide 53: Unique Opportunity for Adaptive Computing
	Slide 54: How much do we get out of the different specializations?
	Slide 55: Deep Network Intrusion Detection System (NIDS)
	Slide 56: Results – Implementations
	Slide 57: Results – Throughput and Latency
	Slide 58: Resource Cost - Compute, Memory
	Slide 59: Deep Network Intrusion Detection System (NIDS) Results

	FINN & Brevitas
	Slide 60: General Introduction to FINN
	Slide 61: Project Mission and Key Techniques
	Slide 62: FINN – Project Mission
	Slide 63: Two Key Techniques for Customization in FINN
	Slide 64: Customized Dataflow Processing versus More Generic Architectures
	Slide 65: Matrix of Processing Engines (MPEs) Specializing for AI in General
	Slide 66: Dataflow - Specializing for Individual Topologies
	Slide 67: Dataflow Processing: Scaling to Meet Performance and Resource Requirements
	Slide 68: Customized Dataflow Processing versus More Generic Architectures
	Slide 69: Quantization
	Slide 70: The FINN Framework
	Slide 71: FINN Framework: From DNN to FPGA Deployment
	Slide 72: Brevitas: A PyTorch Library for Quantization-Aware Training
	Slide 73: FINN Compiler Transform DNN into Custom Dataflow Architecture
	Slide 74: FINN Compiler - Network preparation
	Slide 75: FINN Passes - ONNX Graph Transformations
	Slide 76: FINN Passes - ONNX Graph Transformations
	Slide 77: FINN Hardware Folding
	Slide 78: FINN HLS/RTL Library - Parameterizable Kernel Library
	Slide 79: FINN Compiler: IP Generation Flow
	Slide 80: Deployment with for Python Productivity
	Slide 81: FINN Dataflow Build Mode
	Slide 82: FINN Infrastructure and Workflow
	Slide 83: The FINN Ecosystem and Software Stack
	Slide 84: A FINN End-to-End Flow
	Slide 85: FINN Workflow
	Slide 86: Research in the FINN Ecosystem
	Slide 87: Status and Outlook
	Slide 88: Status Summary
	Slide 89: FINN Layer Support
	Slide 90: Brevitas Updates
	Slide 91: FINN Compiler Updates
	Slide 92: FINN Technical Roadmap: Capabilities
	Slide 93: FINN Technical Roadmap: Ease of Use
	Slide 94: Resources
	Slide 95: Q & A
	Slide 96
	Slide 97

