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AUP Vision

Empower academics with
AMD technology to enhance
teaching and learning
experiences and advance
state-of-the-art research.
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QOur Team

Dedicated world-wide
technical team 9
9 EMEA

Americas 9

Supporting High Performance APAC
and Adaptive Compute

25+ years experience
working with academia
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Training Academic Support
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HACCs: Heterogeneous Accelerated Compute Clusters

Remote access to
Adaptive Compute hardware

HACC user group meetings

Access to AMD researchers

Collaboration opportunities

AMDZ\
=PYC

9 ETH:z(rich
X ILLINOIS
UCLA
AMDZ AMD
INSTINCT ALVe=0

www.amd-haccs.io

P

PADERBORN
UNIVERSITY

AMDZ1
VERSAL

Newest HACC at IISc, Bangalore
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HACC Adaptive Computing Hardware

' AMD
e _E' HACC hardware consists of:

iUt L'U (T _ Compute and Alveo™ nodes (initially U250 and U280 with HBM)

e | |
H::JHHH = Latest heterogeneous nodes (SMC 4124GS) include:
l : 2 EPYC™ 3rd generation CPUs
4 AMD Instinct™ MI210 GPUs
2 Alveo U55C FPGA with HBM
2 VCK5000 Versal Adaptive SoC with AIEs
........ Run-time via AMD ROCm™  XRT
"J]_”.‘.H.J‘W = , SW development via HIP, Vitis, frameworks
‘JW”MU i 100G network A oER
REL AR R Ay h‘y-
Community hub for researchers
________ Support from in-house AMD research groups
|
I" LU | Reproducible results & experiments
[T
AMDZ1
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Contact Us é

Downloads & Support Shop

Discover our research programs

Access educational resources AMD University Program

Educator, researcher and student hub for AMD resources, program
and news

Submit a donation request

Find training & other events

aup@amd.com

www.amd.com/AUP

AMDA1
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What is Adaptive Computing?

Adaptive Hardware (“FPGA")
Conceptual Representation

Optimize for the Workload Millions of customizable,

configurable logic blocks
Domain-Specific Architecture for your exact

. . . . Flexible Interconnect
requirements, accelerating the whole application

Adaptable memory,

Adapt as Algorithms Change customize to data flow

Re-implement the silicon after deployment,
adapting to evolving use cases

Accelerate Pace of Innovation

Keep pace with fast moving markets and rapid
innovation cycles, e.g., Al algorithms

Matching the Architecture to the Application
Custom Data Flow, Custom Memory Hierarchy, Custom Precision

? """ FITTTTT, f/ """" ;

:: | e —— /;;;;;;;;;’ : 777 f ,;

I:l APPLICATION DOMAIN ﬁ / ’ 5 ’ ’ / :4 ?
/ ¥ ) ¥ " ’ ’

7 ADAPTIVE ARCHITECTURE /8 E / i ’ E 'é" 'é' ?

A (After Programming) o ! 5 / 4 7 ]

ﬁ g " ’ " ./ ]

/ I EFEEF : / llllllll % ﬁ

lorerre "‘; ,,,,,, /.

AMDA1
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Evolution to Heterogeneous Platforms

= From FPGAs to adaptive SoCs — matching the engine to the workload

= Balancing diverse technologies for domain-specific requirements

Domain Specific Optimization

Embedded
Processors

CPU CPU

Programmable Integrated Accelerators
Logic (e.g., Al Engines)
HETE
. . Domain-Specific
. . . Acceleration
H 0
BENE
A A

Unified Software Methodology

AMDA1
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Field Programmable Gate Array (FPGA)

Semiconductor devices

Programmed and reprogrammed by a user

- Configuration attributes manipulated after
manufacturing

Matrix of configurable logic blocks (CLBS)
Dedicated specialized logic
Flexible programmable interconnects

|deal fit for many different workloads
Massive parallelism

Hardware adaptability is a unique differentiator
from CPUs and GPUs

Invented in 1985

Applications

Automotive

Broadcast & Pro AV
Consumer Electronics
Data Center

High Performance Computing and Data Storage

Industrial

Medical

Video & Image Processing
Wired Communications
Wireless Communications

AMDZ1
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Core Adaptable Hardware Technologies

FPGAS

From high-bandwidth
connectivity to massive
compute engines

AMDI1 AMDIDl AMDIDl AMDQ1
SPARTAN ARTIX KINTEX VIRTEX

11

SoCs

Multi-processing subsystem
with Arm® cores and integrated
FPGA logic

AMDZV
ZYNQ

Adaptive SoCs

Adaptive Compute Acceleration
Platforms for any application,
any developer

AMDA
VERSAL

AMDA1
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Three Ages of FPGASs

- A Retrospective on the First Thirty Years of FPGA Technology

- S. M. Trimberger, '

In Proceedings of the IEEE, vol. 103, no. 3, pp. 318-331, March 2015, DOI:
10.1109/JPR0OC.2015.2392104

Three Ages of FPGASs: A Retrospective on the First Thirty Years of FPGA Technology,'

S

This paper reflec

ABSTRACT | Since their introduction.

Three Ages of FPGAs: A
Retrospective on the First Thirty
Years of FPGA Technology

on how Moore’s Law has driven the design of FPGAs through
three epochs: the age of invention, the age of expansion, and the age of accumulation.

By StepnEN M. (Steve) TRIMBERGER, Fellow IEEE

‘arrays (FPGAS) have grown in capacity by more than a factor of
10000 and in performance by a factor of 100. Cost and energy
per operation have both decreased by more than a factor of
1000. v
scaing, but the FPGA story Is much more complex than simple
technology scaling. Quantitative effects of Moore’s Law have
driven qualitative changes in FPGA architecture, applications
and tools. As a consequence, FPGAS have passed through sev-
eral distinct phases of development. These phases. termed
“/Ages™ In this paper, are The Age of Invention, The Age of
Expansion and The Age of Accumulation. This paper summa-
rizes each and discusses their driving pressures and funda-
mental characteristics. The paper concludes with a vision of the
upcoming Age of FPGAS.

KEYWORDS | Application-specific integrated circuit (ASIC)
commerdialization: economies of scale;

Fig. 1. Xl cell

gate array (FPGA); Industrial economics; Moore's Law; pro-
grammable logic

L INTRODUCTION
Xilinx introduced the first field programmable gate arrays
(FPGAS) in 1984, though they were not called FPGAS until
Actel popularized the term around 1988, Over the ensulng
30 years, the device we call an FPGA increased in capacity

by more than a factor of 10000 and increased in speed by
factor of 100, Cost and energy consumption per unit func
tion decreased by more than a factor of 1000 (sce Fig. 1)
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up by 10 000 . Data: Xilinx published data.

These advancements have been driven largely by process
technology, and it is tempting to perceive the evoluti

FPGAS as a simple progression of capacity, following semi-
conductor scaling. This perception is too simple. The real

story of FPGA progress is much m

Since their introduction, FPGA devices have pro-
gressed through several distinct phases of development
Each phase was driven by both process technology oppor-
tunity and application demand. These driving pressures
caused cbservable
and tool

« interesting

vice characteristics

anges in the

In this paper, | review three phases I call the

“Ages” of FPGAs. Each age is cight years long and each

became apparent only in retrospect. The three ages are:
1) Age of Invention 1984-1991:

e, bt republicasm

-
e ghts ke b i

Crossavee

Total Cost

point,
Reneration el
Crossover

o,
#GA | generstionn

Number of Units

Fig. 2. FPGA versis ASIC Crossover Point. Graph shows ot ost

Trimberger: Three Ages of FPGAS

The disadvantage of the FRGA per-unit cost premium
over ASIC diminished over time as NRE costs became 3
larger fraction of the total cost of awnership of ASIC. The
dashed lines in Fig. 2 indicate the total cost at some process
node. The solid lines depict the situation at the next process
node, with increased NRE cost, but lower cast per chip. Both
FPGA and ASIC took advantage of lower cost manufacturing,
while ASIC NRE charges continued to climb, pushing the
crossover point higher. Eventually, the crossover point grew
50 high that for the majority of customers, the number of
units no longer justified an ASIC. Custom silicon was war-
ranted only for very high performance o very high vohume:;
all oth

Jeft cormer. With the adoption of the next procoss nade (arrows.

2)  Age of Expansion 1992-1999;
3)  Age of Accumulation 2000-2007

1. PREAMBLE: WHAT WAS THE
BIG DEAL ABOUT FPGAs?

A. FPGA Versus ASIC
In the 19805, Application-Specific Integrated Circult
(ASIC) companies brought an amazing product to the

electronics market: the built-toorder custom integrated
circuit. By the mid-1980s, dozens of companies were sell-
ing ASICs, and in the fierce competition, the winning at-
tributes were low cost, high capacity and high speed. When
FPGAs appeared, they compared pooely on all of these
measures, yet they thrived. Why?

1C functionality was determined by custom mask
tooling. ASIC customers paid for those masks with an up
front non-recurring engineering (NRE) charge. Because
they had no custom tooling, FPGAs reduced the up-front
cost and risk of building custom digital logic. By making
one custom silicon device that could be used by hundreds or
thousands of customers, the FPGA vendor effectively

amortized the NRE costs over all customers, resulting in
no NRE charge for any one customer, while increasing the
per-unit chip cost for all

The up-front NRE cost ensured that FPGAS were more
cost effective than ASICS at some volume [38]. FPGA
vendors touted this in their “crossover point,” the number
of units that justified the higher NRE expense of an ASIC.
In Fig. 2, the graphed lines show the total cast for a number
units purchased. An ASIC has an initial cost for the NRE,
and each subsequent unit adds its unit cost to the total. An
FPGA has no NRE charge, but each unit costs more than the
functionally equivalent ASIC, hence the steeper line. The
two lines meet at the crassover point. If fewer than that

mber of units is required, the FPGA solution is cheaper;

ore than that number of units indicates the ASIC has

lower overall cost.

use a solution.

This insight, that Moore’s Law [33] would eventually
propel FPGA capability to cover ASIC requirements, was a
fundamental early insight in the programmable logic busi
ness. Today, device cost is less of a driver in the FPGA
versus ASIC decision than performance, time-to-market,
power consumption, 1/0 capacity and other capabillties.
Many ASIC customers use older process technology,
lowering their NRE cost, but reducing the per-chip cost
advantage

Not only did FPGAs eliminate the up-front masking
charges and reduce inventory costs, but they also reduced
design costs by eliminating whole classes of design prob-
lems. These design problems included transistor-level de-
sign, testing, signal integrity, crosstalk, 10 design and
clock distributio

As important as low up-front cost and simpler design
were, the major FPGA advantages were instantly availabi-
lity and reduced visibility of a failure. Despite extensive
simulation, ASICs rarely seemed to be correct the first
time. With wafer-fabricatic

turnaround times in the

weeks ar months, silicon

-spins impacted schedules sig
nificantly, and as masking costs rose, silicon re-spins were
noticeable to ever-rising levels in the company. The high
cost of error demanded extensive chip verification. Since
an FPGA can be reworked in minutes, FPGA designs
curred no weeks-long delay for an error. As a result, ver
fication need not be as thorough. “Selfemulation,” known

colloquially as “download-it-and-try-i,” could replace ex.
tensive simulation.

Finally, there was the ASIC production risk: an ASIC
company made money only when their customer's design
went into production. In the 1980s, because of changing
requirements during the development process, product
failures or outright design errors, only about one-third of

all designs actually went to production. Two-thirds of de
signs lost money. The losses were incurred not only by the
ASIC customers, but also by the ASIC suppliers, whose
NRE charges rarely covered their actual costs and never
covered the cost of lost opportunity in their rapidly depre-
ciating manufacturing facilities. On the other hand,
programmable-logic companies and customers could still
make money on small volume, and a small error could be
corrected quickly, without costly mask-making,
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3 macrocells

the AND array grows with the square of the number of
inputs (more precisely, inputs times product terms). Pro-

i -
-

3 outputs

2inputs

Fig. 3. Generic PaL architecture,

B. FPGA Versus PAL

Progeammable Togic was well established before the
FPGA. EPROM-programmed Programmable Array Logic
(PAL) had carved out a market niche in the early 19805
However, FPGAs had an architectural advantage. To un
derstand the FPGA advantage, we first look at the simple
programmable logic structures of these early 19805 de-
vices. A PAL device, as depicted in Fig. 3, consists of a two-
level logic structure [6], [38]. Inputs are shown enteringat

the bottom. On the left side, a programmable Anp array
generates product terms, ANDs of any combination of the
inputs and their inverses. A fixed 0% gate in the block at
the right completes the combinational logic function of the
macrocell’s product terms. Every macrocell output is an
output of the chip. An optional register in the macrocell
and feedback to the input of the AND array enable a very
flexible state machine implementation

Not every function could be implemented in one pass
through the PAL's macrocell array, but nearly all common
functions could be, and those that could not were realized
in two passes through the array. The delay through the PAL
array is the same regardless of the function perforn
array. PALs had simple fitting
software that mapped logic quickly to arbitrary locations in
the array with no performance concerns. PAL fitting soft-
ware was available from independent EDA vendors,
allowing IC manufacturers to easily add PALs to their

where it is located in the

product line.

PALS were very efficient from a manufacturing point of
view. The PAL structure is very similar to an EPROM
memory amay, in which transistors are packed densely ©
yield an efficient implementation. PALs were sufficiently
similar to memories that many memory manufacturers

were able to expand their product line with PALs. Wh

the cyclical memory business faltered, memory manufac-
turers entered the programmable logic business.

The architectural issue with PALs is evident when one
considers scaling, The number of programmable points in

320 ProceEpinGs or THE IEEE | Vol 103 Na 3, March 2015

cess scaling more transistors quare of the
shrink factor. However, the quadratic increase in the AND
amay limits PALs to grow logic only linearly with the
sheink factor. PAL input and product-term lines are also
heavily loaded, so delay grows rapidly as size increases. A
PAL, like any memory of this type, has word lines and bit

lines that span the entire die. With every generation, the
ratio of the drive of the programmed transistor o the
loading decreased. More inputs or product terms increased
loading on those lines. Increasing transistor size to lower
resistance also raised total capacitance. To maintain speed,
power consumption rose dramatically. Large PALs were
impractical in both area and performance. In response, in

19805, Altera pioncered the Complex Programmable
Logic Device (CPLD), composed of several PAL-type blocks
with smaller crossbar connections among them. But FPGAs
had 2 more scalable solution

The FPGA innovation was the elimination of the ano
amay that provided the programmability. Instead, config-
uration memory cells were distributed around the array to
contral functionality and wiring, This change gave up the
memory-array-like efficiency of the PAL structure in favor
of architectural scalability. The architecture of the FPGA,
shown in Fig. 4, consists of an array of programmable logic

blocks fi

The capacity and performance of the FPGA were no longer
limited by the quadratic growth and wiring layout of the
Awp array, Not every function was an output of the chip, so

ulE%IlIE%IIIEEIIIIE%II
I _InL_ il _nL_Ingd

=0 T 0 e
= T =

o/ [m
= T O =

)= i
il L L AL i

Device inputs and outputs are distributed around the array.

AMDZ1
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FPGA: 7-Series Architecture

Logic elements distributed on regular columns
- Scalability from low-cost to high-performance

. B CB
- High-speed IO g s
- Clock management 1o
* Interconnect matrix i -

« Routing resources - | - .o .
7FIFOLog|o : ::::.::
> BUEG =] HpEBR HE

] s aa®aa
L] ] H N

. DSP
>

: BUFIO & BUFR
>
[

MGT

Artix-7 Architecture Overview

AMDA

13 together we advance_



[Public]

Configurable Logic Block (CLB)

- Primary resource for design in AMD FPGAs il couT  couT
< Combinatorial functions I |
 Flip-flops

- CLB contains two slices

« Connected to switch matrix for routing to other
FPGA resources

 Carry chain runs vertically

Fabric
Routing CIN CIN

AMDA
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Two Types of CLB Slices

« SLICEM: Full slice
- Can be used for logic, memory and shift register LUT
- Has wide multiplexers and carry chain

- SLICEL: Logic and arithmetic only
« LUT can only be used for logic (not memory)
- Has wide multiplexers and carry chain

Slice L

Slice M

AMDA
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Slice Resource

D e Rese Tpe
- Four six-input Look-Up Tables (LUT) u {5
H DX [ ! ‘ —
- Multiplexers e E‘ D | T/;D
b WB:W1 [ —0
. 06 o o FF/LAT
- Carry chains o o L Sal ], e o
. WEN MC31 |—— <D‘D Ea;;éu » —_gi u:HLO
+ Four flip-flops/latches 0> LA d
1 T
- Four additional flip-flops g p—- | o
i . b-Top . . ) o e J ‘Q f’D R .
- The implementation tool will pack multiple slices B T o L e o
in the same CLB if certain rules are followed . ﬂT R et i
CKDIEIF"I'O -
= | :? ‘ [ BMUX
ol D
| o : l? Ei o FF/LAT =®
o — Lo e
WEN MCNTD; b OSRH | ,_gE gEEECI)
o L L cE aiiTe @ ‘
A > t ﬂ?‘i ID 7\ > AMUX
h Q: wﬁu1 o l ? l‘ gi O FF/LAT ="
" - o Skt o[
\?VEN MCD:iI: L > gy gi SEEEJJ
sﬁ: o N
k= e D

WE > ﬂ WEN Cq\l
AMDZ
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6-Input LUT with Dual Output

- LUTs can be two 5-input LUTs with common input
Minimal speed impact to a 6-input LUT
« One or two outputs

- Any combinatorial function of six variables or two functions of five variables

DX [

D6:1 [C>—— A6:A1

06
05

X [ :D‘H

C6:1 [>— ABG:A1

06
05

AMDZ1
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Slice Flip-Flops and Flip-Flop/Latches

4_[ D Egg[‘(', Reset Type
. . o OINIT1 QfH— Sync/A:
- Each slice has four flip-flop/latches (FF/L) T RERRN
. . . N
- Can be configured as either flip-flops or latches x>y : B o
D6:1 [—¢-{A6 A?IE F?D E >
- - | WE:W1 -
- Each slice also has four flip-flops (FF) o ] 2N Tl
ammo @[ =09
:f:N MCD;I F— o SRHI **gE SEE{L‘,
<[ D osALo L H cK
DI B ce BN © =L
l CK SR —‘ ~
ox E;:Q |_ I P cMux
o= C:fauw lg F’D e
g oc
gg ‘ i l 1 1 N OFFALAT
1L, SieHow
e s [H — )| tjes s
WEN MC31 [ o SRHI | |
oo D e
JEK__sn —‘ ~
B 1 | ‘ P BMUX
B6:1 > 3;6513:2 ?D { E/
L we: 8
06 ‘ N~
GTiiR=E YL -
oK o 1| CE ESFI!H\
WEN MC31 ‘ 41} b oSAH L~ H e D::Lo
o= CT || L CE Eiita @
CK  sm ‘
_<P 1 ' ™
J \
] D AMUX
AG:A?IE 11 ﬂz":ri_)?D 1
We:W1 oA
82 1 A O FF/LAT
s Lo S Hen
ck b + 4 ce oSRHI
WEN MC31 =) P ok O SRLO
A o N SF
= Uy
CLK > g—aﬂ T U
CK

UGHTA_c2.02.110510 A M D n
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Slice Flip-Flop Capabilities

- All flip-flops are D type
« Q output

- All flip-flops have a single clock input (CK)
- All flip-flops have an active high chip enable (CE)

- All flip-flops have an active high SR input
 Input can be synchronous or asynchronous
- Sets the flip-flop value to a pre-determined

19

FDRE

UG474_c3_05_102910
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7-Series FPGA I/O

Wide range of voltages
- 1.2V to 3.3V operation

Wide I/O standards support
Single ended and differential

- Referenced voltage inputs
3-state capability

Very high performance
- Up to 1600 Mbps LVDS
Up to 1866 Mbps single-ended for DDR3

Easy memory interfacing
Hardware support for QDRI+ and DDR3

Digitally controlled impedance
Power reduction features

Logical Resources

Electrical Resources

Interconnectto FPGA Fabric

SEVE

ILOGIC/ e
ISERDES IDELAY

OLOGIC/
OSERDES ODELAY

AMDZ1
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7-Series Block RAM and FIFO

 Fully synchronous operation
- Outputs are latched

- Optional internal pipeline register
- Higher frequency operation

« Two independent ports access common data
- Individual address, clock, write enable, clock enable
+ Independent data widths for each port

AMDA
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7-Series Block RAM and FIFO

« Multiple configuration options

- True dual-port, simple dual-port, single-port M D 25

- Integrated cascade logic
- Byte-write enable in wider configurations ;;'Af;’n
- Integrated control for fast and efficient FIFOs 36 Kb f
: : : BRAM/ Y j
- Integrated 64/72-bit Hamming error correction FIFO 18 Kb
BRAM/
FIFO
(1) 36 Kb BRAM (2) independent 18 Kb block RAMs
OR OR
(1) 36 Kb or FIFO (1)18 Kb FIFO + (1) 18 Kb block RAM

AMDZ1
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7-Series DSP48EL1 Slice
- - y
3 g =3/33 =3
o o A= O
g B N Se =5 £
J (& [+]
B | 18 18, 48 A:B £
) J \ ° 4 | CARRY
30 . \‘ - X ouT
A 3 30 " (
Y| n 48 >
D_/\_r\+25 ( P
0 _ RN
cf o o
= 26x18 signed multiplier
18190 [ « s8.bit addisubtractiaccumulate ! 3. 4. ol =
[ =48bit logic operations 3 4 E
é = Pipeline registers for high speed E E f % &
= aPattem detector s & 8 ) = ©
= SIMD operations (12/24 bit) = %\ =
o —
5| & = Cascade paths for wide functions = % 53 =
o OO |=® 5

= Pre-adder

AMDZ1
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7-Series FPGAs Clock Management

Global clock buffers
- High fanout clock distribution buffer

Low-skew clock distribution
« Regional clock routing

Clock regions

- Each clock region is 50 CLBs high and spans half
the device

Clock management tile (CMT)

- One Mixed-Mode Clock Managers (MMCMs) and
one Phase Locked Loop (PLL) in each Clock

- Performs frequency synthesis, clock de-skew, and
jitter-filtering
« High input frequency range

AMDZ1
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Programming Model

Hardware Description Languages (HDL) High-Level Synthesis (HLS)
- Verilog « C/C++
- VHDL « High level of abstraction

«  Write algorithms

 Vitis HLS generates the architecture
« Guided by user directives

- System Verilog

- Closer to the metal
- Low level abstraction
- Describe the behaviour

AMD 1 AMD .\
Vivado Vitis

AMDZ1
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VHLD/Verilog counter
VHDL

Verilog

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity counter is
Port ( clk: in std_logic;
rst: in std_logic;
cout: out std_logic_vector(3 downto 0)
)s
end counter;
architecture rtl of counter is
signal counter_up: std _logic_vector(3 downto 0);
begin
process(clk)
begin
if(rising edge(clk)) then
if(rst="1") then
counter_up <= x"0";
else
counter_up <= counter_up + x"1";
end if;
end if;
cout <= counter_up;
end process;

end rtl;

module counter(
input clk,
input rst,
output reg [7:0] count
)

always @(posedge(clk)) begin

if (rst)
count <= 0;
else
count <= count + 1;
end
endmodule

AMDZ1

together we advance_



[Public]

Vitis HLS Vector addition

void vadd(const int* inl, // Read-Only Vector 1
const int* in2, // Read-Only Vector 2

int* out, // Output Result
int elements // Number of elements
) {

// Simple vector addition kernel.

vaddl:
for (int i = 0; i < elements; i++) {
out[i] = inl[i] + in2[i];

}

AMDZ1
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What is AMD Vitis™ HLS and HLS Benefits

Automated C/C++ to RTL Conversion
Structured
» "CICH++

AMD;:' / II Allows Significantly Faster Design Iterations
Vitis

HLS TOOL

Significantly Accelerates Simulation — Important
RTL Code ’ For Wireless, Video Applications
AMDQ
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DNNs and their Potential

Q Requires little domain expertise
6 NNs are a “universal approximation function”

e If you make it big enough and train it long enough

- Can outperform humans and existing algorithms on specific tasks

4 \ 4

Will not only increasingly replace ... solve previously
other algorithms, but also... unsolved problems

ChatGPT, Copilot
Stable diffusion
Protein folding

Stable Diffusion Prompt: "Pencil sketch of an international
Nature, Oct 2021 group of semiconductor research scientists, studio Ghibli"

AMDZ1
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Spectrum of ML use case with very different requirements

Sensor Intelligence Cyber security
Communications

Orders of Magnitude

Recommender, Computer Vision or High energy particle physics
Natural Language Processing related DNNs

infps = inferences per second AMDZ1
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DNN Compute Requirements are Outpacing Moore’s Law

AlexNet to AlphaGo Zero: A 300,000% Increase in Compute

Log Scale

AlphaGoZero e

« AlphaZero

Neural Machine
Tranzlaticn
'NEJH Arthitecture
Searth

-»
TI7 Dota 1vl

C_ompute Doubling every 3.4months
Requirements || Since 2012

Petaflops/day

-
Xception

DeepSpeech?
L]

VGG
(Iog Scale) " & 562560 Reshats
Visualizing ang
Urde'staruiimg Conv IE-J-::-;.ISNE:

AlexMet Nefts
[ ] L

wonth dout Moore’s Law 4

Doubling every 18months

/ « DON

L]
Dropout

\ 4

Time AMDZ1

32 Source: together we advance_


https://blog.openai.com/ai-and-compute

Innovation Is needed to provide the necessary
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Specialization Is #1 Industry Approach to
Achieve Performance Scalability and Energy Efficiency

Specialized Architectures
DPU
(Deep Learning Processors)

afer Scale

GRAFHCORE Computing o~
KNUPATH Quantum
Computing
s~habana P
Analog S
\/ _
COMPUTING computin
In-memory puting aAWs
Movidius % computing

AMDZ1

34 together we advance_



[Public]

Adaptive Computing or Dedicated Silicon for DPUs

Crossover point

Performance - ™
|
Total I Cross_ove!r | * Programmable
cost ASSP point , i interconnect
unity i Programmable
: precision
| Programmable
spectalization ] operations
I e
1
‘\\_ _f,f
Volume Specialization
« With increasing specialization of the device, potential sales volume decreases
« Hard to amortize the increasing NRE costs involved in building ASSPs
* FPGAs become more attractive
* Increasing specialization scales performance for both ASSPs and FPGAs
« The opportunity for FPGAs lies in their ability to specialize
AMDZ1

% ASSP: Application Specific Standard Product together we advance_



Vitis Al - ML In general



[Public]

Customization levels on Adaptive Computing

MPE

Custom Dataflow Quantization Sparsity

Specialization/Performance/Efficiency

AMDA
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Popular Approach: Matrix of Processing Engines (MPES)
Specializing for Al in general

- Popular layer-by-layer compute

- Batching to achieve high compute efficiency
- At latency cost (latency ~ batch size)

- Specialized processing engines
- Operators

- ALU types _ _ _
- tensor-, matrix- or vector-based Matrix of Processing Engines (MPE)

“layer-by-layer” compute

« Customized for ML in general
« Designed to run any DNN
« Works really well for computer vision and natural
language processing (10s kinfps)
« Popular approach: Vitis Al (FPGA or AIE) as well
as majority of Al accelerators

PE

AMDZ1
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AMD Vitis™ Al Integrated Development Environment
A Complete Al Stack for Adaptable AMD Targets

T

TensorFlow  © PyTorch
Model Zoo Community or User Models
Vitis™ Al Optimizer
Tools & ;
Components Quantizer

Runtime

Domain-
Specific
Architectures

Supported
AMD
Targets 3 z
VCK190 ZCU102 ZCU104 Kria™ K26 U50/C/LV ~ U200/ U250 U280 VCK5000
SOM
Your Platform AMDA
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Al Model Zoo — Expanding to Diverse Al Applications

- A comprehensive Al model repository O PyTorch  “IF TensorFlow TensorFlow
- Open and free to download for any user

- State-of-the-art models from Pytorch, TF & TF2
- Retrainable, appliable to various data set & scenario
Deployable on AMD FPGA and Versal Adaptive SoC

- New models in each release

Vitis Al

Model Zoo

AMDZ1

together we advance_



[Public]

Extensive Application Coverage

_CIaSS|f|cat|on - Inception . MLPerf ResNet50 IndustrialVision/Robotics
e T S === ° Mobilenet « OFA ResNet .
T = * Resnet « Vision Transformer * FADNet * Superpoint
© VGG « Car Type classification * PSMNet * HFNet
* EfficientNet « Car Color classification * PMG
» ssd_mobilenet < EfficientDet e Multi-taskv3 Medlcal Image
* Yolov3 * Pointpillars « OFA-Yolo o, ' 9, »
* Yolov4 « Centerpoint ’;’ @;’ " * RCAN * DRUnet
- YoloX + CLOCs pror——gloey " SESR © SSR
+ Refinedet + Pointpainting + OFA-RCAN -« C2D2lite
© ENet * Mobilenetv2  + HardNet . Bert-base
. Selmantlc FPN ¢ 2D-Unet  Sa-Gate ¢« Sentiment detection
) 22@223@2 EES{RC?]SNG%ST s - Customer satisfaction
~~haos-  Open-information-extraction
+ SOLO
y . Text-OCR
* Face Recognition « FarrMOT
* Face Quality * FaceMask Detection \ »
« Face RelD + MoveNet + Textmountain, OCR
* Person RelD

AMDZ1
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Compiling for DPU - an XIR-based Toolchain

- Xilinx Intermediate Representation (XIR)
- Graph-based intermediate representation of the Al algorithms
Designed for compilation and efficient deployment of the DPU on the FPGA platform.

- XIR-based compilation flow
- First, transform the input models to XIR format
Breaks up computing graph to subgraphs
- Execute DPU subgraph to a compiled xmodel file

[3?5%?52’3&9] ’[ Parse ] ’[ ot ] ’[ e J

xmodel xmodel
(XIR-based) (XIR-based)

AMDZ1
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Techniques for Further
Specialization with
Adaptive Compute Architectures
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Specialization beyond MPEs

MPE

Custom Dataflow Quantization Sparsity

AMDA
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Dataflow - Specializing for Individual Topologies

- Hardware instantiates the topology as a dataflow architecture
- Customize everything to the specifics of the given DNN, any
operation, any connectivity
- Benefits:
- Improved efficiency
- Low fixed latency

- Scale performance & resources to meet the application
requirements

- If resources allow, we can completely unfold to create a circuit that
inferences at clock speed and thereby meet these new throughput
requirements

allocated resource ~
compute requirement
per layer

AMDZ1
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Specialization beyond MPEs

Custom Dataflow Quantization Sparsity

Buffer

AMDA
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47

Customizing Arithmetic to Minimum Precision

Popular approach which reduces bits in the data
representation of weights and activations while preserving
accuracy

Reducing precision shrinks hardware cost/ scales

performance

- Instantiate n-times more compute within the same fabric, thereby
scale performance n-times

Reduces memory footprint

- NN model can stay on-chip => no memory bottlenecks

With dataflow: every layer has dedicated compute
resources, we can mix and match precision across layers
- Exploit custom arithmetic at a greater degree than MPEs

T T
1800 - +  RTL Compression
1.1*C
1600 - s Compression
1400 - — 1.6*C

LUT Costs
=
o
(=)
S

1 1
0 200 400

C - Complexity (Bit Products)

1 1 1
600 800 1000 1200

C= f(size of accumulator, size of weight,size of activation)

and reduces memory

Reducing precision saves resources/ scales performance,

However, it requires quantization support in the training software

Precision Model size [MB]
(ResNet50)
1b 3.2
8b 25.5
32b 102.5
-.-_

AMDZ1
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Specialization beyond MPEs

Custom Dataflow Quantization Sparsity

Buffer

AMDA
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Sparsity

- DNNs are naturally sparse

l

- Sparse topologies result in irregular compute
patterns which are difficult to accelerate on
vector- or matrix-based execution units

- With streaming dataflow architectures, where
every neuron and synapse is represented in the
hardware, we can fully exploit this

FPGA Optimized
Dataflow
on FPGA

AMDZ1
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Taking it to the Extreme: LogicNets
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Specialization beyond MPEs

Full
co-design

Custom Dataflow Quantization Sparsity

AMDZ1

51 together we advance_



[Public]

LogicNets with Adaptive Computing

thresholding

activation
6x1-bit Q convert
inputs ::QM' 1x1-bit output (e?rl:g?ﬁsr?te

weights

Pick DNN
topology

DESign a circui Typically sparse topologies
(=unrolled DNN)

7}
C_U Ad\j,t:sitl éhi;ae?;tgﬁmetetrs _of_DNN "q'; Adjust the parame_ter_s of I_DNN
c g on training 2z (=LUT contents) while iterating on
(@) Optimize dataset until accuracy T training dataset until accuracy
" — Imiz e
wid
S hardware g’
© -
- Denlov

Maximum performance by design (classification at clock rate) [5]

Compared to unrolled DF: sparse to suit the interconnect AMDZL
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Unique Opportunity for Adaptive Computing

Reducing precision
f: < 8bit operations

¥,
=7

- FPGAs can scale DNN performance through ‘
extreme specialization Vi & Match & Reducing
precisions & ‘_ 4 connectivity to suit
. : : " the interconnect on
- Reduced precision arithmetic ‘a our devices
- Arbitrary bitwidth e

« Mix & match bitwidths between layers y

e
iy

- Fine-grained sparsity

Map each layer to
parallel hardware

- Scalable, layer-parallel streaming dataflow

“d
\ S = 3 e

High degree of specialization doesn’t make sense for ASSPs
FFGA AMDZQ
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How much do we get out of the different specializations?
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Deep Network Intrusion Detection System (NIDS)

Traditional: Hand-coded rules
Emerging trend: Neural networks

Traffic

Packet
Network : Classification . Network
interface processing/ Packet filter interface

Feature Identify malware drop/pass
i extraction such as DOS, L1-L3

fuzzers, worms, etc

Network processing system

FPGA

Goal: Implement NN-based traffic classifier delivering 100G line-rate throughput = 150 Mips
Latency sensitive (buffer 10s of MB/msec)

(UNSW-NB15 network data set)." 2015 military communications and information systems conference (MilCIS). IEEE, 2015. AMDA
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Results — Implementations

Generic ML
architecture

MPE (VitisAl)

Topology / #layers / #0Ps

MLP / 3/ 92KOPs

#inputs / neuron

64

#bits / weight & activation

8b & 8b

Accuracy

92.3%

56

L

Specialization

Specialized for topology
2 different folding factors

-

FINN (fold 8, fold 1)

MLP / 3/ 92KOPs

64

2b & 2b

91.9%

Fully
Co-designed

LogicNet

Circuit/ 4/ 15.4KOPs

-

—

2b & 32b

91.3%

Reduced preC|S|on

4 implementations with varying degree of specialization

New sparse
topology with

7 Inputs/LUT
6x less OPs

AMDZ1
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Results — Throughput and Latency

Performance

Throughput & Latency

471Mips @ 9ns

100000000 300Mips @ 18ns
1000000 25Mips @ 240ns
10000 | 22Kips @ 26us
100 Fold 8
1 —_— - =) =)
Vitis Al MPE FINN DF LogicNet

Performance scaling Further unrolling Full co-design ~ 2x
And latency reduction ~8X sparse connectivity suits the

through specialization : interconnect
~1000x DF unrolling reduces
latency further Sparse topology reduces
#pipeline stages => latency

Classification ~ clock rate

Specialization scales performance and reduces latency
by orders of magnitude if application is amenable

AMDA
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58

Resource Cost - Compute, Memory

«

1200
1000
800
600
400
200

mkLUTs
m DSPs
m BRAM
m URAM

Resources

mkLUTs mDSPs mBRAM mURAM

Reducing precision

even when further
parallelized (1000x
speedup)

reduces LUT & DSP cost,

Further unrolling costs

proportional to folding
factor, however synthesis

LogicNet
low compute cost

"_ m

VitisAl
122
1124
290

prunes! due to limited
Memory merged into logic || connectivity
— —
I _—
FINN (fold8) FINN (foldl) LogicNets
44 8-69 16
0 0 0
166 0 0

Customizing arithmetic, sparse implementations and learned circuits
greatly reduce resources and improve device efficiency

AMDZ1
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Deep Network Intrusion Detection System (NIDS) Results

- This example illustrates the trade-offs between specialization and performance and efficiency

- Custom arithmetic is effective to scale performance and dataflow to reduce latency
If application is amenable, custom arithmetic can meet extreme throughput requirements such as in NIDS

- Reduced precision, fine-granular sparsity & learned circuits can shrink the resource requirements despite
speedup

- These are some of the opportunities which make most sense to exploit with FPGAs

AMDZ1

59 together we advance_



General Introduction to FINN
AMD



Project Mission and Key Techniques AMD“,'



[Public]

FINN — Project Mission Jl INN

- Custom Specialization
- for creating high-throughput, ultra-low-latency DNN inference engines

- End-to-End
- flow for the easy creation of specialized hardware architectures for FPGAs

- Open Source
- for full transparency and flexibility to adapt to end user applications and
- for easy customer interactions

AMDZ1
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Two Key Techniques for Customization in FINN

Streaming Dataflow Architectures _Cust_om Precision_: |
for FPGAS Few-bit Weights and Activations
e.g. 1-bit weights
e
Customized . +2 - (+1)
Data path --.-—-
U — -4
AD @ =
; +1 (-1
| \ N

~

e.g. 3-bit activations

AMDZ1
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Customized Dataflow Processing
versus More Generic Architectures

Matrix of Processing Engines (MPE)
(Vitis Al, TPUs, GPUs)

MAC, Vector

Processor or VLIW . . . .
' HAEENR

64

Customized

Data path

Dataflow Architectures
with FPGAs and FINN

AMDZ1
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Matrix of Processing Engines (MPES)
Specializing for Al in General

Popular layer-by-layer compute

- Batching to achieve high compute efficiency
- At latency cost (latency ~ batch size)

« Customized for ML in general
- Designed to run any DNN
- Specialized processing engines

- Operators Matrix of Processing Engines (MPE)
- ALU types “layer-by-layer” compute
- Works really well for computer vision and natural language

processing

- Popular approach: Vitis Al (FPGA or AIE) as well as
majority of Al accelerators

PE

AMDZ1
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Dataflow - Specializing for Individual Topologies

- Hardware instantiates the topology as a dataflow architecture DNN
- Customize everything to the specifics of the given DNN, any -.-
)

operation, any connectivity
- Benefits .
- Improved efficiency
- Lowfixed latency o allocated resource ~
- Scale performance and resources to meet the application compute requirement
requirements per layer

Dataflow can scale performance to meet the
application requirements

AMDZ1
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Dataflow Processing:
Scaling to Meet Performance and Resource Requirements

Scaling to fit into

Scaling to maximize _
available resources

throughput

FPGA (fold 1) FPGA (fold 10)

200MRps 20MRps 200kRps

FPGA (fold 1000)

1. Scale performance and resources to meet the application requirements
2. If resources allow, we unfold completely, creating a circuit for inference at clock speed

AMDZ1
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Customized Dataflow Processing
versus More Generic Architectures

Matrix of Processing Engines (MPE) Dataflow Architectures
(Vitis Al, TPUs, GPUSs) with FPGAs and FINN

MAC, Vector .
Processor or VLIW - . . . | Customized _ .-.-_-.

Data path
111 i —III-“r

» Customized/adapted for specific DNN topologies

« Streaming interfaces

« Customized for typical DNN operations « Specialization -> higher efficiency
« e.g., multiply accumulate « Lower latency (no intermediate buffering)
« Lower throughput (~10KRpSs) » Higher throughput (~100MRps)
 Flexibility through programming  Flexibility through reconfiguration
» Applications: CV, Speech « Applications: radio, networking, material science,

particle physics — smaller DNNs AMDZ
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Quantization

« Reducing precision shrinks hardware cost/scales performance

« For integer datatypes, LUT cost proportional to both bitwidths in
weight and activations (e.g., INT8 : INT1 = 70x%)

* n-times more compute fits into the same fabric, thereby, scaling
performance n-times or shrinking hardware cost accordingly

° Energy Operation Picaojoules per Operation
» Faster execution or smaller footprint — less energy (E = P - time) .
- Using reduced precision operators saves energy Ml eamn
. IEEE FP 32
* Reduces memory footprint int 8
- ResNet50 @ 32b: 102.5 MB, ResNet50 @ 2b: 6.4 MB W T
. IEEE FP 16
* NN model can stay on-chip — no external memory access — saves energy EEE FP 32
% KB SEAM . .
SRAM[32 KB SEAM 20 8.5 2.4
" Model size [VE] =B B T B i
PreCISIon (ReSNetSO) - . Circa 45 nm | Circa 7 nm ‘
DDR3/4 1300° 1300°
1b 3.2 . . » HBM2 - 250-450°
GDDRG -- 350-480°
8b 25.5 P :
is pJ per 64-bit access.
32b 102.5

AMDZ1
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The FINN Framework

AMD 1



[Public]

71

Com2

Brevitas
Training in PyTorch
Algorithmic optimizations

FINN Compiler
Hardware Architecture
Build

Deployment

FINN Framework: From DNN to FPGA Deployment

Train or even learn reduced precision DNNs
Library of standard layers
Pretrained examples

Perform optimizations
Assemble parameterized HLS/RTL modules
Generate a DNN hardware IP

Embed the DNN IP into an infrastructure design
Generate a Python run-time

Enable integration with your application

System integration available for some embedded and
Alveo platforms, including HACC

AMDZ1
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Brevitas:

A PyTorch Library for Quantization-Aware Training P
add quantization

resize layers

change hyperparameters
retrain

TRAINING labels

FP32 INT
Precision Scaling Factors Target Tensors Export to ONNX
Preset or Granularities, Weights, To import into the
learned strategies and activations, FINN compiler

constraints accumulators

AMDZ1
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https://github.com/Xilinx/brevitas

[Public]

FINN Compiler
Transform DNN into Custom Dataflow Architecture

QONNX representation of the quantized DNN

FINN
Uses an ONNX-based network description as intermediate representation (IR)

Is a Python library of graph transformations
Generates a synthesizable description of each layer (HLS/RTL) encapsulated

as an IP block
Produces a synthesized stitched IP block representing the complete network

Stitched DNN accelerator IP
AMD
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FINN Compiler - Network preparation

FINN Compiler

QONNX
» Directly exported from Brevitas
* Input format to FINN compiler

« Quantization operator(s)
* Quant, BipolarQuant, Trunc

* No tensor annotations

74

(

\

Stitched IP Design

NN exported from Brevitas

1. Import, streamlining, and other transformations «

2. Adjust folding to suit performance/resource requirements

3. Generate IP cores and stitched IP design

global_in

1%3%32%32

1x3x32%32

1 =0.0078125

FINN-ONNX

» Previously used as input format

* IR in the FINN compiler

« MultiThreshold to represent
activation quantization

« Custom datatype annotations on
tensor

AMDZ1
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FINN Passes - ONNX Graph Transformations

3

. |global_in l
ONNX-IR Streamlining

ONNX-IR
= :

l global_in '

1x3x2Xd x
‘ W (32x3x3x3) \

1x32x111x11

B=255

I

1x3%224x224

1x3x224x224

I

B = 02259999

1x111x111x}7
B (27x32)

MultiThreshold

1x3x224x224

W (3232343
SN Sl

Tx32x111111

2

MultiThreshold

1x32x111x111
1 (32x15)

1 (32x15)

|

Streamline () LowerConvsToMatMul () 1x1134111x32

Convolutions as
simplified Im2Col + MatMul

T=32«111111

AMDZ1
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76

|gbbaLh1|

1x3x224x224

Transpose

224x224x3

1x111x111xR7

B (27x32)

Tx111x111x3

MultiThreshold

1 (32x15)

1x114111x32

ConvertToHWLayers
and
Specializelayers

global_in

Transpose

ConvolutioninputGenerator

MatrixVectorActivation

1x3x224x224

FINN Passes - ONNX Graph Transformations

MW,
MH,
SIMD,
PE,
TI,
TO,
T,
TA,

Matrix_Vector_Activate_Batch(
hls::stream<hls: :vector<TI>> &in,
hls::stream<hls::vector<TO>> &out,
TW const &weights,

TA const &activation

Corresponding to
finn-hlslib function call
or finn-rtllib module

Optimization, lowering, code generation...

are all transformations

AMDZ1
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FINN Hardware Folding

NN exported from Brevitas

-
1. Import, streamlining, and other transformations
FINN Compiler < | 2. Adjust folding to suit performance/resource requirements .
L 3. Generate IP cores and stitched IP design

Stitched IP Design

(y()\ (WOO wo1 W02 WOS\ (xﬂ\

SIMD yr| | w0 w11 Wiz Wi3 X1
y2 W20 w21 W22 w23 X2
PEO: Woo * Xo + Wo1 - X1 +Woz * X2 + Wo3 * X3 W0 * Xo + W21 * X +Wo2 - X2 + Wa3 - X3

w w w w X

PET: Wi - Xo + Wip - X1 twiz - X2+ Wi3 - X3 W30 - Xo + W31 - X1 +Ws3g - X2 + W33 - X3 \y3) \ 30 31 32 33) \ 3}
Yo Yo
— (yl) — (ya)
Clock: | 0 | 1 | 2 | 3 | .
| | | | [ 7 AMD:‘
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FINN HLS/RTL Library - Parameterizable Kernel Library

Kernels representing individual layers, a.k.a. Operators

Flexible parametrization as for
« Degree of parallelism (output channels, input channels, kernel dimensions ...)

« Datatypes (INTS8, ternary, INT2, ...)
« Behaviour (activation function)

Layer (i — 1)

78

AXI|-Stream

Instantiated and stitched by FINN compiler with AXI-Stream data path
Implemented as synthesizable C++ (Vitis HLS) or SystemVerilog

MW,
MH,
SIMD,
PE,
TI,
TO,
TW,
TA,

Matrix_Vector_Activate_Batch(
hls::stream<hls: :vector<TI>> &in,

hls::stream<hls::vector<TO>> &out,

TW const &weights,
TA const &activation

AXI-Stream

Layer (i + 1)

AMDZ1
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FINN Compiler: IP Generation Flow

NN exported from Brevitas
-

1. Import, streamlining, and other transformations

FINN Compiler < | 2. Adjust folding to suit performance/resource requirements
3. Generate IP cores and stitched IP design h

\
Stitched IP Design

» Stream-in, stream-out FPGA IP block
» Easy "bump-in-the-wire" integration into streaming systems
» Simple data movement, fully deterministic

. . . Streaming FCLayer_Batch_1
inb Vv O streami ngFClayer Batch 0 o StreamingFCLayer Batch 2
ap_clk_0 L o et — in0_V_V' StreamingFCLayer Batch 3
ap_rst_n_O o inD_\.l'_\"TV.ﬂLID P in0_v_¥_TVALID S— ind VW StreamingFCLayer Batch_&
< ind  V TREADY A in0_V_V_TREADY Ut VY 4 J- ¥ in0_V_V_TVALID =— 0wV
e TR L » in0_V ¥ TDATA[103:0] - T < ind_V_V_TREADY V- P in0_V V_TVALID = — in0_ V.
an P ap_clk # in0_V_V_TOATA[103:0] e < in0_V__TREADY at vV L » in0_V_V_TVALID UtV — Crm— 0wt W _V_0
ap'm N aprstn ap.ck B in0_V_V_TDATA[103:0] - < in0_V_V_TREADY out VW TMALID B
- aprstn ap.clk » in0_V_V_TDATA[L03:0] out_V_V_TREADY «
ap_rst_n ap.clk out_V_%_TDATA[T:0] m
Block: StreamingFCLayer_Batch_1 | ap.rst_n
F an Y | ll)n
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Deployment with PYNQ: for Python Productivity

# instantiate the accelerator
accel = models.cnv_w2a2 cifarlO()
# generate an empty numpy array to use as input

dummy in = np.empty(accel.ishape normal, dtype=np.uint8)
# perform inference and get output
dummy out = accel.execute (dummy in)

« Use PYNQ-provided Python abstractions and drivers

« User provides NumPy array input, calls driver, retrieves NumPy array output
 Internally use PYNQ DMA driver to wr/rd NumPy arrays into I/O streams

AMDZ1
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https://github.com/Xilinx/PYNQ
https://github.com/Xilinx/finn-examples

[Public]

FINN Dataflow Build Mode

FINN flow = Python script
making calls to FINN API

Produce output files from

input ONNX and config

DataflowBuildConfig

wIFINN

Consists of a sequence of
steps, each step %

* is a Python function
with a standardized
interface
consumes and
produces ONNX
may produce other files
may be standard or
custom
may have config-
dependent behavior

Can be resumed from
intermediate steps

ONNX files act as checkpoints

AMDZ1
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FINN Infrastructure and Workflow
AMD



[Public]

The FINN Ecosystem and Software Stack

PyTorch

Frontend

WIFINN project landing page: hitps://xilinx.aithub.io/finn

- Quick Start, Documentation, Examples (Jupyter Notebooks)
- Links to Repos

AMDZ1
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https://xilinx.github.io/finn/

[Public]

A FINN End-to-End Flow

Brevitas

+ Trained Network in PyTorch/Brevitas

Brevitas FINN-ONNX Export

Simulation and Emulation Flows
+ Network of high-level ONNX layers

Network Prep i -
. fi ,
Streamlining Transformations Imulation using
Python

+ Streamlined network of high-level ONNX layers

Convert to HW Layers

% Network of HW layers, maximum folding

Prepare cppsim

Specialize Layers

% Network of HLS/RTL layers, maximum folding

Adjust folding to maximize performance
$ Network of HLS/RTL layers, desired foldi Run cppsim (HLS C++)
Vivado HLS and IPI etwork o ayers, desired folding

Create IP per layer

Network of HLS layers
With C++ wrappers

+ Network of HLS/RTL layers, IP per layer

Create stitched design

Network of HLS/RTL layers, stitched IP
Ready to be integrated in Vivado IPI

Prepare rtlsim Prepare rtlsim
(stitched) (layer by layer)

' Full-network Network of HLS/RTL layers
Verilator model with Verilator models

Emulation (rtlsim) using PyVerilator

Traditional HW Design RTL Simulation

PYNQ™
AMDA\
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FINN and Brevitas can be used as co-design tools

85

FINN Workflow

Customization
of Hardware
Architecture

Customization
of Arithmetic

to implement your DNN use case on an FPGA.

Converting trained QNN to Vivado IP

Train a quantized neural network in PyTorch using Brevitas

Fine-tune model to meet resource/performance targets
Integrate generated IP into a larger design

Brevitas

Brevitas FINN-ONNX Export

Network Preparation

Streamlining Transformations
Convert to HW Layers
Specialize Layers

Adjust folding to maximize performance

Vivado HLS and IPI

Create IP per layer

Create stitched design

Network of HLS/RTL layers, stitched IP
Ready to be integrated in Vivado IPI

[ But you can leverage the infrastructure beyond that...

!
<
e

&

] PYNQ™

AMDA
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Research in the FINN Ecosystem

Infrastructure to enable research
on advanced quantization schemes
and analysis of quantized neural
networks

Enables early design space
exploration

Infrastructure for research on
neural network hardware design

86

Brevitas
Quantization training library

gonnx toolkit
Infrastructure for backend-agnostic, mathematically
preserving optimizations on (Q)ONNX models

finn compiler
Library of transformations/infrastructure to convert
QNNs to FPGA design

System integration

FINN library
FPGA dataflow specific
HW components

Explore new optimized
neural network layer
implementations

together we advance_
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“The FINN toolset is showing huge potential using it in

upcoming SICK products.
Stat u S Su m m ary It is easy to use and with an extraordinary performance

and very promising results.
In the future, flexible implementations of ML in our

_ : products with FINN can be a great advantage and even
Open Source Ado ptl on replace static architectures as they are currently used.

- ~2k+ GitHub stars summarized across repos Thanks to the FINN team for the great cooperation”
. — Sick AG

- 250k+ Brevitas downloads

- ~200k QONNX downloads

« 17k+ FINN compiler downloads

Academic Results
- ACM TRETS 2020, FPL'2020, DFT'2019 Best Paper awards
- 1000+ citations on original paper

University Classes on computer architecture for ML with FINN
- Stanford, UNC Charlotte, NTNU in Norway, EPFL in Switzerland
- Regular tutorials, also available on YouTube:

Business units providing customer support
- Lead engineering team: Custom and Strategic Engineering, Dublin
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https://www.youtube.com/watch?v=zw2aG4PhzmA
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-examples
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FINN Layer Support

GEMM

Conv1lD and Conv2D

- Dense
- Depthwise

- Separable (pointwise)
Elementwise (add, sub)

Activation
BatchNorm
Pooling
Scale

Concat
Reshape
Transpose
Clip by Value
TransposeConv2D
UpSample
DownSample

SN NN

v
ReLU, SelLU
v (absorbed by streamlining)
v
v (absorbed by streamlining)
v
(must be streamlinable)
(must be streamlinable)
v (absorbed by streamlining)

v
v

others easily doable

optimized version (WIP)

\MDZ1
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[Public] Brevitas: Neural Network Quantization in PyTorch

Brevitas Updates

Targets the entire AMD product range

/\ PyTorch

- First-class support for integer datatypes

TRAINING . labels

- prototype support for minifloats (e.g., FP8)

Quantize
and
FP32 - Calibrate

- Supports PTQ and QAT

Data Formats
Integer or floating-point

Precision

- Out of the box support for distributed training — Preset o
(e.g., DDP, interoperability with HuggingFace earmne
Accelerate (PP))

- Interoperability with HuggingFace
Transformers

AMDZ1
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https://github.com/Xilinx/brevitas
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FINN Compiler Updates
Release

- Refactoring of operator instantiation infrastructure
- FINN compiler used to assume that hardware blocks are synthesized from HLS code
- New class hierarchy to facilitate integration of RTL components

- Provide users with an interface to override the compiler’s choice
for HLS vs. RTL implementation on a per-layer basis

- RTL component library optimizing the implementations of critical layers
- Efficient implementation of 4-bit and 8-bit compute leveraging DSP slices
- Efficient implementation of multi-level thresholding
- Eradication of (regularly long) HLS synthesis times for layers with an RTL option

- Compiler optimization pass for accumulator and weight bit width minimization

- Added board support in system integration flow
« RFSoC 4x2 and U55C (contributed by University of Paderborn)

AMDZ1
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FINN Technical Roadmap: Capabilities

- Operator Hardening
- Revised RTL Thresholding by binary search
« Ingestion of fp32 inputs
- DSP-enabled Generalized Datatype Support

- Efficient higher-precision integer compute: int4, ints8, ..., intl6
- Small standard floating-point formats: float16, bfloatl6
- Custom MiniFloats: fp4 — fp8

- Internal clock pumping of DSP datapaths to increase their operational density
We are aiming at a standard operational frequency around 500 MHz

« New Operators
« Optimized transposed convolution
- Fallback float layers to mitigate streamlining limits

AMDZ1
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FINN Technical Roadmap: Ease of Use

« FINN Library

- Refactoring of streamed layer interfaces
- Packed flat ap_uint<W> — explicit hls: :vector<T, N>

- Combining HLS and RTL components into one FINN Library

- FINN Examples
- MobileNet-vl and VGG10-RadioML with efficient DSP compute
- New example: German Traffic Sign Recognition Benchmark

FINN-examples v0.0.7
Release

AMDZ1
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Resources

. https://qgithub.com/Xilinx/brevitas
https://github.com/Xilinx/finn

. https://qgithub.com/Xilinx/finn-hlslib
. https://github.com/Xilinx/finn-examples

. https://github.com/fastmachinelearning/gonnx

. https://amd.com/aup

AMDA
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https://github.com/Xilinx/brevitas
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-examples
https://github.com/fastmachinelearning/qonnx
https://www.amd.com/en/corporate/university-program.html
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COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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