
Hands-on set-up

q The interactive part is done using Python notebooks

q Open http://35.194.40.33/ in your web browser
q Authenticate with your GitHub account (login if necessary)
q If you haven’t shared your GitHub username already, please fill in https://forms.gle/EfvrXykKCMydTvnX9,

so that access can be granted

q If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at:
https://github.com/fastmachinelearning/hls4ml-tutorial

You should see something like this
if everything worked

HLS4ML TUTORIAL 1

http://35.194.40.33/
https://forms.gle/EfvrXykKCMydTvnX9
https://github.com/fastmachinelearning/hls4ml-tutorial

tutorial

SMARTHEP Edge Machine Learning School
Benjamin Ramhorst et al. for the hls4ml team

2

Introduction

q hls4ml is a package for translating neural networks to FPGA firmware for inference with
extremely low latency on FPGAs

q In this session you will get hands on experience with the hls4ml package

q We’ll learn how to:
○ Translate high-level models into synthesizable FPGA code
○ Explore the different handles provided by the tool to optimize the inference
○ Make our inference more computationally efficient with quantization

3

LHC Triggering
q Extreme collision frequency of 40 MHz →

extreme data rates ~100 TB/s

q Most collision “events” don’t produce
interesting physics

“Triggering” = filter events to reduce
data rates to manageable levels

4

DATA FLOW

40
 M

Hz

pp co
llis

ions

L1 T
rig

ge
r

High
-L

ev
el

Trig
ge

r
Offli

ne

Com
putin

g

LHC Experiment Data Flow

5

q L1 trigger: Incoming data rates of 100s TB/s:

DATA FLOW

40
 M

Hz

pp co
llis

ions

L1 T
rig

ge
r

High
-L

ev
el

Trig
ge

r
Offli

ne

Com
putin

g

LHC Experiment Data Flow

6

q Deploy ML algorithms very early, avoiding off-line computation and storage

q Challenge: Strict latency constraints ~10us

The latency - visualised

~1-3 seconds ~500 ns

HLS4ML TUTORIAL 7

~50ms

Why FPGAs?

q Custom hardware acceleration, precisions and memory management

q Data-flow architecture with no scheduling or control overheads

8

What are FPGAs?
q Field Programmable Gate Arrays are

reprogrammable integrated circuits

q Contain many different building blocks
(‘resources’) which are connected
together as you desire

9

What are FPGAs?
q Logic cells (Look–up Tables) perform

arbitrary functions on small bit width inputs

q These can be used for Boolean operations,
arithmetic, small memories

q Flip-Flops (registers) data in time with
the clock pulse

10
Logic cell

What are FPGAs?
q DSPs (Digital Signal Processors) are

specialized units for multiplication and
arithmetic

q Faster and more efficient than using LUTs
for these types of operations

q And for neural networks, DSPs are often the
most scarce

11
DSPs

What are FPGAs?
q BRAMs are small, fast memories

q Access data in one clock cycle

q A big FPGA has nearly 40MB of BRAM,
chained together as needed (bandwidth)
q Even suitable for ”larger” models, such as

ResNet

q Recent accelerator cards also come
equipped with off-chip HBM memory (up to
800 GBps)

12
RAM

What are FPGAs?
q In addition, there are specialised blocks for

I/O, making FPGAs popular in embedded
systems and HEP triggers

q High speed transceivers with Tb/s total
bandwidth
q PCIe, 100G Ethernet, InfiniBand

q Low power per Op (relative to CPU/GPU)

13

How are FPGAs programmed?

q Hardware Description Languages
q HDLs are programming languages which describe electronic circuits

q High Level Synthesis
q Compile from C/C++ to VHDL
q Pre-processor directives and constraints used to optimize the design
q Drastic decrease in firmware development time!

q Today we’ll use Xilinx Vivado HLS

HLS4ML TUTORIAL 14

Jargon

q LUT - Look Up Table aka ‘logic’ - generic boolean functions on small bitwidth inputs. Combine many to build the algorithm

q FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

q DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

q BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

q HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

q HDL - Hardware Description Language - low level language, such as Verilog or VHDL for describing circuits

q Latency - time between starting processing and receiving the result

q II - Initiation Interval - time from accepting first input to accepting next input (visualize, cars on a production line)

HLS4ML TUTORIAL 15

Latency vs initiation interval

HLS4ML TUTORIAL 16

Latency

What is hls4ml today?

q A generic framework for FPGA acceleration of neural networks:

q Front-end agnostic: Keras, PyTorch, (Q)ONNX

q Back-end agnostic: Vivado HLS, Vitis HLS, Intel HLS, oneAPI etc.

q Many supported layers: Dense, Conv, Recurrent, Graph etc.

q High configurability: Tune precision, reuse factor, custom layers etc.

q An active, open-source community: Many collaborators from many different fields and institutions

HLS4ML TUTORIAL 17

hls4ml use cases

HLS4ML TUTORIAL 18

high level synthesis for machine learning

HLS4ML TUTORIAL 20

High-level model

Quantised
&

Pruned
Model

Configuration

HLS
Project

Optimizers

HLS

Today’s tutorial

q Part 1:
q Get started with hls4ml: train a basic model and run the conversion, simulation & C-synthesis steps

q Part 2:
q Learn how to tune inference performance with quantization & ReuseFactor

q Part 3:
q Train using QKeras “quantization-aware training” and study impact on FPGA metrics

HLS4ML TUTORIAL 21

What’s not covered today?

q Boosted decision trees: implemented in a companion package to hls4ml
q https://github.com/thesps/conifer - see the talk tomorrow!

q High-granularity quantisation: heterogenous layer quantisation (covered yesterday)

q Convolutional neural networks
q Notebooks available on GitHub, however, synthesis takes long

q What comes after hls4ml… you would need to integrate the ‘IP core’ into a larger design
q For a custom board, you’d need to do this by hand (e.g. CMS L1 Trigger)
q For more off-the-shelf boards, integration with system-on-chip or host CPU can be more

straightforward, using tools such as XRT

HLS4ML TUTORIAL 22

https://github.com/thesps/conifer

Part 1: Model Conversion

23

logic cells
OR

precomputed and
stored in BRAMs

DSPs logic cells
L1

Ln

LN

How many resources? DSPs, LUTs, FFs?

Does the model fit in the latency
requirements?

Neural network inference

24

top other quarkZ W gluon

t→bW→bqq
3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq
2-prong jet 2-prong jet no substructure

and/or mass ~ 0

Physics use case: jet tagging

q Study a multi-classification task to be implemented on FPGA: discrimination between highly
energetic (boosted) q, g, W, Z, t initiated jets

25

Hands-on set-up

q The interactive part is done using Python notebooks

q Open http://35.194.40.33/ in your web browser
q Authenticate with your GitHub account (login if necessary)
q If you haven’t shared your GitHub username already, please fill in https://forms.gle/EfvrXykKCMydTvnX9,

so that access can be granted

q If you have Vivado install yourself, you might prefer to work locally, see ‘conda’ section at:
https://github.com/fastmachinelearning/hls4ml-tutorial

You should something like this
if everything worked

HLS4ML TUTORIAL 26

http://35.194.40.33/
https://forms.gle/EfvrXykKCMydTvnX9
https://github.com/fastmachinelearning/hls4ml-tutorial

Part 2: Advanced configuration

27

Efficient inference:
quantisation

q Floating point operations are expensive

q On FPGAs, we can use fixed-point precision
q Implemented using integer logic, so very fast
q Acts like “limited-precision” floating-point, so

need to ensure sufficient bits

q Integer value: 1 + 4 = 5
q Fractional value: ½ + ¼= ¾

HLS4ML TUTORIAL 28

[Horowitz @ ISSCC’14]

0101.110000
fractionalinteger

Saturation at 6 bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Saturation at 7 bits

Efficient inference: quantisation

29

q Trade-off between latency and FPGA resource
usage determined by the parallelization of the
calculations in each layer

q Configure the “reuse factor” = number of
times a multiplier is re-used to do a
computation

Efficient inference:
parallelisation

30

Fully parallel

Fully serial

Fewer resources
Lower throughput
Higher latency

More resources
Higher throughput
Lower latency

Efficient inference: parallelisation

31

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

…

Longer latency

More resources
Parallelisation: DSP usage

32

Parallelisation: Latency

33

~ 175 ns

~ 75 ns

Lower latency

Less resources

Part 3: Quantisation

34

Quantisation-aware training

q hls4ml allows us to use different data types everywhere, we saw how to tune that in Part 2

q Now, we will also try quantization-aware training with QKeras

q Quantisation-aware training enables training models with very low precision:
q Out-performs post-training quantisation significantly
q At a high level, it performs the forward pass with reduced precision and the backward pass in floating

point precision
q Possible to achieve very precisions (binary and ternary models)

HLS4ML TUTORIAL 35

QKeras

q QKeras is a library to train models with quantization during training
q Developed & maintained by Google

q Easy to use, drop-in replacements for Keras layers
q e.g. Dense → QDense, Conv2D → QConv2D
q Use ‘quantizers’ to specify how many bits to use where
q Can achieve good performance with very few bits

q Stable support for QKeras-trained models to hls4ml
q The number of bits used in training is automatically parsed for conversion & inference

HLS4ML TUTORIAL 36

Summary
q After this session you’ve gained some hands-on experience with hls4ml

q Translated neural networks to FPGA firmware, run simulation and synthesis

q Tuned network inference performance with precision and ReuseFactor

q Trained a quantized model using QKeras, and use the same model for inference with hls4ml

q The tutorials to run locally are at: https://github.com/fastmachinelearning/hls4ml-tutorial
q Use hls4ml locally: pip install hls4ml

HLS4ML TUTORIAL 37

https://github.com/fastmachinelearning/hls4ml-tutorial

Questions?

Special thanks to the Fast Machine Learning Community for the on-going efforts in
hls4ml development and its accompanying tutorials. The materials used today are

based on: https://github.com/fastmachinelearning/hls4ml-tutorial and were used and
edited with permission of the authors.

HLS4ML TUTORIAL 38

https://github.com/fastmachinelearning/hls4ml-tutorial

