Neuromorphic computing

Dr. Stanisław Woźniak, Dr. Thomas Ortner *Emerging Computing & Circuits Team IBM Research – Zurich*

EdgeML School 2024, CERN, 25.09.2024

Contents

IBM Research

Motivations for neuromorphic computing

History

Neuromorphic research

Neural dynamics

Information encoding

Neural connectivity

Biologically -inspired learning

Neuromorphic hardware

Summary

IBM Research

Key focus areas of our team @ IBM Research – Zurich

Emerging Computing and Circuits Dr. Angeliki Pantazi

High-speed I/O Links

We are developing nextgeneration I/O Links for the IBM flagship Z and P processors and for future accelerators

Quantum Electronics

We are developing cryogenic CMOS electronics aiming to continue pushing the scalability and affordability of Quantum systems

Neuro-inspired Computing

We are exploring neuro-inspired models and learning algorithms towards energy- and dataefficient AI architectures

Motivations for neuromorphic computing

Improving AI systems

Potential inspiration from the brain

These tactics include:

Event-based communication

Efficient neuronal and synaptic dynamics

Local, supervised and unsupervised learning

History of neuromorphic computing: Biology vs. Technology

Contents

IBM Research

Motivations for neuromorphic computing **History**

Neuromorphic research

Neural dynamics

Information encoding

Neural connectivity

Biologically -inspired learning

Neuromorphic hardware

Demo

Neuromorphic research: Our approach

Taking inspiration from biology

Applying the rigor of machine learning

<https://research.ibm.com/projects/neuromorphic-computing>

Research papers

- 1. S. Wozniak, et al. *Nature Machine Intelligence,* 2020
- 2. T. Ortner et al., *IEEE ICASSP,* 2022
- 3. T. Ortner et al., I*EEE Trans. Neural Networks Learn. Syst,* 2022
- 4. A. Stanojevic et al., *Neural Networks* 2023
- 5. G. Dellaferrera et al., *Nature Communications,* 2022
- 6. S. Wozniak, et al., *Nature Communications,* 2023
- 7. Y. Schnider, et al., *IEEE CVPRW*, 2023
- 8. A. Stanjoevic et al., *Nature Communications,* 2024

Provides efficient solutions for multiple AI applications

Exploits acceleration of the hardware infrastructure

...

Neural dynamics: Spiking Neural Unit (SNU)

SNUs operate either in spiking (binary signals) or non-spiking mode (real-valued signals)

Easily build large models by replacing complex units with SNUs

Traditional ANN (RNN Units)

- Require large number of trainable parameters
- Operate with complex internal dynamics and neuronal connectivity

Spiking Neural Unit (SNU)

- Requires fewer parameters
- Offers qualitatively different dynamics
- Easily extensible to incorporate additional features from neuroscience

S. Woźniak et al., *Nature Machine Intelligence* 325–336, 2020

Neural dynamics: Application examples

Solving visual analytic intelligence riddles

[+] improved accuracy

[+] smaller models vs. ANN

Optical flow computation [+] improved accuracy

[+] smaller models vs. ANN

Drone navigation

[+] improved accuracy

[+] higher sparsity vs. ANN

Common aspect: Temporal/sequential problems that leverage the unique neuronal dynamics

S. Woźniak, et al., "On the visual analytic intelligence of neural networks," *Nat Commun*, vol. 14, no. 1, p. 5978, Sep. 2023.

DVS Events

Ontical Flow

Y. Schnider *et al.*, "Neuromorphic Optical Flow and Real-time Implementation with Event Cameras." WEV CVPR, 2023.

S. Govil, "Spiking Neural Networks for Drone Navigation", MSc Thesis, RPG UZH & IBM Research – Zurich, Sept. 2023

Information encoding

Information encoding: Time-To-First-Spike (TTFS) Networks

Different information coding schemes:

Leveraging temporal and spatial sparsity of TTFS:

A. Stanojevic et al., "High-performance deep spiking neural networks with 0.3 spikes per neuron", *Nature Communications 2024.*

13

Information encoding: Time-To-First-Spike (TTFS) Networks

A network with proposed TTFS neurons [1]:

- achieves equivalent inference accuracy to the state-of-the-art ReLU networks
- enables lossless conversion from pre-trained Rel U networks
- follows the same training trajectories as ReLU networks, enabling high accuracy training
- enables fine-tuning for specifics of spiking neuromorphic hardware

Key aspects: Static problems. Neuronal dynamics is leveraged for TTFS-based communication, achieving ReLU equivalent computational logic with sparse spikes.

VGG16 CIFAR10 fine-tuning for hardware specifics

Neural connectivity: Modelling neural diversity

Biological neural networks are highly diverse

Biological neural networks are highly diverse

Axo-Dendritic synapses

– Connecting the axon of the pre-synaptic neuron to the dendrite of the post-synaptic neuron

Axo-Somatic synapses

 $-$ Connecting the axon of the pre-synaptic neuron to the soma of the postsynaptic neuron

Axo-Axonic synapses

 $-$ Connecting the axon of the pre-synaptic neuron to the axon of the postsynaptic neuron

Various neuron and synapse types can be modelled with SNUs

T. Bohnstingl et al., *ICASSP* 2022; T. Bohnstingl et al., *NeurIPS WS ENLSP* 2021; <https://doi.org/10.1109/AICAS57966.2023.10168623>

Biologically-inspired learning

Biologically-inspired extension to Error Backpropagation (BP)

GRAPES* is an optimization strategy that relies on the notion of the node importance in propagating the error information during learning

GRAPES improves the accuracy and convergence rate of BP

**Group Responsibility for Adjusting the Propagation of Error Signals*

<https://doi.org/10.1038/s41467-022-29491-2>

The inner workings of Recurrent Neural Networks

Backpropagation training suffers from at least three problems

BPTT training suffers from at least three problems

Input sequence needs to be truncated

– Not suitable for applications where the end-of-sequence is not known apriori

BPTT training suffers from at least three problems

Input sequence needs to be truncated

– Not suitable for applications where the end-of-sequence is not known apriori

Forward network operation gets interrupted

– Not suitable for applications where continuous learning while receiving new inputs is critical

BPTT training suffers from at least three problems

Input sequence needs to be truncated

– Not suitable for applications where the end-of-sequence is not known apriori

Forward network operation gets interrupted

– Not suitable for applications where continuous learning while receiving new inputs is critical

Memory requirements grow with time

– The memory required to update the parameters of the network grow linearly with the sequence length

BPTT is a gradient-based training algorithm

– Parameters θ_l of neural network are modified based on the gradients computed by $\frac{dE}{d\Omega}$ $d\theta_l$

BPTT is a gradient-based training algorithm

– Parameters θ_l of neural network are modified based on the gradients computed by $\frac{dE}{d\Omega}$ $d\theta_l$

BPTT is a gradient-based training algorithm

- Parameters θ_l of neural network are modified based on the gradients computed by $\frac{dE}{d\Omega}$ $d\theta_l$
- Gradient computations can be rearranged without loss of generality into a combination of Learning signals L_l^t and eligibility traces e_l^{t,θ_l}

$$
\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}\theta_{l}} &= \sum_{1\leq i\leq T}\frac{\partial E^{t}}{\partial h_{t_{i},L}^{enc}}\left(\frac{\partial h_{t_{i},L}^{enc}}{\partial s_{L}^{t}}\frac{\mathrm{d}s_{L}^{t}}{\mathrm{d}\theta_{l}}+\frac{\partial h_{t_{i},L}^{enc}}{\partial \theta_{l}}\right)\\ \frac{\mathrm{d}E}{\mathrm{d}\theta_{l}} &= \sum_{1\leq i\leq T}\frac{\mathbf{L}_{l}^{t}\mathbf{e}_{l}^{t,\theta_{l}}}{\mathbf{L}_{l}^{c}\mathbf{e}_{l}^{t,\theta_{l}}} + \mathbf{R} \end{aligned}
$$

BPTT is a gradient-based training algorithm

- Parameters θ_l of neural network are modified based on the gradients computed by $\frac{dE}{d\Omega}$ $d\theta_l$
- Gradient computations can be rearranged without loss of generality into a combination of Learning signals L_l^t and eligibility traces e_l^{t,θ_l}

Eligibility traces represent temporal gradients

– Can be seen as activity information that every synapse maintains over time

Learning signals represent spatial gradients

– Can be seen as teaching signals from the environment targeting neurons

$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} \frac{\partial E^{t}}{\partial h_{t_{i},L}^{enc}} \left(\frac{\partial h_{t_{i},L}^{enc}}{\partial s_{L}^{t}} d s_{L}^{t} + \frac{\partial h_{t_{i},L}^{enc}}{\partial \theta_{l}} \right)
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\nAll is great
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}} = \sum_{1 \leq i \leq T} L_{i}^{t} e_{i}^{t, \theta_{l}} + R
$$
\n
$$
\frac{dE}{d\theta_{l}}
$$
\n
$$
\frac
$$

BPTT is a gradient-based training algorithm

- Parameters θ_l of neural network are modified based on the gradients computed by $\frac{dE}{d\Omega}$ $d\theta_l$
- Gradient computations can be rearranged without loss of generality into a combination of Learning signals L_l^t and eligibility traces e_l^{t,θ_l}

Eligibility traces represent temporal gradients

– Can be seen as activity information that every synapse maintains over time

Learning signals represent spatial gradients

– Can be seen as teaching signals from the environment targeting neurons

Input sequence does not need to be truncated

– Suitable for applications where the end-of-sequence is not known apriori

Forward network operation does not get interrupted

– Suitable for applications where continuous learning while receiving new inputs is critical

Constant memory requirements*

Compatible with any RNN \rightarrow We will show a demo

In-memory computing using neuromorphic hardware

Compute in-memory

© 2021 IBM Corporation A. Sebastian et al., *Nature Nanotechnology* 2020 <https://doi.org/10.1038/s41565-020-0756-8>

Phase-Change Memory (PCM)

A nanometric volume of phase change material placed between two electrodes

– Different geometries possible, so-called mushroom cells are commonly used

Information is stored in terms of the atonic arrangements (phase configuration)

- Amorphous phase: highly disordered and high resistive
- Polycrystalline phase: highly ordered and low resistive
- PCM is essentially an analog storage device
- Non-idealities limit the amount of resistance levels

Disordered, high resistance

Ordered, low resistance

Spiking Neurons can be realized with PCM devices

The neuronal membrane potential of an artificial neuron is stored using PCM devices

I&F dynamics emulated by the physical properties of the device

Stochasticity enables computation using populations of phase-change neurons

"Integrate… " by successive application of crystallizing pulses

"… and fire" after reaching a conductance threshold. Then the device is reset.

SNUs and in-memory computing

Easy integration of SNUs into emerging in-memory computing architectures

– Weights of SNU network represented with PCM devices

Training with hardware-in-the-loop compensates for imperfections

– Noise and drift effects can largely be alleviated

Unified HW design approach supporting both ANNs and SNNs

– Neuromorphic hardware hosts digital processing unit

S. Woźniak et al., *Nature Machine Intelligence* 2020 <https://doi.org/10.1038/s42256-020-0187-0> M. Le Gallo et al. *Nature Electronics* 2023 <https://doi.org/10.1038/s41928-023-01010-1>

Application example Speech recognition

Speech presents the most natural way for humans to communicate

Vast number of usecases – Big challenge for machines

Machine learning approaches face severe challenges

- Large datasets are required
- High computational cost for training
- Need to deal with harsh environments

Recurrent Neural Network Transducer (RNN-T) – A state-of-the-art machine learning network

Common architecture in machine learning

- Sequence-to-sequence transduction
- Suited for low-latency applications
- Deployed in cloud services and on hand-held devices

Encoder network acts as feature encoder

– 6 layers of bidirectional LSTMs

Prediction network acts as language model

– 1 layer of unidirectional LSTMs

Recurrent Neural Network Transducer (RNN-T) – A state-of-the-art machine learning network

Common architecture in machine learning

- Sequence-to-sequence transduction
- Suited for low-latency applications
- Deployed in cloud services and on hand-held devices
- Encoder network acts as feature encoder
- 6 layers of bidirectional LSTMs

Prediction network acts as language model

– 1 layer of unidirectional LSTMs

RNN-T architecture

Neural diversity reduces computational cost of RNN-T

T. Bohnstingl et al. *ICASSP* 2022 <https://doi.org/10.1109/ICASSP43922.2022.9747499>

Speech-to-Text Demo – SNUs outperform LSTMs

LSTM Model

Press 'Real-Time'for real-time transcripton or press 'Transcribe' for offline transcription.

00:00

sSNU-o Model

Press 'Real-Time'for real-time transcripton or press 'Transcribe' for offline transcription.

Conclusion

The SNU allows to incorporate dynamics from biology into deep learning

Biology leverages a wide variety of mechanisms for compute – Diverse types of neuron and synapses provide richer network dynamics

Biology employs more efficient information encoding schemes

Neuroscience can enhance state-of-the-art learning algorithms

Biologically-inspired neural networks can work with large-scale machine learning models

– Diverse types of neuron and synapses provide richer network dynamics

<https://research.ibm.com/projects/neuromorphic-computing>

Acknowledgements

Emerging Computing and Circuits team of Dr. Angeliki Pantazi IBM Research colleagues Collaborators: EPFL Lausanne, TU Graz, ETH Zurich, University of Zurich, fortiss

Funding

SWISS NATIONAL SCIENCE FOUNDATION

IBM Research