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Key focus areas of our team @ IBM Research — Zurich

Emerging Computing and Circuits

Dr. Angeliki Pantazi

High-speed I/O Links
We are developing next-
generation I/O Links for the
IBM flagship Z and P
processors and for future
accelerators

‘-/ - \-/
- . -
- . -

Quantum Electronics

We are developing cryogenic
CMOS electronics aiming to
continue pushing the scalability
and affordability of Quantum
systems

—-lDAC_7nm

Neuro-inspired Computing
We are exploring neuro-inspired
models and learning algorithms
towards energy- and data-
efficient Al architectures




Motivations for neuromorphic computing

Improving Al systems

In order to make AT:

We need:

More efficient

Low power and low latency

Potential inspiration from the brain

These tactics include:

Smarter

Advanced cognitive features

Event-based communication

More flexible

Online and continual
learning

Efficient neuronal and synaptic dynamics

Local, supervised and unsupervised learning
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History of neuromorphic computing: Biology vs. Technology

1906: Golgi, Cajal

1952: Hodgkin & Huxley
1970s: Dodge, Cooley, Traub, Llinas

1979: Fukushima’s CNN
1982: Hopfield network

2005: Blue Brain Project
2013: HBP, Brain Initiative
2009: Neurogrid

2014: TrueNorth

SNNs in deep learning:
2020: SNUs (LM, GAN)

Blue

Brain
Project

2023: DeepMind’s LRU

o BP alternatives: strongties
interconnected compartmental Splkl'ng Neuror! 1990: Recurrent Networks 2022: e-prop, OSTL Back to O(n) inference scaling
neurons 1980s: NeuromTorphlc Computing TElman, Jordan T T + large-scale models
Biology what to model? How to enrich dynamics? How to enrich dynamics? ~ How to achieve efficiency? How to achieve efficiency? Inspiration
(neuron) (network) (neuron) (network)
Questions Neuro-inspired
computing
How to train? How to train? How to train large-scale models?
How to model? (error calculation) (vanishing gradients) (scaling up) ) )
Technology l l l l Validation
1943: McCulloch and Pitts Control & optimization: 1997:LSTM 2012: GPUs for AlexNet record 2021:recurrency in SSM S4
Artificial Neuron 1960: ADALINE GD with MSE 2014: GRU 2017: Transformers
1967: Amari’'s SGD 2022: LLMs: l g‘
i 1982: Werbos’s MLP backprop GPT, Gemini, .

~
Xy —

xj —

Xlli

y = f(Wx +b)

1986: widespread popularity

Learning representations
by back-propagating errors

David E. Rumeihart®,  Geoffrey E. Hiatont
5*

Mo Unsers, speech, writing,
translation, LMs

LLaMA, Granite
Away from biology:
* norecurrency
+ simple activation functions
* non-biologically plausible models
S(02) inf i
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Neuromorphic research: Our approach

Taking inspiration
from biology

Applying the rigor of
machine learning
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NeuroAl Toolkit

D Learning

=)

Neural
dynamics

https://github.com/IBM/neuroaikit

https://research.ibm.com/projects/neuromorphic-computing

Research papers

1
2
3
4.
5
6
7
8.

. S. Wozniak, et al. Nature Machine Intelligence, 2020
. T.Ortneret al., IEEE ICASSP, 2022
. T.Ortner et al., IEEE Trans. Neural Networks Learn. Syst, 2022

A. Stanojevic et al., Neural Networks 2023

. G. Dellaferrera et al., Nature Communications, 2022
. S. Wozniak, et al., Nature Communications, 2023
. Y. Schnider, et al., IEEE CVPRW, 2023

A. Stanjoevic et al., Nature Communications, 2024

Provides efficient solutions
for multiple Al applications

Exploits acceleration of the
hardware infrastructure



https://github.com/IBM/neuroaikit
https://research.ibm.com/projects/neuromorphic-computing

Neural dynamics: Spiking Neural Unit (SNU)

SNUs operate either in spiking (binary signals) or non-spiking mode (real-valued signals)

Dendrite

dVin (t)

e

Biology

-

F i T
L= Extracellular
X
I B -
Axon X
m
4 R L | —
_7/ Output spikes Intracellular
L™ r
spike on
= V() +RI(t) Y, > Vy

namre, .
machine intelligence

ARTICLES
hitps:/doi.org/10.1038/542256-020-0187-0

R) Grock for updates

Deep learning incorporating biologically inspired
neural dynamics and in-memory computing

Stanistaw Wozniak ', Angeliki Pantazi, Thomas Bohnstingl ©'2 and Evangelos Eleftheriou '™

=

Deep Learning

Spiking Neural Unit (SNU)

/

—— — —

reset: 1-y

accumulation stage spiking stage

se = g(Wx, + U(D) Os—,O(1 — y,_1))
Ve = h(St + b)




Easily build large models by replacing complex units with SNUs

Traditional ANN 0 Spiking Neural Unit (SNU)
(RNN Units) “ouputgate 1

— Requires fewer parameters

— Require large number of — Offers qualitatively different dynamics

trainable parameters
— Easily extensible to incorporate

additional features from neuroscience

— Operate with complex
internal dynamics and
neuronal connectivity

S. Wozniak et al., Nature Machine Intelligence
325-336,2020
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Neural dynamics: Application examples

Solving visual analytic intelligence riddles

[+] improved accuracy

[+] smaller models vs. ANN

Optical flow computation
[+] improved accuracy

[+] smaller models vs. ANN

Drone navigation
[+] improved accuracy

[+] higher sparsity vs. ANN

Common aspect: Temporal/sequential problems
that leverage the unique neuronal dynamics

TT% 95% 18% B6%
» » .
Cle®] (B SI®) [l |- ][] 4] s
BRARN AN N
Cluadrilateral Convex Rotation Equilateral
shape friangle

S. Wozniak, et al., “On the visual analytic intelligence of neural
networks,” Nat Commun, vol. 14, no. 1, p. 5978, Sep. 2023.

DVS Events

Y. Schnider et al., “Neuromorphic Optical Flow and Real-time

Implementation with Event Cameras.” WEV CVPR, 2023.

S. Govil, “Spiking Neural Networks for Drone Navigation”,
MSc Thesis, RPG UZH & IBM Research — Zurich, Sept. 2023
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Intformation encoding



Information encoding: Time-To-First-Spi
Different information coding schemes: O O]

@llélélll

ke (TTFS) Networks

No spike

20 4
2R X
D
“"c’\‘ ok

R
TTFS-SNN , é}%ﬂ

RKXR 2

Sparse in time

Sparse in space

A. Stanojevic etal., “High-performance deep spiking neural networks with 0.3 spikes per neuron”,

4 spikeevent

1
@y b i o
ANy =
Output spikes Coding Rate Phase Spike Time-to-
scheme pattern first-snike

A spike of voltage

Novel TTFS neuron [1]:
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Nature Communications 2024.



Information encoding: Time-To-First-Spike (TTFS) Networks

A network with proposed TTFS neurons [1]:

achieves equivalent inference accuracy to the
state-of-the-art ReLU networks

enables lossless conversion from pre-trained
RelLU networks

follows the same training trajectories as RelL.U
networks, enabling high accuracy training

enables fine-tuning for specifics of spiking
neuromorphic hardware

Key aspects: Static problems. Neuronal
dynamics is leveraged for TTFS-based
communication, achieving ReLU equivalent
computational logic with sparse spikes.

a

VGG16: Dataset Test accuracy [%] w/ FT SNN
RelU SNN Sparsity
CIFAR10 93.69+0.02 93.69+0.02 0.38
CIFAR10™ - 91.90 024
CIFAR10™ - 92.68 0.62
CIFAR10 +L1 93.28+0.02 93.27+0.02 0.20
CIFAR100 72.23+0.06 72.24 :0.06 0.38
CIFAR100™ - 65.98 0.28
CIFAR100 +L1 72.20 +0.04 72.21+0.04 0.24
PLACES365 53.86 £ 0.02 53.86 +0.02 0.54
PLACES365+L1 48.88:0.06 48.85 +0.06 0.27

VGG16 CIFAR1O fine-tuning for hardware specifics

93.70 93.73 93.75 90.83
93.58 93.48 93.22
71.07

il Acc [%] w/o FT

el Acc [%] W/ FT
0.001 0.01

Spiking Time Jitter SD
93.71 93.60 93.08 92.89
93.51 93.21

83.35
77.27

el Acc [%] wio FT

84.04

30.18

0.1

91.40 d

il Acc (%] W/ FT 2180

12 10 8 6
Number of weight bits

93.65 93.63 93.63 93.64
= = = 92.16
93.48 93.52 93.47 93.47 t :
e Acc (%] wio FT
el Acc (%] W/ FT 86.01
4006 1024 256 64 16

Time steps per layer

93.71 93.65 92.46 90.74 88.06

93.59 9348 90.69

b Acc [%] wio FT
amllle Acc [%] w/ FT

44.70

100% 58% 33% 25% 22%
Latency

A. Stanojevic etal., “High-performance deep spiking neural networks with 0.3 spikes per neuron”, Nature Communications 2024.



Neural connectivity: Modelling neural diversity



Biological neural networks are highly diverse




Biological neural networks are highly diverse o

00 01 02 03 04 05 06 07 08 09 10 14
time

Neurons

— Can have different
dynamics

Membrane potential evolution with threshold adaptation (SNU-a)

I IR

"DI.O 01 02 03 04 05 06 07 08 09 1.'0 1.1
time

17

Allen Institute for Brain Science, https://human.brain-map.org




Biological neural networks are highly diverse

" B
Axo-Dendritic synapses t@?ﬁ;‘ 'u.'ya
S

— Connecting the axon of ™=
the pre-synaptic neuron .
to the dendrite of the *’57/
post-synaptic neuron '

Axo-Somatic synapses

— Connecting the axon of 4
the pre-synaptic neuron
to the soma of the post-
synaptic neuron

Synapses
— Canbeofa
different kind

Axo-Axonic synapses

— Connecting the axon of
the pre-synaptic neuron
to the axon of the post-
synaptic neuron

18



Various neuron and synapse types can be modelled with SNUs

output recurrent
UL /_y.(optional)

axo-dendritic ‘W

synapses jno (rch)H(rjrganlt)
st=gWxt +Hyt 1 +1(7) - st 1O —yt1))
t — t
yt = h(st + b)
output recurrent
. 1’, (optional) {gﬁﬁgﬁﬂ) recurrent input
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SNU-a . H :
y, ¥ o axo-axonic

adaptation
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SITERSEineut (el SYTOPSESineut - EesEal
st =gWxt + Hy 1+ 1(7) - st 1O -yt 1)) st=gWxt+ Hyt 1+ 1(7) - st 1O — yt™1))

t— 5. pt-1 1—=p)- t 4 g yt-1
Sr - fl(ﬁ + /;Zt( + bs) (o + Hay™) ' = h(s' +b) © o(Wox* + Hoy" ™" + bo)

T. Bohnsting| et al.,, ICASSP 2022; T. Bohnstingl et al., NeurIPS WS ENLSP 2021,
https://doi.org/10.1109/AICAS57966.2023.101 68623


https://doi.org/10.1109/AICAS57966.2023.10168623

Biologically-inspired learning



Biologically-inspired extension to Error Backpropagation (BP)

*Group Responsibility for Adjusting the Propagation of Error Signals

. L . :
GRAPI.ES IS an opt|'m|zat|on str.ategy that reﬁes on the notpn of the' Nade importance: v "
node importance in propagating the error information during learning b= 3 Wi (w '
Accuracy Convergence rate By 0~

G RAP ES =l 8.6 == 105 e T -( 73 yc|e$:

improves the os £ P g

accuracy and 3 _

convergence ||II . lll 1 | |

8.2 l .. > i
rate of BP ] s S _ [ )
le3 5e3 le2 S5e2 lel 5e1 296 5 le3 Se-3 le2 Se2 lel Sel 256 g g b
learning rate . learning rate =2 o Xii
Gradient Descent Gradient Descent + GRAPES
951 1 RN Vol X -
: : : | ynaptic

G RAP ES = 901 3 ' 3_25% i cleft

reduces 785 | ssnll [ gl y

Catastrophic geo! [ | .0 o M™yaew| 0 0

Forgetting g,/ 2 & & IZwes|li @ & 7 Idme i

% é %: z g —t— testtask 3 r4 Z! =z z! z! test task 3
70+ 3 5: & %: E: — testtask 4 | | %: %: % %: ! test task 4 Vi
! J: 4: 4: 4: test task 5 4: 4: ] i1 1 test task 5
b 10 Trg?ning e3poochs 40 >0 0 10 Trg?ning eBp%-:hs 40 >0 G. Dellaferrera etal. Nature Comlfquni(iations ?022

https://doi.org/10.1038/s41467-022-29491-2


https://doi.org/10.1038/s41467-022-29491-2

The inner workings of
Recurrent Neural Networks
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The forward path
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The forward path



The forward path
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The forward path
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The forward path
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The backward path using Error
Backpropagation through time (BPTT)

Al is great

T T i
e
(RNN) —>-RI?N —~()= -RI?N

T l

Lt Lt Tt

0 1 T



The backward path using Error
Backpropagation through time (BPTT)

Al is great
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The backward path using Error
Backpropagation through time (BPTT)

Al is great
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The backward path using Error
Backpropagation through time (BPTT)



Backpropagation training suffers
from at least three problems



BPTT training suffers from at
least three problems

Input sequence needs to be truncated

— Not suitable for applications where the
end-of-sequence is not known apriori

33



BPTT training suffers from at
least three problems

> Input sequence needs to be truncated
Al is graet , L
J J J — Not suitable for applications where the

end-of-sequence is not known apriori
RNN J=(RNN | —(- - ] —( RNN
[ : ] [ ‘ J @

f Forward network operation gets interrupted

[RNN}_’[RNNJ —’@—’ — Not suitable for applications where continuous
A

learning while receiving new inputs is critical

Tt Tt Tt

0 1 T

34



BPTT training suffers from at
least three problems

Al is great

i |
BI=@) =0=@N
CRNN==(RNN) () (RN

.CUtO $t1 .’EtT

Input sequence needs to be truncated

— Not suitable for applications where the
end-of-sequence is not known apriori

Forward network operation gets interrupted

— Not suitable for applications where continuous
learning while receiving new inputs is critical

Memory requirements grow with time

— The memory required to update the parameters of
the network grow linearly with the sequence length

35



Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

— Parameters 6, of neural network are modified dE OE? <0h§:fi ds? N 0h§fi>
based on the gradients computed by 3—; doy  £=, 0T ost  do, a0,
Al is great

xto xtl ItT 36



Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

— Parameters 6, of neural network are modified dE OF? (0@% ds? N 0h§ﬁ%>
based on the gradients computed byg—:l dé; S ohg"y ost  do 00,

Temporal gradients

Spatial gradients

37



Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

— Parameters 6; of neural network are modified d_E B
based on the gradients computed by 3—51 dé,

— Gradient computations can be rearranged without dE
loss of generality into a combination of Learning iy

signals Lt and eligibility traces e;"”!

OE? <ah§;jz s, ahfz*,%)
| <i<T ahffi &StL d@l 80;
3 s | v
l=a=T

38



Online Spatio-Temporal Learning (OSTL)

as alternative to BPTT

BPTT is a gradient-based training algorithm
— Parameters 6; of neural network are modified

based on the gradients computed by 3—51

— Gradient computations can be rearranged without
loss of generality into a combination of Learning

signals L¢ and eligibility traces ef’el
Eligibility traces represent temporal gradients

— Can be seen as activity information that every
synapse maintains over time

Learning signals represent spatial gradients

— Can be seen as teaching signals from the
environment targeting neurons

dE 3 OB' (Ohil dsy  ONls
B oheme \ 9st df; 96,

1<i<T

ax _ ¥ L, +R
l=a=T

Eligibility traces

)

Learnig signals



Online Spatio-Temporal Learning (OSTL)

as alternative to BPTT

BPTT is a gradient-based training algorithm
— Parameters 6; of neural network are modified

based on the gradients computed by 3—51

— Gradient computations can be rearranged without
loss of generality into a combination of Learning

signals L¢ and eligibility traces ef’el
Eligibility traces represent temporal gradients

— Can be seen as activity information that every
synapse maintains over time

Learning signals represent spatial gradients

— Can be seen as teaching signals from the
environment targeting neurons

dE OE' (Ohip dst  Ohyl'j
at _ Z t,t,L SL, n ti L
dg ohene \ st df; 90,

1<i<T i L
dE t_t,6 '
o= o el K

1<:<T

o~

Eligibility traces

)

Learnig signals



Training procedure with OSTL




Training procedure with OSTL

(RNNJ=(RNN) —=




Training procedure with OSTL




Training procedure with OSTL

A‘I 15 gr?at Input sequence does not need to be truncated
\
> — T\ —> — Suitable for applications where the end-of-sequence is
(RNN)=(RNN) ==(- -J==(RNN) o ’

\ \ \ not known apriori

(RNN =(RNN) :;@:; Forward network operation does not get interrupted

\, ‘l \ — Suitable for applications where continuous learning while
R T I
T, Ty, Tt Constant memory requirements™

Compatible with any RNN - We will show a demo

T. Bohnstingl et al. TNNLS 2020 44
https://doi.org/10.1109/TNNLS.2022,3153985



https://doi.org/10.1109/TNNLS.2022.3153985

In-memory computing using
neuromorphic hardware



Compute in-memory

Processing unit Conventional memory
Data D
P Ecamiat=

010001010101011000101010

Memory array
(storing D)

11101001010001010100100100

—_—
Result /(D)

Memory array
(storing D)

—_—
Command ("perform fon D)

Charge-based memory Resistance-based memory
SRAM DRAM Flash RRAM PCM STT-MRAM

A. Sebastianetal., Nature Nanotechnology 2020

46


https://doi.org/10.1038/s41565-020-0756-8

Phase-Change Memory (PCM)

Amorphous Crystalline

A nanometric volume of phase change material ,
placed between two electrodes Disordered, high resistance Ordered, low resistance

— Different geometries possible,
so-called mushroom cells are commonly used

Information is stored in terms of the atonic
arrangements (phase configuration)

— Amorphous phase:
highly disordered and high resistive

— Polycrystalline phase:
highly ordered and low resistive

PCM is essentially an analog storage device

— Non-idealities limit the amount of resistance levels

47



Spiking Neurons can be realized “Integrate...” by successive

application of crystallizing pulses

with PCM devices >
1074
\TE; 105 --l """"'l"
E | Neun:!nal
E |nput
The neuronal membrane potential of an artificial 0% | fﬂlw.dm
neuron is stored using PCM devices ,Hf Phase change h ﬂ Famstce
10-7 : L Number—
I&F dynamics emulated by the physical properties ’ Numm:ifpu.m .

of the device “...and fire” after reaching a conductance

threshold. Then the device is reset.
Stochasticity enables computation using ooy e )

populations of phase-change neurons - 4 i F ___]} . ! j l 1|'

JU' JL»’VL—'L/J

, | Pulses: width 20 nsf’arnpl \.' Pulses: width 20 ns/ampl. 4 V

JULiUU ,,Hyml }( A

N Pulses: wldlh 50 ns.r’arnpl 2V Pulsea vwdth SC ns.r‘ampl 4 \.'

Condutance (5)
=]

T T T T T
4] 2EI 40 BD III .:E 40 60
Mumber of pulses Mumber of pulses
T. Tuma et al., Nature Nanotech 2016

https://doi.org/10.1038/nnan0.2016.70


https://doi.org/10.1038/nnano.2016.70

SNUs and in-memory computing

IBM Analog Al chip

Easy integration of SNUs into emerging in-memory
computing architectures

— Weights of SNU network represented with PCM devices

Training with hardware-in-the-loop compensates for
imperfections

— Noise and drift effects can largely be alleviated

1 M PCM devices

Input voltages
x X x

2P

Unified HW design approach supporting both ANNs and
SNNS %W{E\;ogﬁtﬁ;\ﬁ

3

3
=)

| s s |

f
o

I
PCM || PCM PCM \}
- Il

— Neuromorphic hardware hosts digital processing unit ol il W

o]
=3
L

Probabilities

S. Wozniak et al., Nature Machine Intelligence 2020 Prediction
i 10.1 2256-020-0187-
M. Le Gallo et al. Nature Electronics 2023

@ e
w0 r\)
L

Test error (avg. neg. log-likelihood)

(drift compensation)
in-the-loop training M
| mnesioopt _ .

~ 1,

@ Music prediction inference over 4 days

_imin 1h 10h 1d 4d

weight cloning
1 (w/o drift compensation

weight cloning

w©
@

T T
10° 10° 10 10°
Time (s)
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Application example
Speech recognition



Speech presents the most natural way

for humans to communicate

Human

How are you
doing today?

Pressure
fluctuations
in the air

i Cochlea

Auditory cortex

How are you
doing today?

51



Vast number of usecases —
Big challenge for machines

Machine learning approaches face severe challenges
— Large datasets are required
— High computational cost for training

— Need to deal with harsh environments

=
r &

- 5

On device voice

52



Recurrent Neural Network Transducer (RNN-T) —
A state-of-the-art machine learning network

P(yt,u |w[0:t]1 yufl)

—— =

ht,u

joint

Softmax

©07Y

066

Join with ® and apply tanh

)
)

7 T

Prediction
- T D >]
C )

~~
Embedding

NS

How m‘(' y“_l

A. Graves, arXiv 2012

(Encoder
network
Layer k

Common architecture in machine learning
— Sequence-to-sequence transduction
— Suited for low-latency applications

— Deployed in cloud services and on hand-held
devices

Encoder network acts as feature encoder
— 6 layers of bidirectional LSTMs
Prediction network acts as language model

— 1 layer of unidirectional LSTMs

53


https://doi.org/10.48550/arXiv.1211.3711

Recurrent Neural Network Transducer (RNN-T) —
A state-of-the-art machine learning network

Py lziy ) Common architecture in machine learning

e i 1

Softmax — Sequence-to-sequence transduction

C )
: OJQ lQ @ ©\Q — Suited for low-latency applications

Join with ® and apply tanh )

— Deployed in cloud services and on hand-held
devices

h'u

pred

Encoder network acts as feature encoder

— 6 layers of bidirectional LSTMs

Prediction network acts as language model

— 1 layer of unidirectional LSTMs

How are you doing

54



RNN-T architecture

Output: Probability of a speech transcript Joint network producing
P{y‘ w|gplOct] qu=1) ¢ the output probabilities

\_ h! L1
~ f‘ Joint
Softmax
1 uni-directional OJO Q b b\g 6 bi-directional
LSTM layer Join with and apply tanh LSTM layers
/} r) ) \ ;:rﬁd \&% 1 ST
rediction rEncndinE

ork : . B
-~ @ETEm )| (-7 eveE
( Embedding ) E E E J

e |
How arel}] u—1 sver - Eﬂ n
S .tﬂ"ﬂ'n )

\

Input: Preprocessed audio
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RNN-T architecture

solely with SNUs P(ytu|glot) gyu-1)
’ t,u
e ijk N\ h’goznt
Softmax

@’Q’LQ

@CQ\Q»

Join with ® and apply tanh

\'\\‘ R

Prediction

network( (SNU-a] [SNU a](SNU a) )

Layer 1
( Embeddlng )

NS

How arf]

<— Axo-dendritic synapse

<«— AXo0-axonic synapse

Encoding /~
network

Layer k

Layer 1

[SNU-0J(SNU- ijSNU o)

ISNU oJ{(SNU- oj[SNu o)
J 7
" 7[SNU-0)(SNU- oj[SNu ol

(ISNu-oj‘l_[SNu-o][ SNU-0

How are you doing
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Neural diversity reduces computational cost of RNN-T
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Speech-to-Text Demo —
SNUs outperform LSTMs

Real-Time
[ Stop recoiging ] Recording started... 00:00
Play audio Transcribe
Demo 1 Demo 2
LSTM Model sSNU-o Model
Press 'Real-Time'for real-time transcripton or press 'Transcribe' for offline Press 'Real-Time'for real-time transcripton or press 'Transcribe' for offline

transcription. transcription.




Conclusion

The SNU allows to incorporate dynamics from biology into deep learning

Biology leverages a wide variety of mechanisms for compute
— Diverse types of neuron and synapses provide richer network dynamics

Biology employs more efficient information encoding schemes
Neuroscience can enhance state-of-the-art learning algorithms

Biologically-inspired neural networks can work with large-scale machine
learning models

— Diverse types of neuron and synapses provide richer network dynamics

All modelled in the NeuroAI Toolkit

h

NeuroAl Toolkit

Neural
dynamics
Informatlo n Reasonin g
encodmg
Neural o) ppl|cat|on

onnect|V|t

ttps://research.ibm.com/projects/neuromorphic-computing
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