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Key focus areas of our team @ IBM Research – Zurich 

Emerging Computing and Circuits 
Dr. Angeliki Pantazi

Quantum Electronics
We are developing cryogenic 

CMOS electronics aiming to 

continue pushing the scalability 

and affordability of Quantum 

systems

High-speed I/O Links
We are developing next-

generation I/O Links for the 

IBM flagship Z and P 

processors and for future 

accelerators

Neuro-inspired Computing 
We are exploring neuro-inspired 

models and learning algorithms 

towards energy- and data-

efficient AI architectures



Motivations for neuromorphic computing

Improving AI systems

In order to make AI: We need: 

More efficient Low power and low latency

Smarter Advanced cognitive features

More flexible Online and continual 
learning

These tactics include:

Event-based communication 

Efficient neuronal and synaptic dynamics

Local, supervised and unsupervised learning
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Potential inspiration from the brain



Technology

History of neuromorphic computing: Biology vs. Technology

Biology

𝑦 =  𝑓(𝑊𝑥 + 𝑏)

𝑤1

𝑤𝑚 

Σ 𝑦

1906: Golgi, Cajal 
interconnected 
neurons

1943: McCulloch and Pitts 

Artificial Neuron

How to model?

How to enrich dynamics?

(neuron)

Questions

1952: Hodgkin & Huxley 
1970s: Dodge, Cooley, Traub, Llinas 
compartmental Spiking Neuron
1980s: Neuromorphic Computing

How to train?
(vanishing gradients)

How to train?
(error calculation)

1979: Fukushima’s CNN
1982: Hopfield network
1990: Recurrent Networks 
 Elman, Jordan

Control & optimization:

1960: ADALINE GD with MSE
1967: Amari’s SGD
1982: Werbos’s MLP backprop
1986: widespread popularity

How to enrich dynamics?
(network)

1997: LSTM
2014: GRU

What to model?

speech, writing, 
translation, LMs

How to achieve efficiency?
(neuron)

2005: Blue Brain Project
2013: HBP, Brain Initiative
2009: Neurogrid
2014: TrueNorth

SNNs in deep learning:
2020: SNUs (LM, GAN)
BP alternatives:
2022: e-prop, OSTL

How to train large-scale models?
(scaling up)

2012: GPUs for AlexNet record
2017: Transformers
2022: LLMs:

GPT, Gemini, 
LLaMA, Granite

How to achieve efficiency?
(network)

Away from biology:
• no recurrency
• simple activation functions

• non-biologically plausible models

2023: DeepMind’s LRU 

Back to O(n) inference scaling
+ large-scale models

Inspiration 

Validation

Neuro-inspired 
computing

O(n2) inference scaling

strong ties

2021: recurrency in SSM S4
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Research papers
1. S. Wozniak, et al. Nature Machine Intelligence, 2020 

2. T. Ortner et al., IEEE ICASSP, 2022
3. T. Ortner et al., IEEE Trans. Neural Networks Learn. Syst, 2022
4. A. Stanojevic et al., Neural Networks 2023

5. G. Dellaferrera et al., Nature Communications, 2022
6. S. Wozniak, et al., Nature Communications, 2023

7. Y. Schnider, et al., IEEE CVPRW, 2023
8. A. Stanjoevic et al., Nature Communications, 2024

...

Neuromorphic research: Our approach

Taking inspiration 
from biology

Applying the rigor of 
machine learning

https://github.com/IBM/neuroaikit 

Provides efficient solutions 
for multiple AI applications

Exploits acceleration of the 
hardware infrastructure

Information

encoding

Neural

dynamics

Neural

connectivity

Reasoning

Learning

Applications

NeuroAI Toolkit

https://research.ibm.com/projects/neuromorphic-computing

https://github.com/IBM/neuroaikit
https://research.ibm.com/projects/neuromorphic-computing
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Biology

𝜏
d𝑉𝑚(𝑡)

d𝑡
= −𝑉𝑚 𝑡 + 𝑅𝐼(𝑡)

spike on 
𝑉𝑚 > 𝑉th

Deep Learning

Spiking Neural Unit (SNU)

accumulation stage spiking stage

 

          

  
   

   
 

  
 

       
  
 

  
 

    

𝑠𝑡 = 𝑔 𝑊𝑥𝑡 + 𝑙 𝜏 ⨀𝑠𝑡−1⨀ 1 − 𝑦𝑡−1                    

𝑦𝑡 = ℎ 𝑠𝑡 + 𝑏

Output spikes

Axon

Soma

Input spikes

Dendrite

Extracellular

Intracellular

SNUs operate either in spiking (binary signals) or non-spiking  mode (real-valued signals)

Neural dynamics: Spiking Neural Unit (SNU)
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Easily build large models by replacing complex units with SNUs

Traditional ANN
(RNN Units)

– Require large number of 
trainable parameters  

– Operate with complex 
internal dynamics and 
neuronal  connectivity

Spiking Neural Unit (SNU)

– Requires fewer parameters

– Offers qualitatively different dynamics

– Easily extensible to incorporate 
additional features from neuroscience

S. Woźniak et al. , Nature Machine Intel ligence
325–336, 2020



Neural dynamics: Application examples

Solving visual analytic intelligence riddles

[+] improved accuracy

[+] smaller models vs. ANN

Optical flow computation

[+] improved accuracy

[+] smaller models vs. ANN

Drone navigation

[+] improved accuracy

[+] higher sparsity vs. ANN

S. Woźniak, et al., “On the visual analytic intelligence of neural 
networks,” Nat Commun, vol. 14, no. 1, p. 5978, Sep. 2023.

Y. Schnider et al., “Neuromorphic Optical Flow and Real-time 

Implementation with Event Cameras.” WEV CVPR, 2023.

S. Govil, “Spiking Neural Networks for Drone Navigation”, 

MSc Thesis, RPG UZH & IBM Research – Zurich, Sept. 2023
Common aspect: Temporal/sequential problems 
that leverage the unique neuronal dynamics

11



Information encoding



Information encoding: Time-To-First-Spike (TTFS) Networks
Different information coding schemes:

… …

…

… … ……

…

𝑡

No spike

Biology

TTFS-SNN

spike event

spike of voltage

Sparse in time Sparse in space

Output spikes

Axon

Soma

Input spikes

Dendrite

Vm

Leveraging temporal and spatial sparsity of TTFS:

A. Stanojevic et al., “High-performance deep spiking neural networks with 0.3 spikes per neuron”, Nature Communications 2024.

Novel TTFS neuron [1]:

13



Information encoding: Time-To-First-Spike (TTFS) Networks

A. Stanojevic et al., “High-performance deep spiking neural networks with 0.3 spikes per neuron”, Nature Communications 2024.

A network with proposed TTFS neurons [1]:

- achieves equivalent inference accuracy to the 
state-of-the-art ReLU networks

- enables lossless conversion from pre-trained 
ReLU networks

- follows the same training trajectories as ReLU 
networks, enabling high accuracy training

- enables fine-tuning for specifics of spiking 
neuromorphic hardware

Key aspects: Static problems. Neuronal 
dynamics is leveraged for TTFS-based 
communication, achieving ReLU equivalent 
computational logic with sparse spikes.

VGG16 CIFAR10 fine-tuning for hardware specifics

VGG16:

14



Neural connectivity: Modelling neural diversity



Biological neural networks are highly diverse 

16



Biological neural networks are highly diverse 

17

Neurons

– Can have different 
dynamics

Al len Insti tute for  Brain Science, https://human.brain-map.org



Biological neural networks are highly diverse 

18

Synapses

– Can be of a 
different kind

Axo-Dendritic synapses

– Connecting the axon of 
the pre-synaptic neuron 
to the dendrite of the 
post-synaptic neuron

Axo-Somatic synapses

– Connecting the axon of 
the pre-synaptic neuron 
to the soma of the post-
synaptic neuron

Axo-Axonic synapses

– Connecting the axon of 
the pre-synaptic neuron 
to the axon of the post-
synaptic neuron



Various neuron and synapse types can be modelled with SNUs

19

𝑠𝑡 = 𝑔 𝑊𝑥𝑡 + 𝐻𝑦𝑡−1 + 𝑙(𝜏) ∙ 𝑠𝑡−1⨀(1 − 𝑦𝑡−1)
𝑦𝑡 = ℎ 𝑠𝑡 + 𝑏

𝑠𝑡 = 𝑔 𝑊𝑥𝑡 + 𝐻𝑦𝑡−1 + 𝑙(𝜏) ∙ 𝑠𝑡−1⨀(1 − 𝑦𝑡−1)

𝑦𝑡 = ℎ 𝑠𝑡 + 𝑏  ⨀ 𝜎 𝑊𝑜𝑥𝑡 + 𝐻𝑜𝑦𝑡−1 + 𝑏𝑜

𝑠𝑡 = 𝑔 𝑊𝑥𝑡 + 𝐻𝑦𝑡−1 + 𝑙(𝜏) ∙ 𝑠𝑡−1⨀(1 − 𝑦𝑡−1)
𝑏𝑡 = 𝜌 ∙ 𝑏𝑡−1 + (1 − 𝜌) ∙ (𝑊𝑎𝑥𝑡 + 𝐻𝑎𝑦𝑡−1)
𝑦𝑡 = ℎ 𝑠𝑡 + 𝛽𝑏𝑡 + 𝑏0

T. Bohnstingl et al., ICASSP 2022; T. Bohnstingl et al., NeurIPS WS ENLSP 2021;
https://doi.org/10.1109/AICAS57966.2023.10168623 

https://doi.org/10.1109/AICAS57966.2023.10168623


Biologically-inspired learning



Biologically-inspired extension to Error Backpropagation (BP)
*Group Responsibility for Adjusting the Propagation of Error Signals

G. Dellaferrera et al. Nature Communications 2022
https://doi.org/10.1038/s41467-022-29491-2 

GRAPES* is an optimization strategy that relies on the notion of the 

node importance in propagating the error information during learning 

Accuracy Convergence rate

Gradient Descent Gradient Descent + GRAPES

Node importance:

21

GRAPES 
reduces 
Catastrophic 
Forgetting 

GRAPES 
improves the 
accuracy and 
convergence 
rate of BP

https://doi.org/10.1038/s41467-022-29491-2


The inner workings of 
Recurrent Neural Networks
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The forward path
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The forward path
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The forward path
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The forward path
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The forward path
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The backward path using Error 
Backpropagation through time (BPTT)
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The backward path using Error 
Backpropagation through time (BPTT)
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The backward path using Error 
Backpropagation through time (BPTT)
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The backward path using Error 
Backpropagation through time (BPTT)
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Backpropagation training suffers 
from at least three problems

32



BPTT training suffers from at 
least three problems

Input sequence needs to be truncated

– Not suitable for applications where the 
end-of-sequence is not known apriori

33



BPTT training suffers from at 
least three problems

Input sequence needs to be truncated

– Not suitable for applications where the 
end-of-sequence is not known apriori

Forward network operation gets interrupted

– Not suitable for applications where continuous 
learning while receiving new inputs is critical
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BPTT training suffers from at 
least three problems

Input sequence needs to be truncated

– Not suitable for applications where the 
end-of-sequence is not known apriori

Forward network operation gets interrupted

– Not suitable for applications where continuous 
learning while receiving new inputs is critical

Memory requirements grow with time

– The memory required to update the parameters of 
the network grow linearly with the sequence length

35



Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

– Parameters 𝜃𝑙 of neural network are modified 

based on the gradients computed by 
d𝐸

d𝜃𝑙

36



Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

– Parameters 𝜃𝑙 of neural network are modified 

based on the gradients computed by 
d𝐸

d𝜃𝑙
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Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

– Parameters 𝜃𝑙 of neural network are modified 

based on the gradients computed by 
d𝐸

d𝜃𝑙

– Gradient computations can be rearranged without 
loss of generality into a combination of Learning 

signals 𝐿𝑙
𝑡 and eligibility traces 𝑒𝑙

𝑡,𝜃𝑙
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Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

– Parameters 𝜃𝑙 of neural network are modified 

based on the gradients computed by 
d𝐸

d𝜃𝑙

– Gradient computations can be rearranged without 
loss of generality into a combination of Learning 

signals 𝐿𝑙
𝑡 and eligibility traces 𝑒𝑙

𝑡,𝜃𝑙

Eligibility traces represent temporal gradients

– Can be seen as activity information that every 
synapse maintains over time

Learning signals represent spatial gradients

– Can be seen as teaching signals from the 
environment targeting neurons
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Online Spatio-Temporal Learning (OSTL)
as alternative to BPTT

BPTT is a gradient-based training algorithm

– Parameters 𝜃𝑙 of neural network are modified 

based on the gradients computed by 
d𝐸

d𝜃𝑙

– Gradient computations can be rearranged without 
loss of generality into a combination of Learning 

signals 𝐿𝑙
𝑡 and eligibility traces 𝑒𝑙

𝑡,𝜃𝑙

Eligibility traces represent temporal gradients

– Can be seen as activity information that every 
synapse maintains over time

Learning signals represent spatial gradients

– Can be seen as teaching signals from the 
environment targeting neurons
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Training procedure with OSTL
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Training procedure with OSTL
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Training procedure with OSTL
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Training procedure with OSTL

Input sequence does not need to be truncated

– Suitable for applications where the end-of-sequence is 
not known apriori

Forward network operation does not get interrupted

– Suitable for applications where continuous learning while 
receiving new inputs is critical

Constant memory requirements*

Compatible with any RNN → We will show a demo

44T. Bohnstingl et al. TNNLS 2020
https://doi.org/10.1109/TNNLS.2022.3153985  

https://doi.org/10.1109/TNNLS.2022.3153985


In-memory computing using 
neuromorphic hardware
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Beyond von Neumann Computing

© 2021  IBM Corporation A. Sebastian et al., Nature Nanotechnology 2020
https://doi.org/10.1038/s41565-020-0756-8 

Compute in-memory

https://doi.org/10.1038/s41565-020-0756-8


Phase-Change Memory (PCM)

A nanometric volume of phase change material 
placed between two electrodes

– Different geometries possible, 
so-called mushroom cells are commonly used

Information is stored in terms of the atonic 
arrangements (phase configuration)

– Amorphous phase: 
highly disordered and high resistive

– Polycrystalline phase: 
highly ordered and low resistive

PCM is essentially an analog storage device

– Non-idealities limit the amount of resistance levels

47

4747

SET

RESET



Spiking Neurons can be realized 
with PCM devices

48

4848

The neuronal membrane potential of an artificial 
neuron is stored using PCM devices

I&F dynamics emulated by the physical properties 
of the device

Stochasticity enables computation using 
populations of phase-change neurons 

T. Tuma et al., Nature Nanotech 2016
https://doi.org/10.1038/nnano.2016.70 

“… and fire” after reaching a conductance 
threshold. Then the device is reset.

“Integrate… ” by successive 
application of crystallizing pulses

https://doi.org/10.1038/nnano.2016.70


S. Woźniak et al., Nature Machine Intelligence 2020 
https://doi.org/10.1038/s42256-020-0187-0
M. Le Gallo et al. Nature Electronics 2023 
https://doi.org/10.1038/s41928-023-01010-1

IBM Analog AI chip

1 M PCM devices 

  
 

  
 

  
 

  

  

  

           

             

          

                                                  

            

    

     

                     

    

     

    

     

   

    

     

                     

    

     

    

     

   

  
 
             

  
  
 

     

Music prediction inference over 4 days

weight cloning
(w/o drift compensation)

weight cloning
(drift compensation)

in-the-loop training

49

SNUs and in-memory computing 

Easy integration of SNUs into emerging in-memory 
computing architectures

– Weights of SNU network represented with PCM devices

Training with hardware-in-the-loop compensates for 
imperfections

– Noise and drift effects can largely be alleviated

Unified HW design approach supporting both ANNs and 
SNNs

– Neuromorphic hardware hosts digital processing unit 

https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1038/s41928-023-01010-1


Application example
Speech recognition



Speech presents the most natural way 
for humans to communicate

51



Vast number of usecases – 
Big challenge for machines

52

Machine learning approaches face severe challenges

– Large datasets are required

– High computational cost for training

– Need to deal with harsh environments



Recurrent Neural Network Transducer (RNN-T) – 
A state-of-the-art machine learning network

53A. Graves, arXiv 2012
https://doi.org/10.48550/arXiv.1211.3711   

Common architecture in machine learning

– Sequence-to-sequence transduction

– Suited for low-latency applications

– Deployed in cloud services and on hand-held 
devices

Encoder network acts as feature encoder

– 6 layers of bidirectional LSTMs

Prediction network acts as language model

– 1 layer of unidirectional LSTMs

https://doi.org/10.48550/arXiv.1211.3711


Recurrent Neural Network Transducer (RNN-T) – 
A state-of-the-art machine learning network

54

Common architecture in machine learning

– Sequence-to-sequence transduction

– Suited for low-latency applications

– Deployed in cloud services and on hand-held 
devices

Encoder network acts as feature encoder

– 6 layers of bidirectional LSTMs

Prediction network acts as language model

– 1 layer of unidirectional LSTMs



RNN-T architecture

55

6 bi-directional 
LSTM layers

Output: Probability of a speech transcript 

1 uni-directional 
LSTM layer

Joint network producing 
the output probabilities

Input: Preprocessed audio
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RNN-T architecture 
solely with SNUs



Neural diversity reduces computational cost of RNN-T

57

Prediction Encoder WER (%) # Multiplications tinf (s)

LSTM LSTM 12.7 56M 2.78

SNU-a LSTM 12.0 (-0.7%) 55M 2.78

LSTM SNU-o 14.7 (+2.0%) 29M (-48%) 1.76 (-37%)

SNU-o SNU-o 14.9 (+2.2%) 28.3M (-50%) 1.66 (-40%)

T. Bohnstingl et al. ICASSP 2022 
https://doi.org/10.1109/ICASSP43922.2022.9747499  

https://doi.org/10.1109/ICASSP43922.2022.9747499


Speech-to-Text Demo – 
SNUs outperform LSTMs

58



Conclusion

59

The SNU allows to incorporate dynamics from biology into deep learning

Biology leverages a wide variety of mechanisms for compute

– Diverse types of neuron and synapses provide richer network dynamics

Biology employs more efficient information encoding schemes

Neuroscience can enhance state-of-the-art learning algorithms

Biologically-inspired neural networks can work with large-scale machine 
learning models

– Diverse types of neuron and synapses provide richer network dynamics

All modelled in the NeuroAI Toolkit

Information

encoding

Neural

dynamics

Neural

connectivity

Reasoning

Learning

Applications

NeuroAI Toolkit

https://research.ibm.com/projects/neuromorphic-computing

https://research.ibm.com/projects/neuromorphic-computing
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