

## Fast Inference of Decision Forests on FPGAs with **conifer** - a tutorial



# EDGE MLSCHOOL

26/9/24

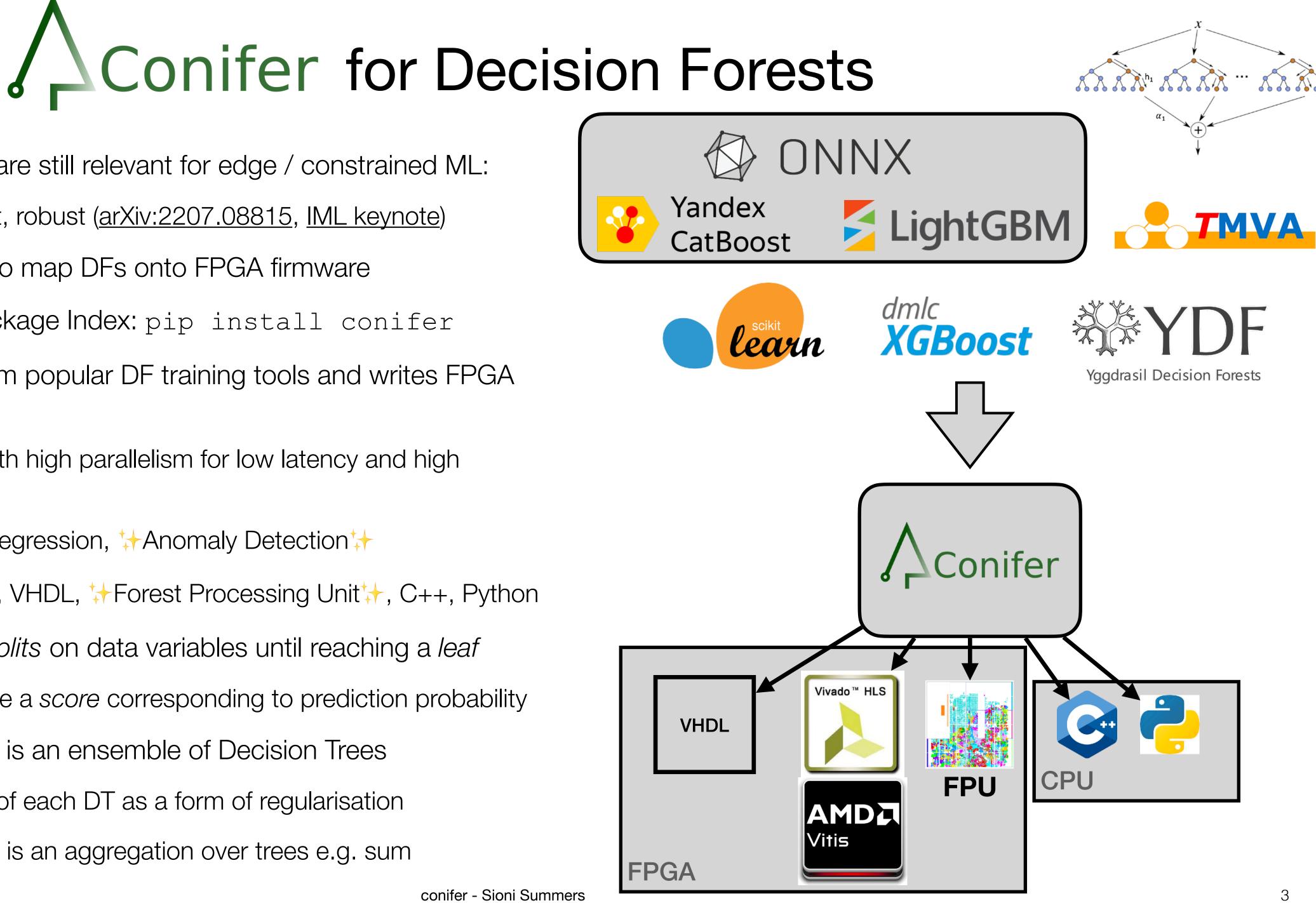
Sioni Summers



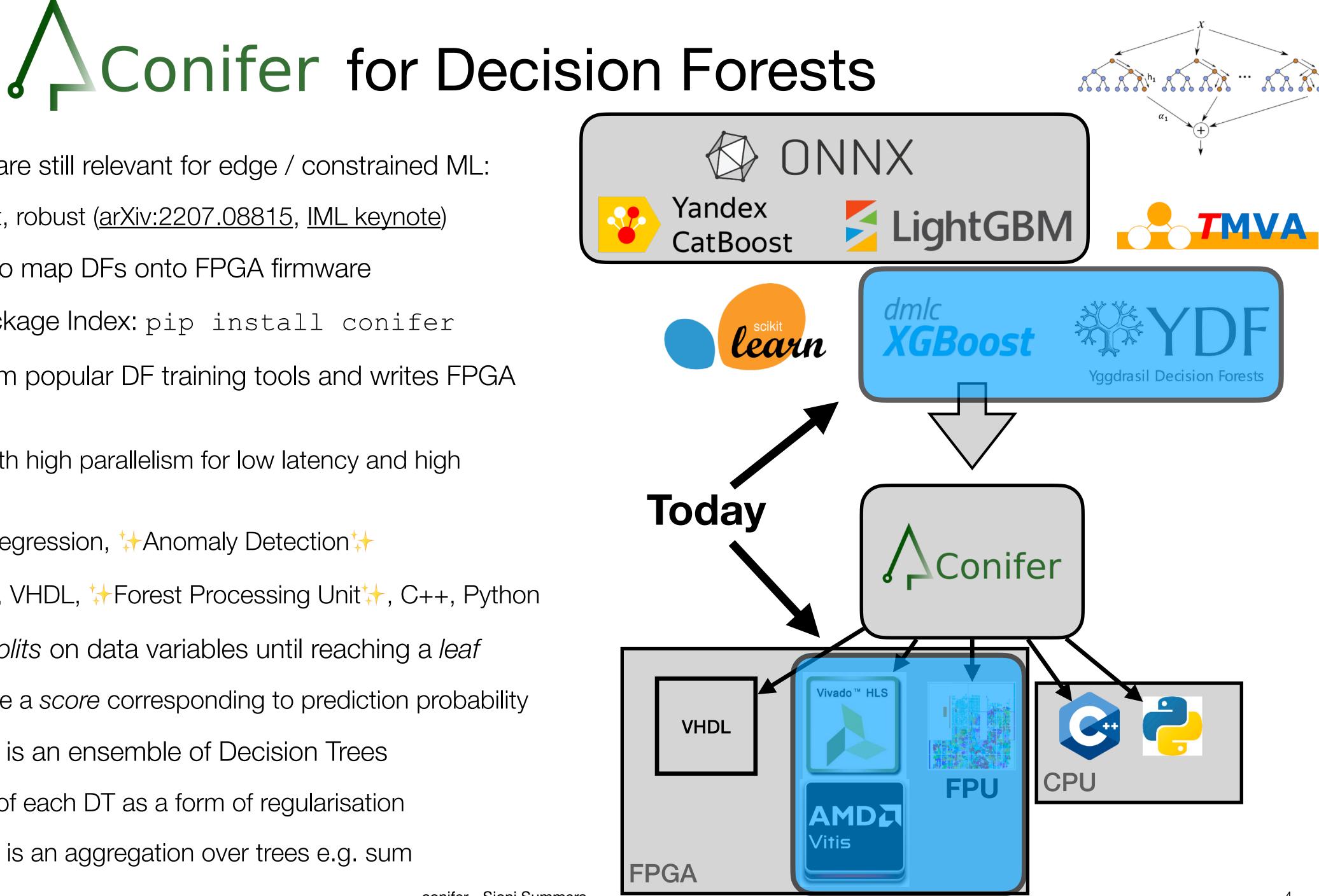
## Introduction

- Today's tutorial focusses on using conifer to make fast inference:
  - Targeting low latency for custom hardware (trigger / custom flow)
  - Targeting high throughput for edge devices (accelerator flow)
- Note: there is a conifer / BDT section of the hls4ml tutorial, but this is more up to date!
  - hls4ml tutorial conifer section will be updated with Vitis HLS soon
- The notebooks will be shown as a demo only
  - They are available here: <u>https://github.com/thesps/conifer-tutorial/tree/smarthep</u>
- Refer to this talk at FPGA Developers Forum for a look "under the canopy"
- Refer to this tutorial for longer exercises and introduction to HLS



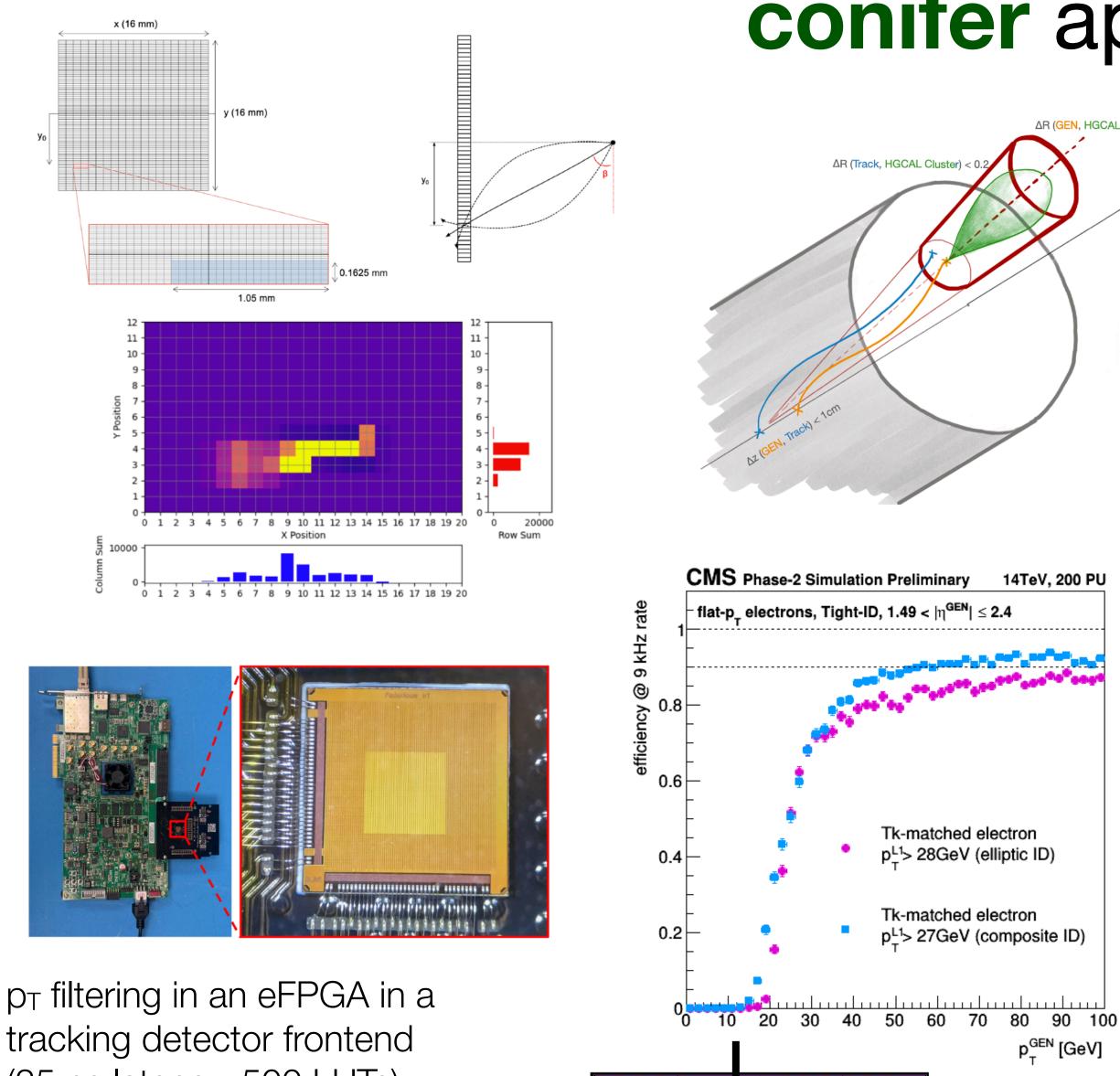


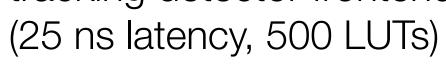
- Decision Forests are still relevant for edge / constrained ML:
  - Fast, lightweight, robust (arXiv:2207.08815, IML keynote)
- **conifer** is a tool to map DFs onto FPGA firmware
  - On Python Package Index: pip install conifer
- conifer reads from popular DF training tools and writes FPGA projects
  - Implemented with high parallelism for low latency and high throughput
  - Classification, Regression, Anomaly Detection
  - Backends: HLS, VHDL, <sup>+</sup>Forest Processing Unit<sup>+</sup>, C++, Python
- A Decision Tree *splits* on data variables until reaching a *leaf* 
  - Leaves associate a *score* corresponding to prediction probability
- A Decision Forest is an ensemble of Decision Trees
  - Randomisation of each DT as a form of regularisation
  - Ensemble score is an aggregation over trees e.g. sum



- Decision Forests are still relevant for edge / constrained ML:
  - Fast, lightweight, robust (arXiv:2207.08815, IML keynote)
- **conifer** is a tool to map DFs onto FPGA firmware
  - On Python Package Index: pip install conifer
- conifer reads from popular DF training tools and writes FPGA projects
  - Implemented with high parallelism for low latency and high throughput
  - Classification, Regression, Anomaly Detection
  - Backends: HLS, VHDL, + Forest Processing Unit +, C++, Python
- A Decision Tree *splits* on data variables until reaching a *leaf* 
  - Leaves associate a *score* corresponding to prediction probability
- A Decision Forest is an ensemble of Decision Trees
  - Randomisation of each DT as a form of regularisation
  - Ensemble score is an aggregation over trees e.g. sum

conifer - Sioni Summers

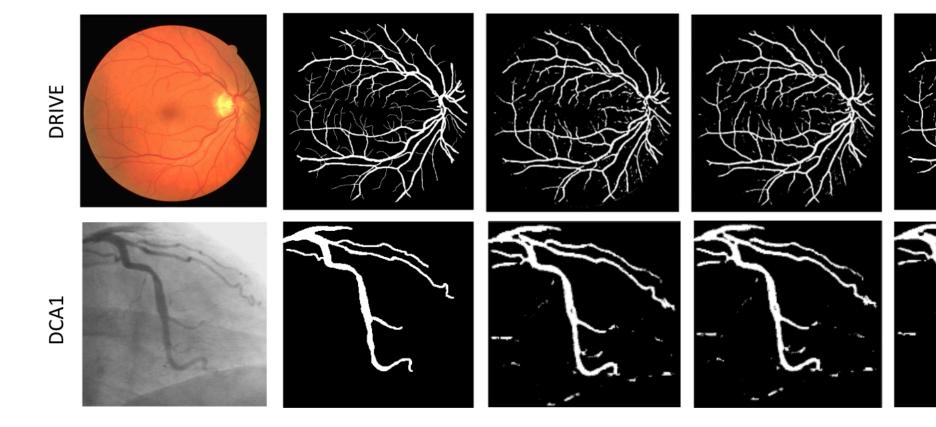




26 September 2024

## **conifer** applications

ΔR (GEN, HGCAL Cluster) < 0.2

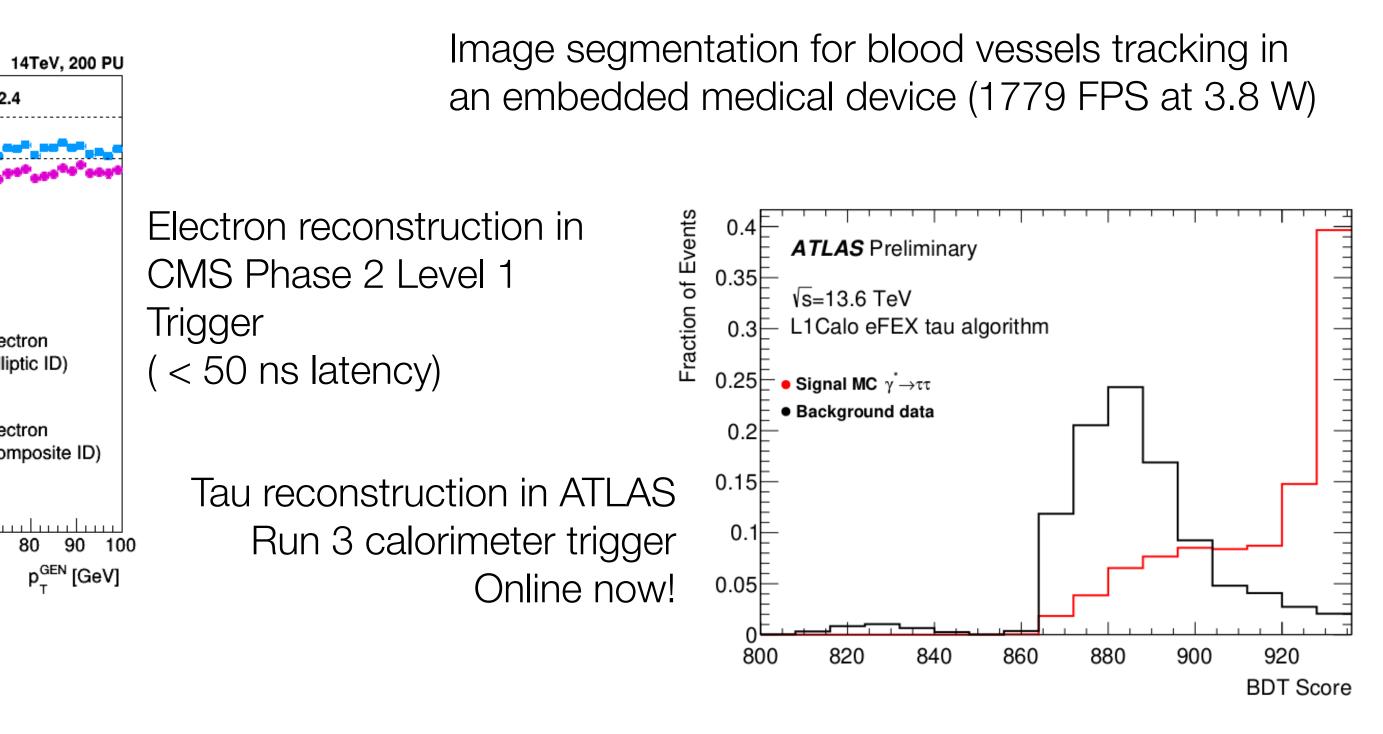


GBDT-7x7

Image

Ground truth

MLP-7x7



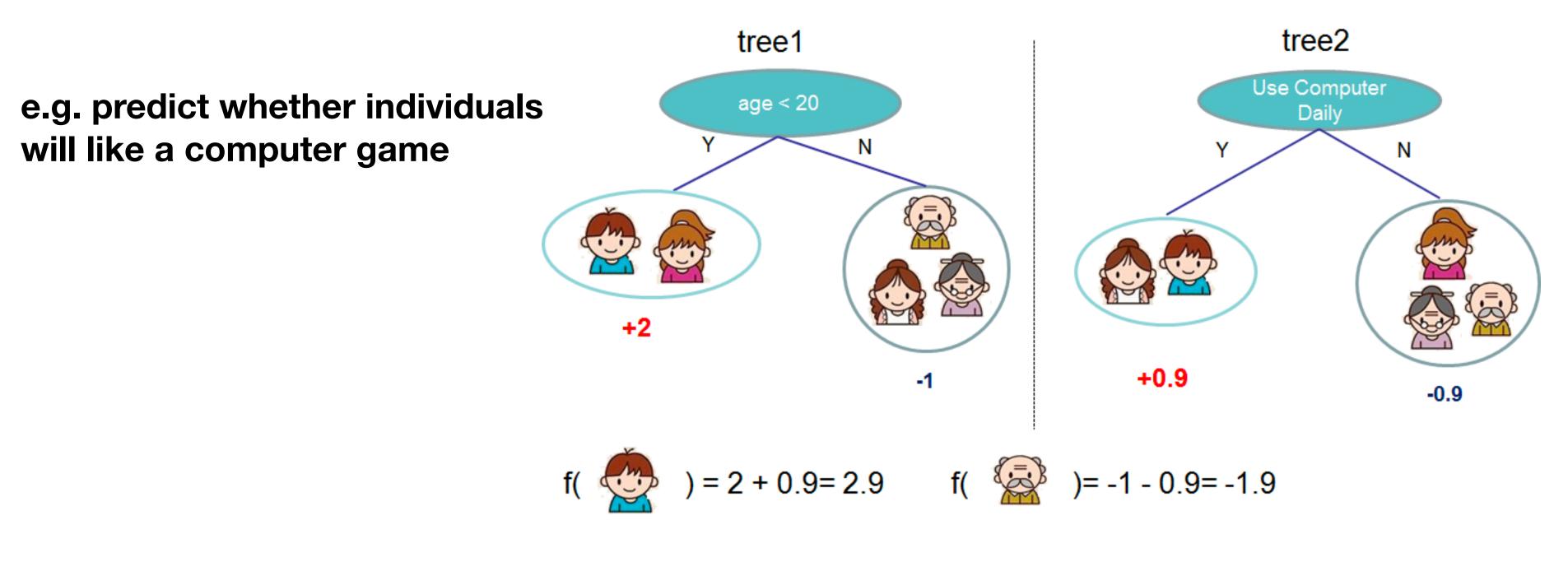


### CNN-7x7



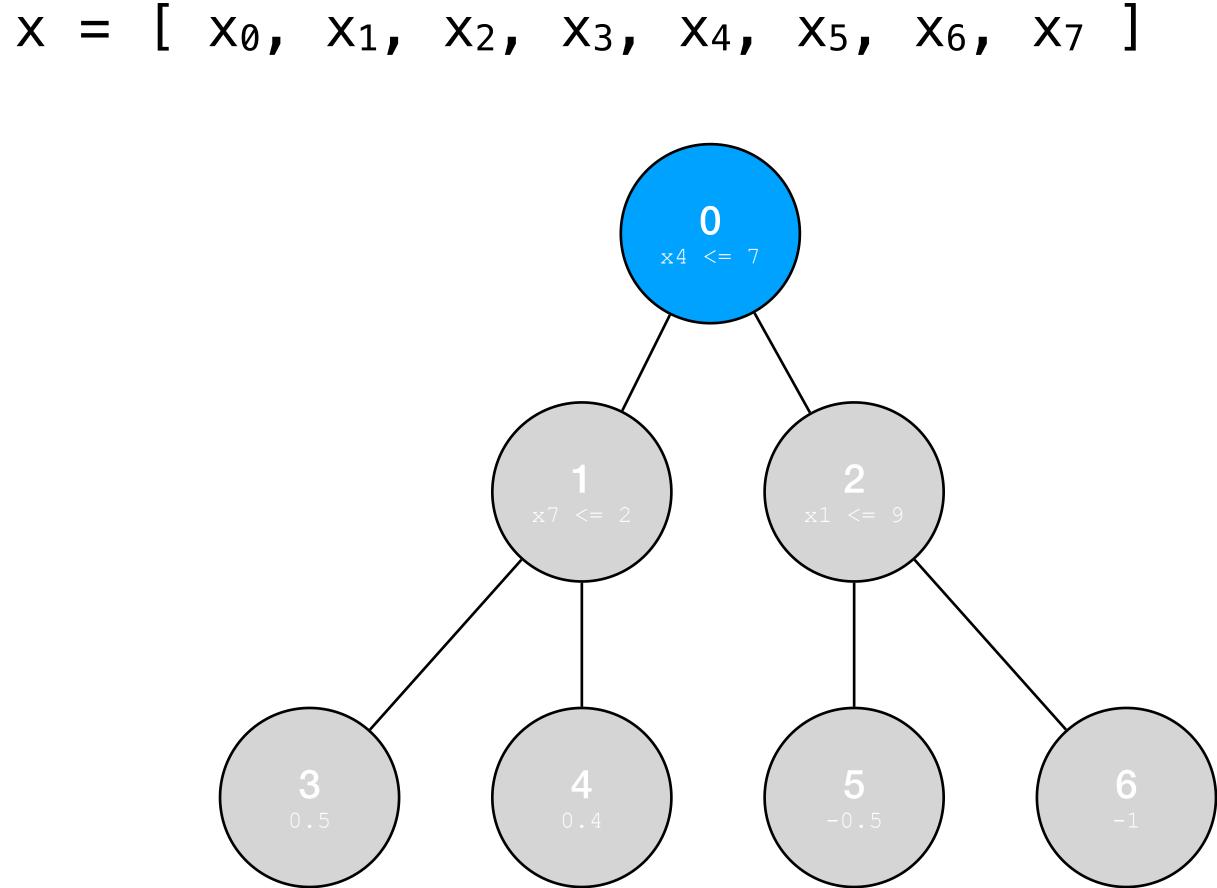
## Quick BDT Introduction

- Using XGBoost's Elements of Supervised Learning Introduction
- Train a **model** on training data to predict target variable y from features x
- A Boosted Decision Tree model is an ensemble of Decision Trees
- The splits of each Decision Tree are chosen based on the training objective function e.g. mean squared error
  - $L(\Theta) = \Sigma(y_i \hat{y}_i)^2$  where  $y_i$  are our truth labels and  $\hat{y}_i$  are the model predictions
- In an ensemble each learner (tree) is relatively weak, but the aggregation is a stronger prediction



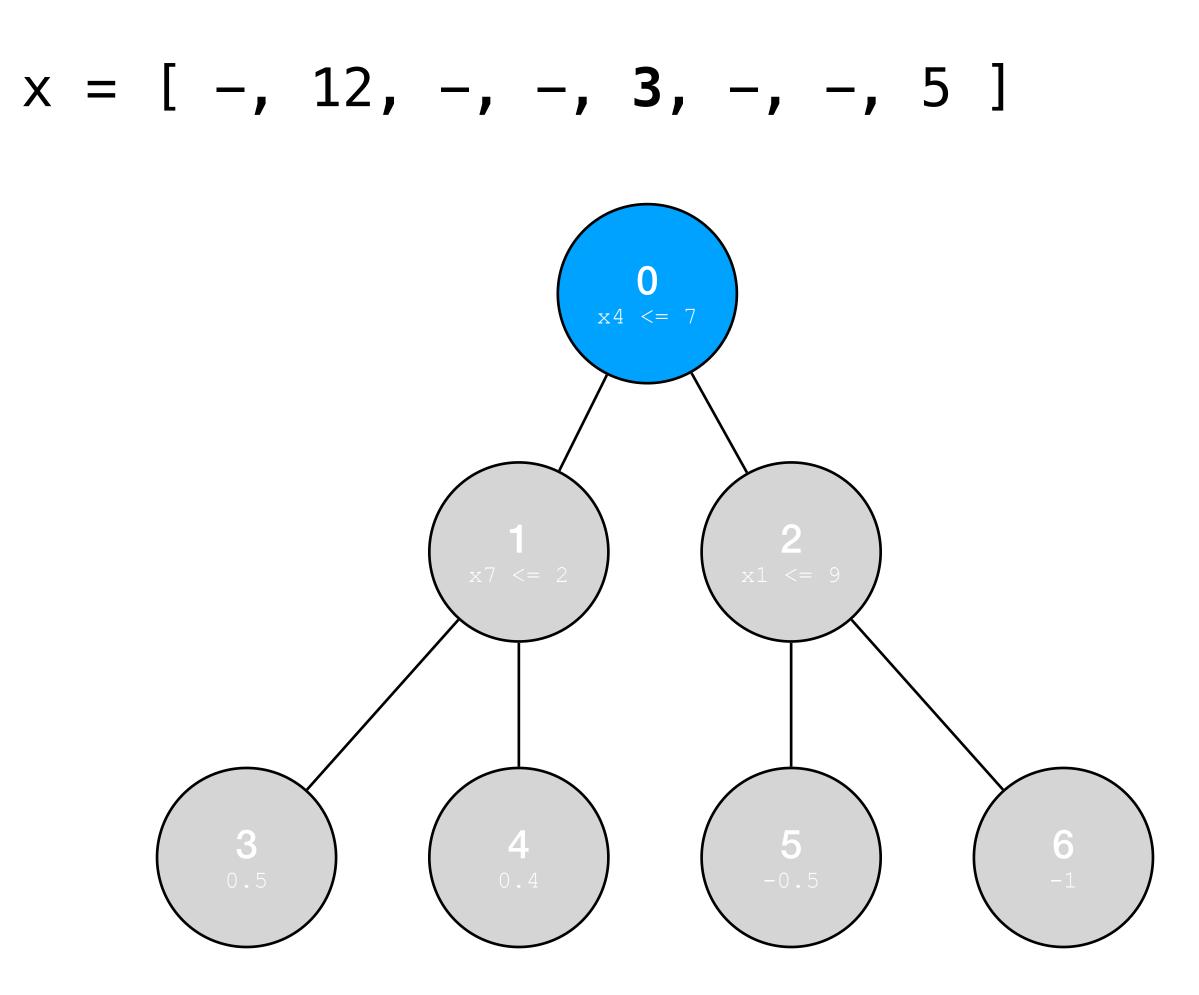


• Start at the root node - compare the selected feature with the threshold, go left or right depending on result



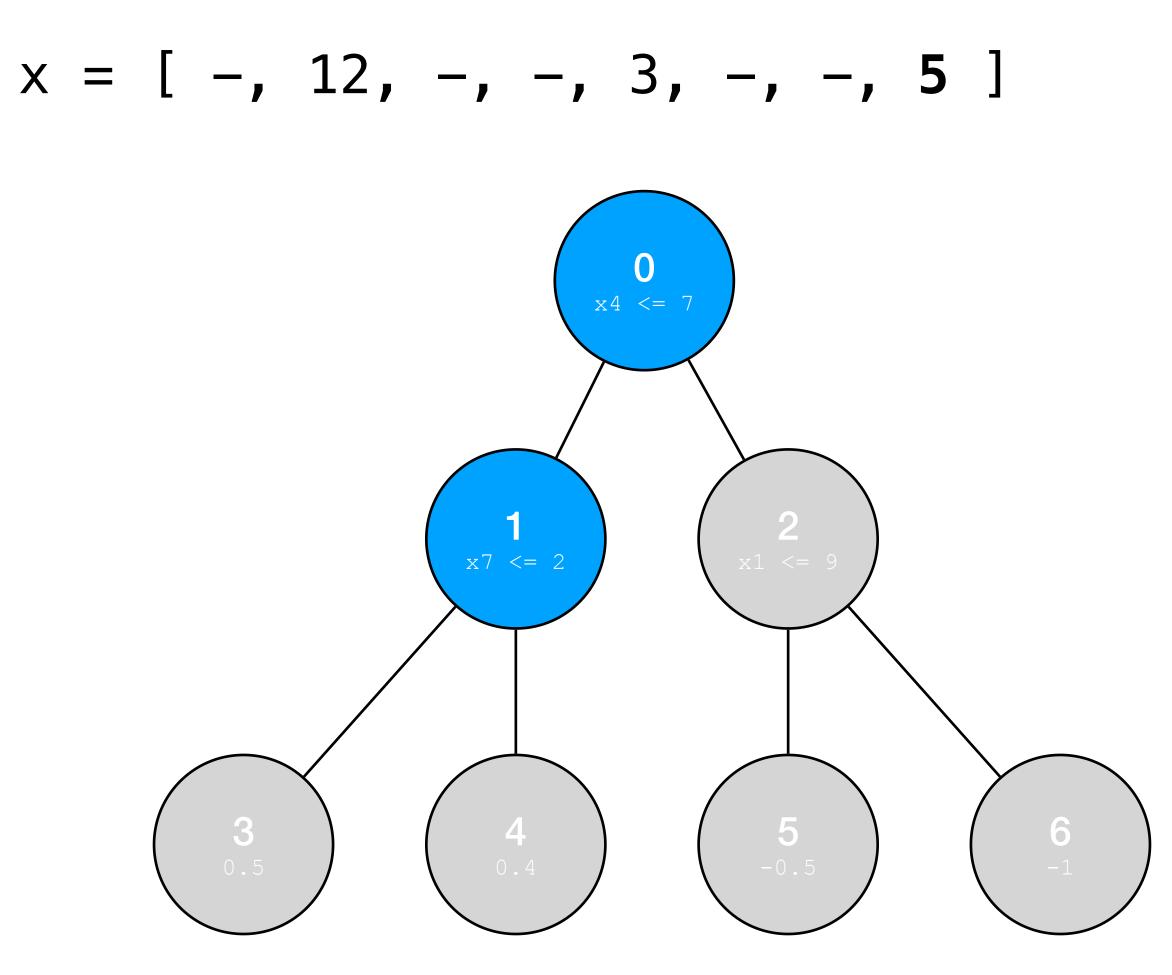


• Start at the root node - compare the selected feature with the threshold, go left or right depending on result



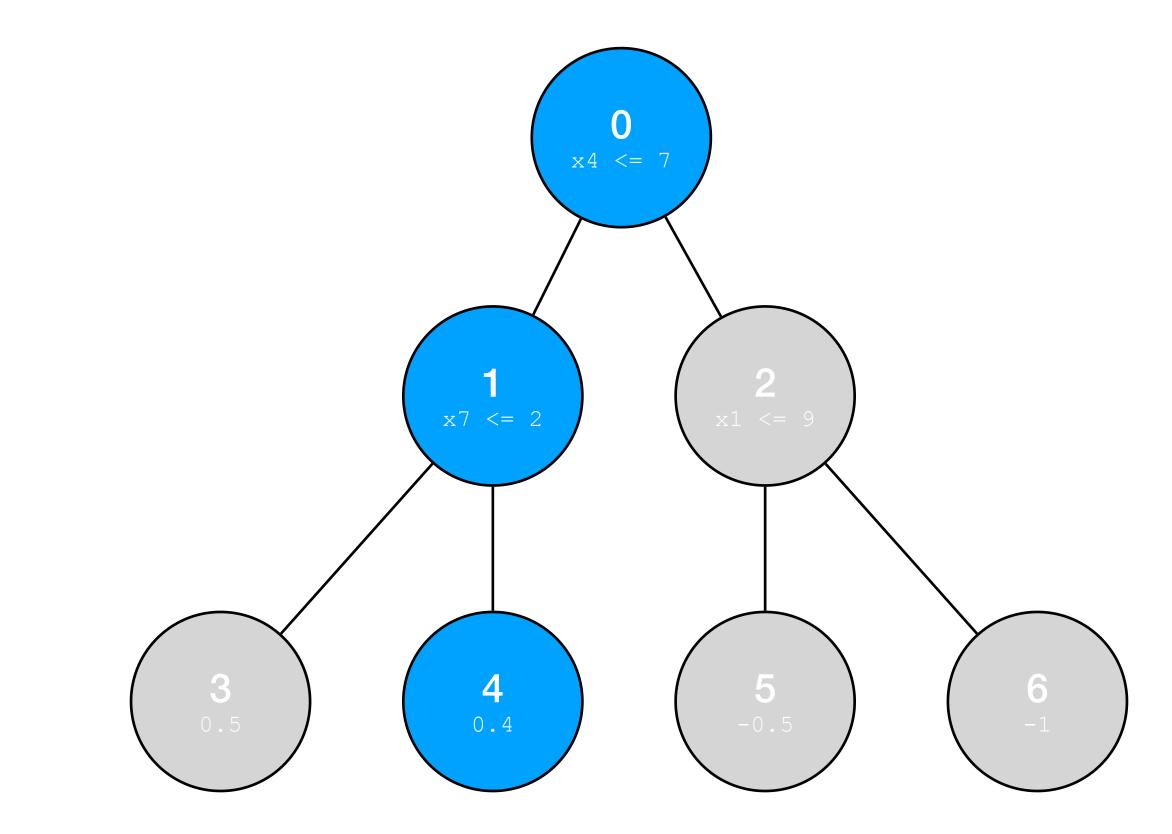


- Start at the root node compare the selected feature with the threshold, go left or right depending on result
- Continue until reaching leaf compare the selected feature with the threshold, go left or right depending on result





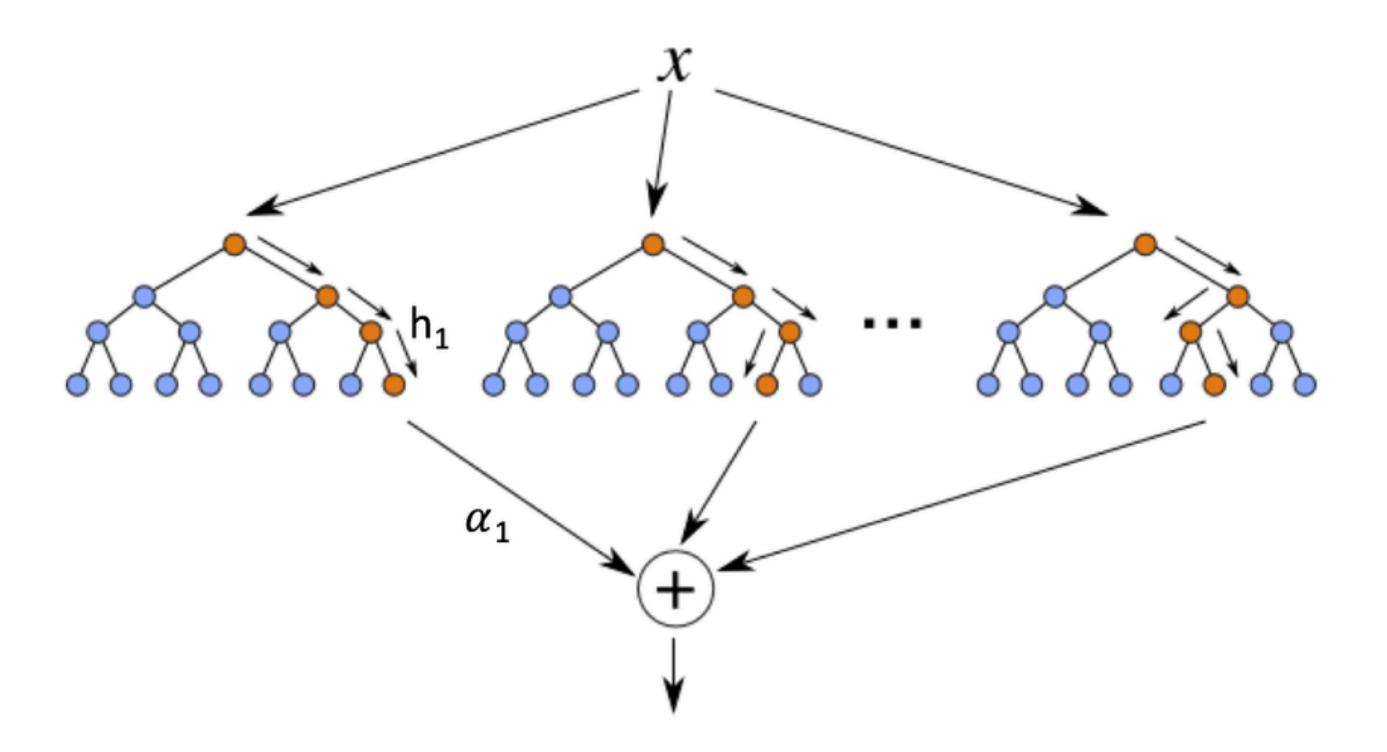
- Start at the root node compare the selected feature with the threshold, go left or right depending on result
- Continue until reaching leaf compare the selected feature with the threshold, go left or right depending on result
- The value of the terminal leaf is the tree prediction





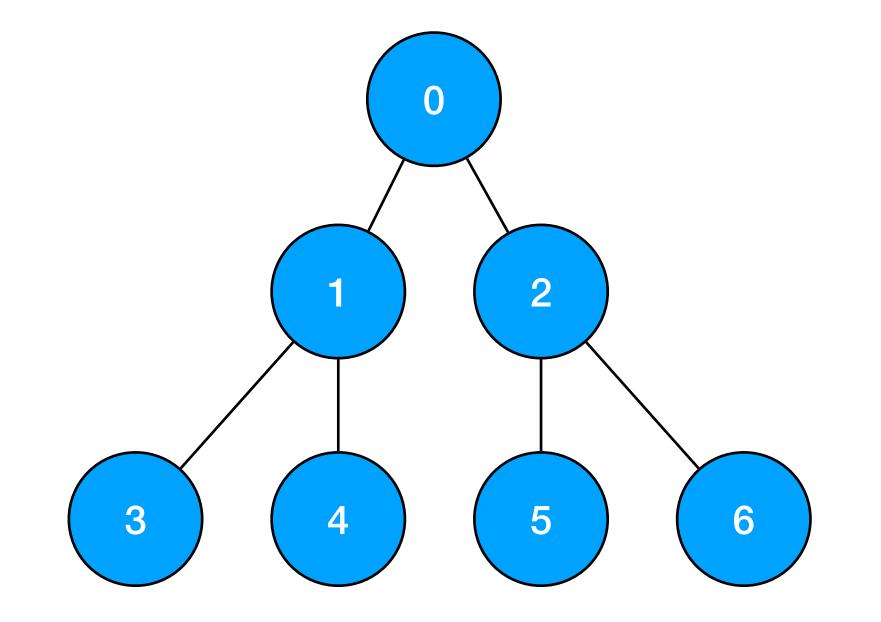
## **Decision Forest Inference**

- Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction
- Apply the inverse of the training loss function to obtain class probabilities

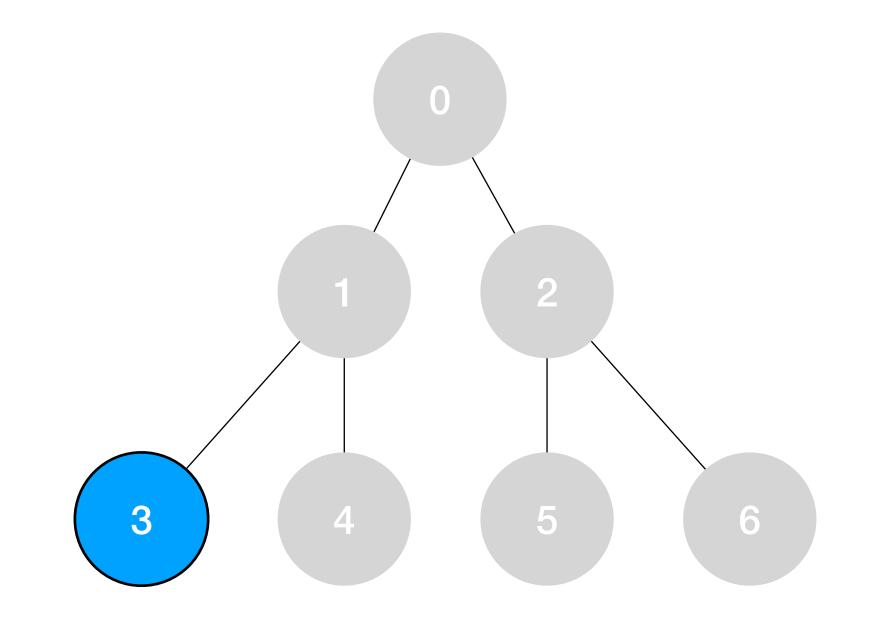


11

- For a tree: find which leaf is reached given a data sample x
- 'Invert' the problem: for each node ask "does the decision path reach this node?" starting at the leaves

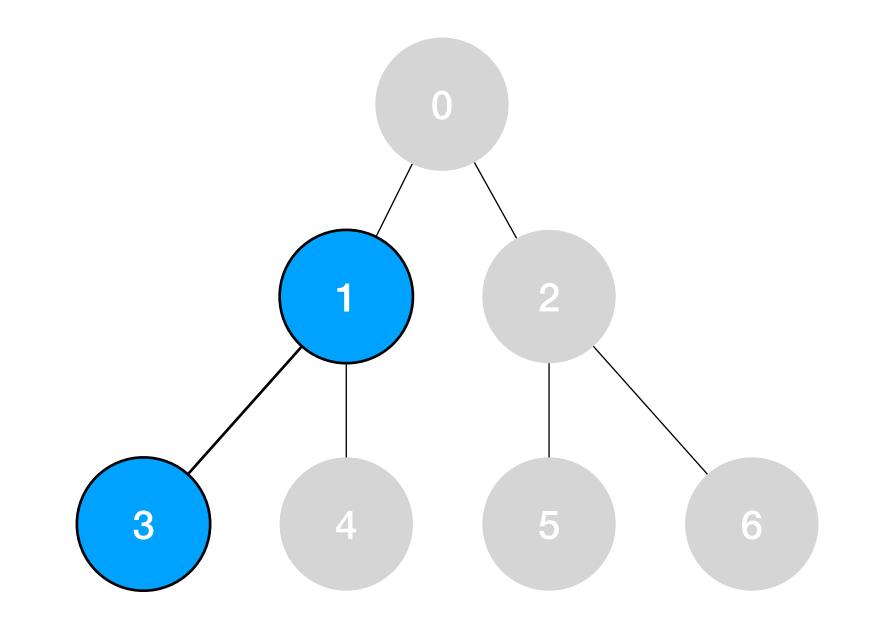


- For a tree: find which leaf is reached given a data sample x
- 'Invert' the problem: for each node ask "does the decision path reach this node?" starting at the leaves
- For leaf node '3':
  - The decision path reaches '3' if: the decision path reached '1' AND the comparison at '1' goes 'left'



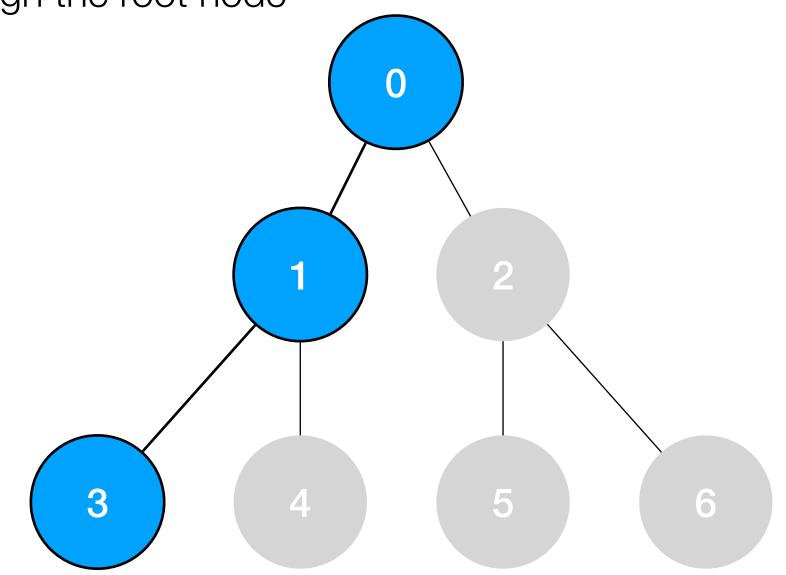
13

- For a tree: find which leaf is reached given a data sample x
- 'Invert' the problem: for each node ask "does the decision path reach this node?" starting at the leaves
- For leaf node '3':
  - The decision path reaches '3' if: the decision path reached '1' AND the comparison at '1' goes 'left'
- For node '1':
  - The decision path reaches '1' if: the decision path reached '0' AND the comparison at '0' goes 'left'



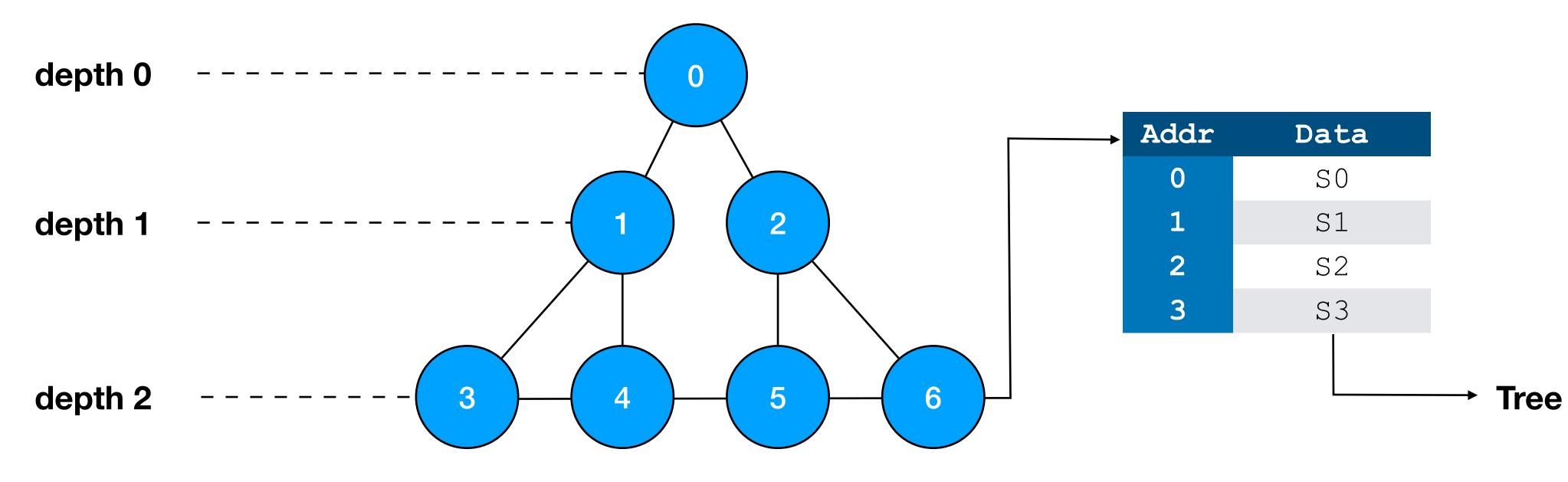
14

- For a tree: find which leaf is reached given a data sample x
- 'Invert' the problem: for each node ask "does the decision path reach this node?" starting at the leaves
- For leaf node '3':
  - The decision path reaches '3' if: the decision path reached '1' AND the comparison at '1' goes 'left'
- For node '1':
  - The decision path reaches '1' if: the decision path reached '0' AND the comparison at '0' goes 'left'
- For node '0':
  - The decision path always passes through the root node

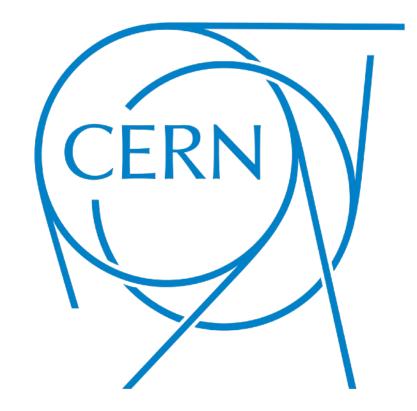




- For a tree: find which leaf is reached given a data sample x
- 'Invert' the problem: for each node ask "does the decision path reach this node?" starting at the leaves
- We can **parallelise** this over paths by brute force: evaluate all nodes at the same depth simultaneously
- We can pipeline this over different data: each node can do a comparison on new data with II=1
- For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE
- Concatenate the boolean for each leaf node  $\rightarrow$  select the value corresponding to the leaf



### Tree score





### Part 1: basics

## Part 1: basics

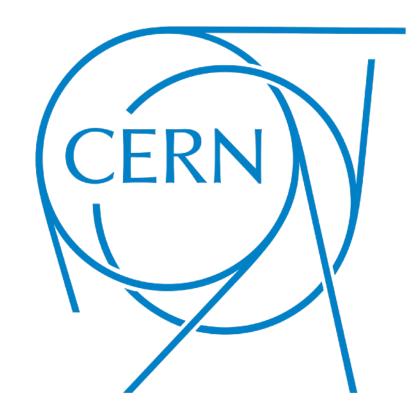
- These notebooks are at <u>https://github.com/thesps/conifer-tutorial/tree/smarthep</u>
  - Training a BDT with XGBoost
  - Converting it to conifer with Xilinx HLS backend and fixed point representation
  - Emulation on CPU
  - Synthesis to FPGA for standalone IP (to be integrated into a custom design)
  - Synthesis to FPGA for pynq-z2 card
- My local setup:
  - Desktop PC for building FPGA firmware (good CPU and much RAM)

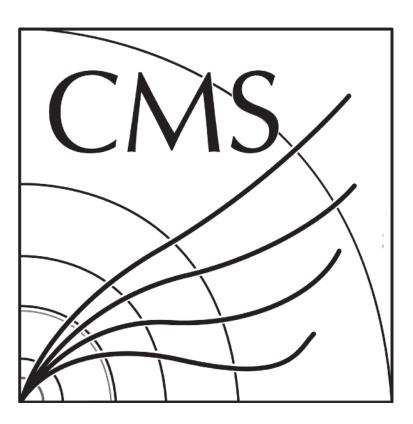
    - Vitis HLS and Vivado 2024.1
  - pynq-z2 board
    - Base pyng image additionally with conifer 1.5 installed

- conifer master branch at 5ac32ec (conifer-1.6.dev10+g5ac32ec) - ahead of 1.5 with profiling and anomaly detection

conifer - Sioni Summers



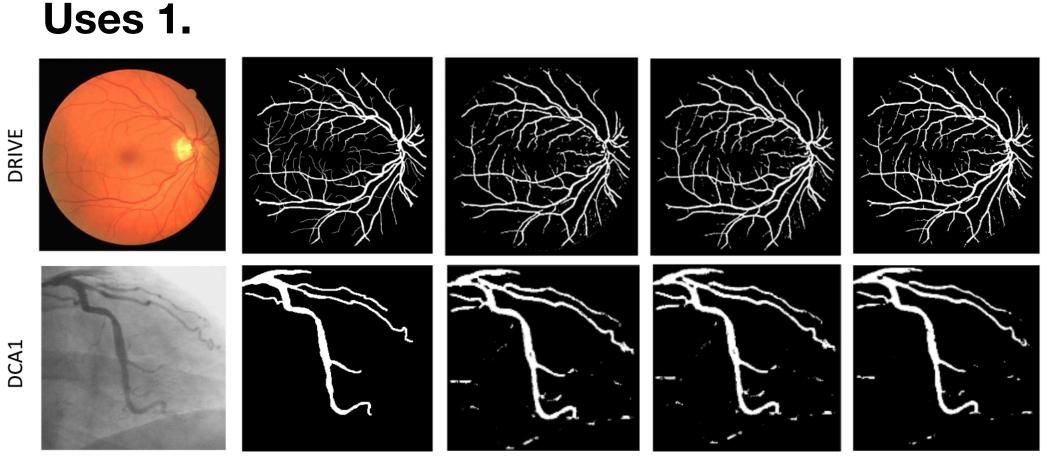




### Part 2: Deployment

## conifer deployment options

- There are five main ways to deploy conifer models to production:
  - Synthesize the HLS backend code  $\rightarrow$  produce RTL  $\rightarrow$  integrate it into some full design with RTL or Block Design
  - Call the HLS function from some other HLS, synthesize that  $\rightarrow$  integrate it into some bigger design 2.
  - Use the VHDL backend  $\rightarrow$  integrate it into some bigger design 3.
  - Synthesize the HLS backend code with a "board config" for a supported board  $\rightarrow$  build bitfile  $\rightarrow$  run with conifer runtime 4.
  - Download or build a Forest Processing Unit bitfile  $\rightarrow$  run with conifer runtime 5.

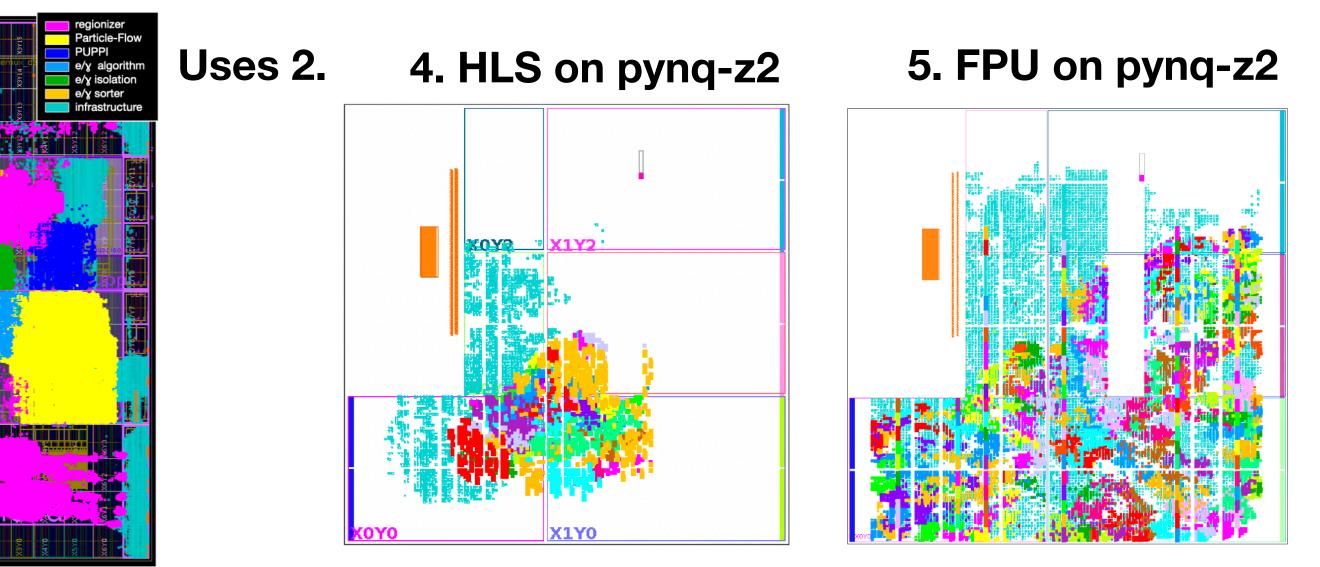


### Image

- Ground truth
- GBDT-7x7

MLP-7x7

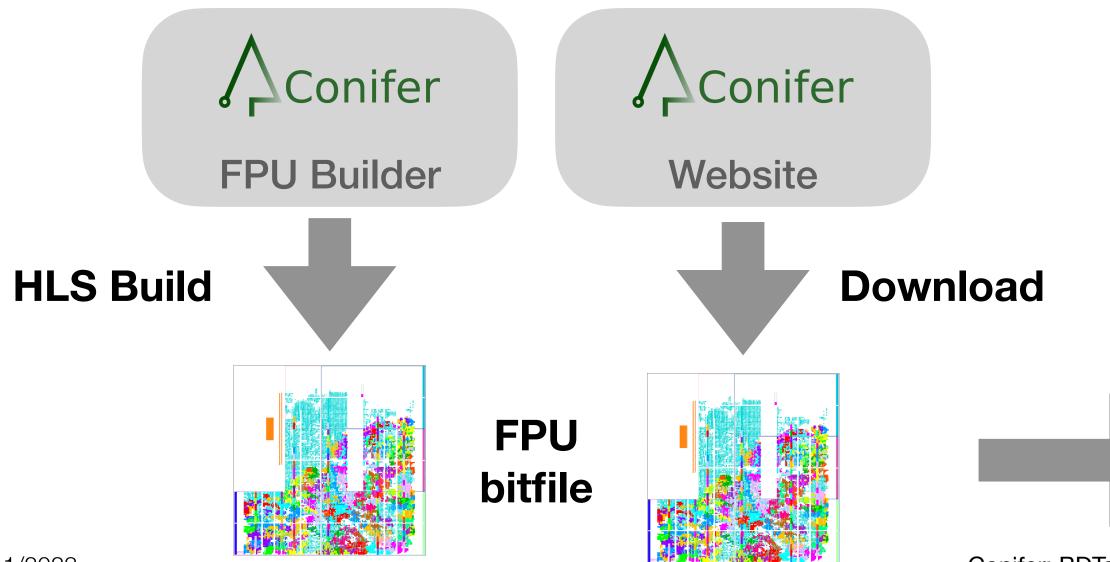
CNN-7x7

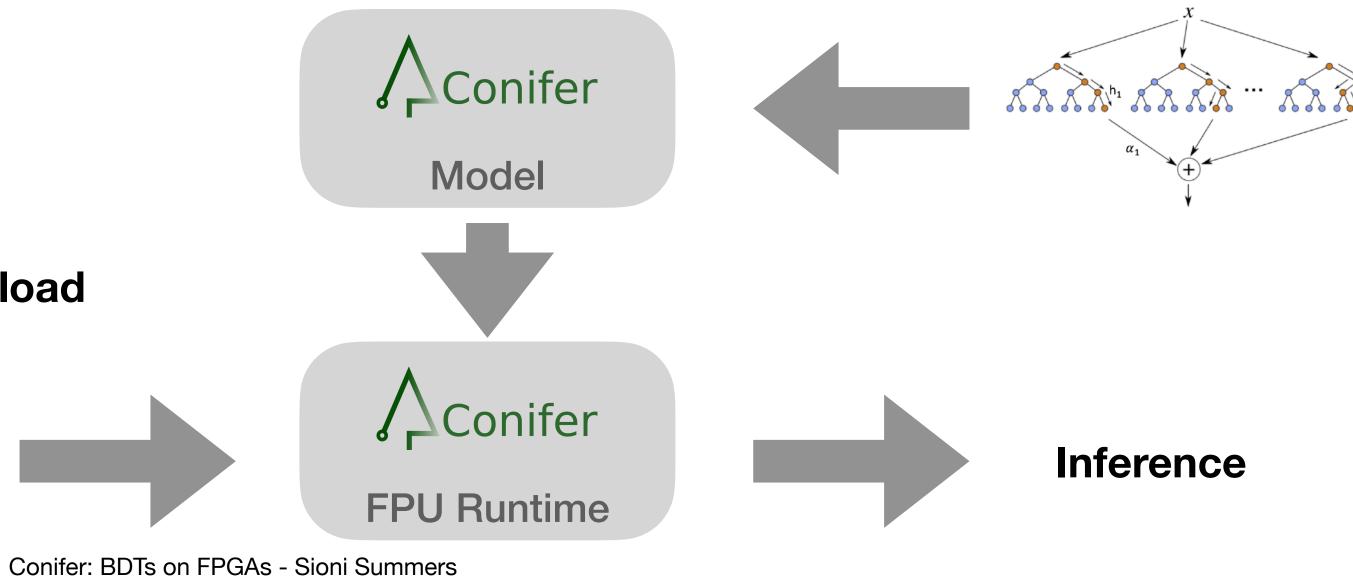




## Forest Processing Unit

- So far we looked at 'static' BDT evaluation
  - One trained model  $\rightarrow$  one HLS function  $\rightarrow$  one IP  $\rightarrow$  one bitfile
  - So if the model changes at all, we need to redo everything  $\rightarrow$  takes hours!
- In next section we will look at a more dynamic & reconfigurable implementation called "Forest Processing Unit" (FPU)
- Since one bitfile supports inference of many models, we can make the bitfiles for common hardware in advance
  - Check the downloads section of the conifer website: https://ssummers.web.cern.ch/conifer/downloads/
  - There are binaries for Zyng-based boards like pyng-z2, ultra96v2, Kria, and also Alveo boards like U200









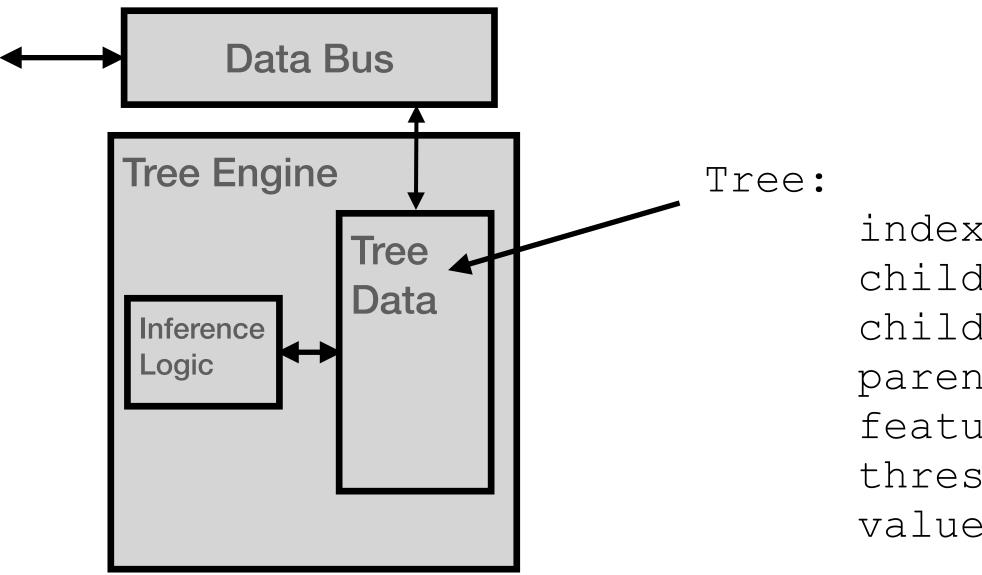
## FPU Design

- We would like a base design that can perform inference of ~any BDT model afterwards (within some limits)
- And we would like to take advantage of the FPGA to get good performance (fast inference)
- Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model
- Idea 2: parallelise over trees by having independent 'Tree Engines', aggregate their output for the model



## FPU Design

- Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model over a bus
- Map Decision Trees onto memory
  - Target FPGA Block RAMS: many independent small memories
- Store one node at each address, child indices are pointers to other addresses
- Logic starts inference at the root node and iterates until reaching a leaf

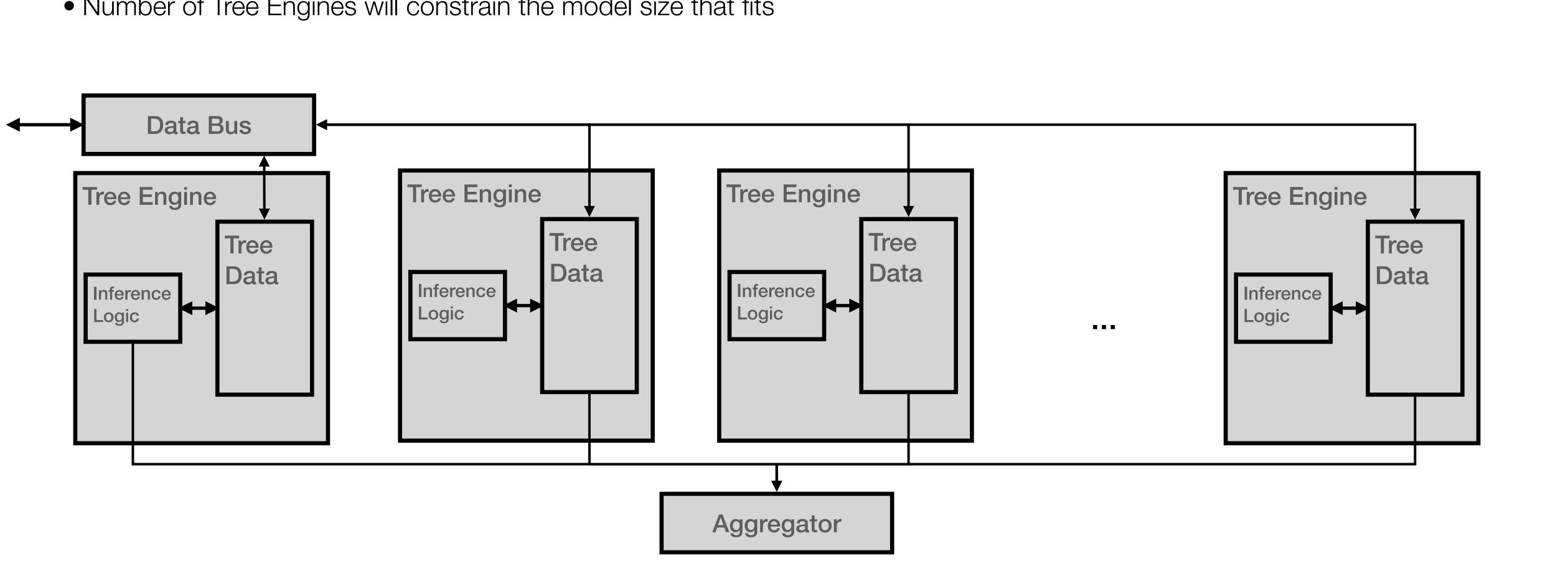


| X          | : | [  | 0,  | 1,  | 2,  | З,   | 4,          | 5,          | 6]  |
|------------|---|----|-----|-----|-----|------|-------------|-------------|-----|
| dren_left  | : | [  | 1,  | 3,  | 5,  | -2,  | -2 <b>,</b> | -2,         | -2] |
| dren_right | • | [  | 2,  | 4,  | 6,  | -2,  | -2,         | <b>-</b> 2, | -2] |
| nt         | • | [  | -1, | 0,  | 0,  | 1,   | 1,          | 2,          | 2]  |
| ure        | • | [  | 4,  | 7,  | 1,  | -2,  | -2,         | <b>-</b> 2, | -2] |
| shold      | • | [  | 7,  | 2,  | 9,  | -2,  | -2,         | <b>-</b> 2, | -2] |
| е          | • | [- | -1, | -1, | -1, | 0.5, | 0.4,        | -0.5,       | -1] |



## FPU Design

- Idea 2: parallelise over trees by having independent 'Tree Engines', aggregate their output for the model
- Put as many Tree Engines as will fit in the FPGA
- Number of Tree Engines will constrain the model size that fits



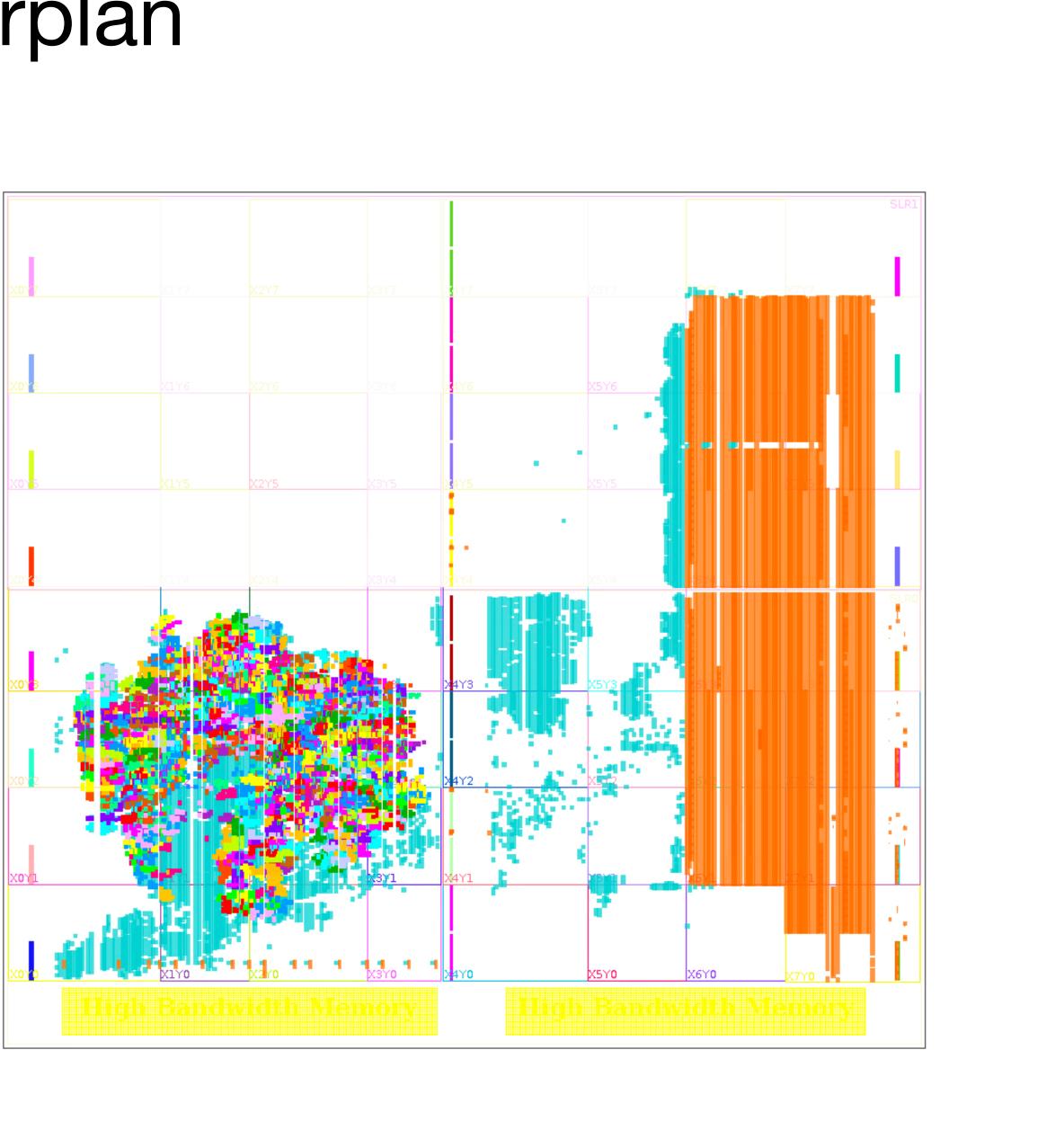




- FPU with 200 Tree Engines in Alveo U50
  - Each TE is highlighted in colour (with a repeating cycle)
- BRAMs for nodes are in columns
- Logic near BRAMs is TE inference logic

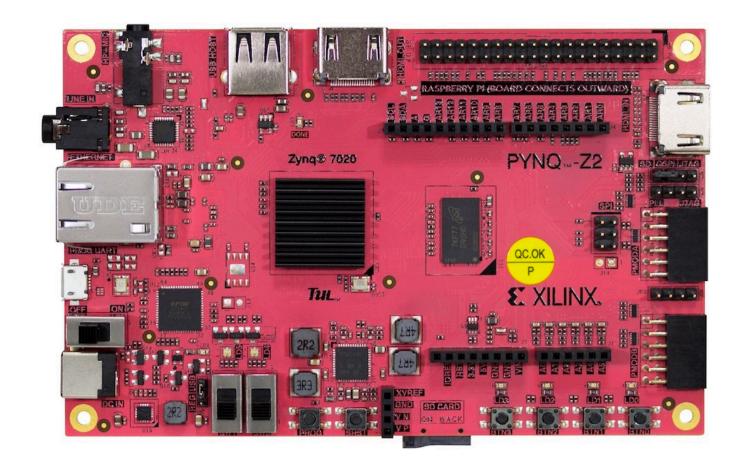


## FPU Floorplan

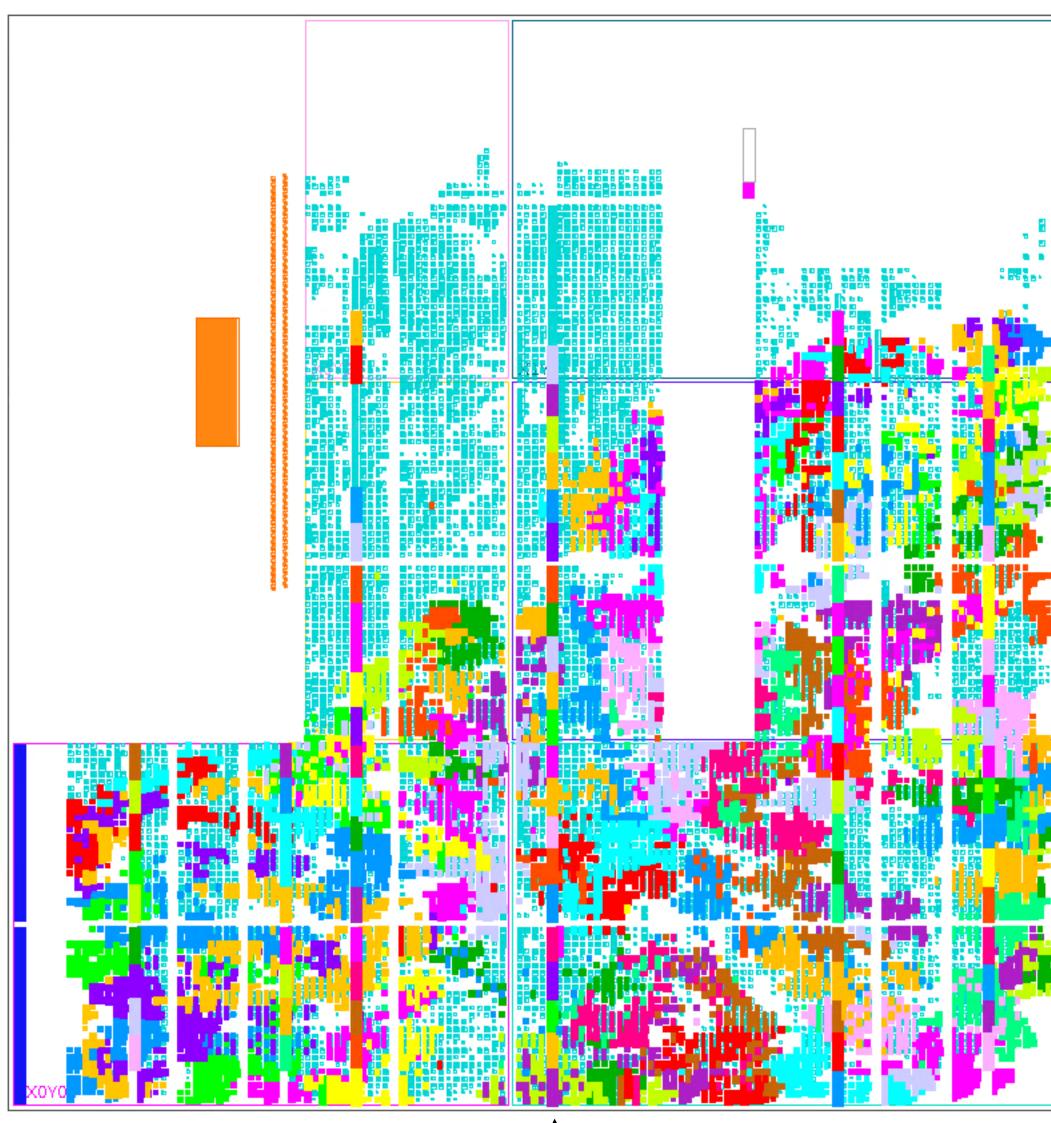


25

- FPU with 100 Tree Engines in pynq-z2
  - Each TE is highlighted in colour (with a repeating cycle)
- BRAMs for nodes are in columns
- Logic near BRAMs is TE inference logic



## FPU Floorplan



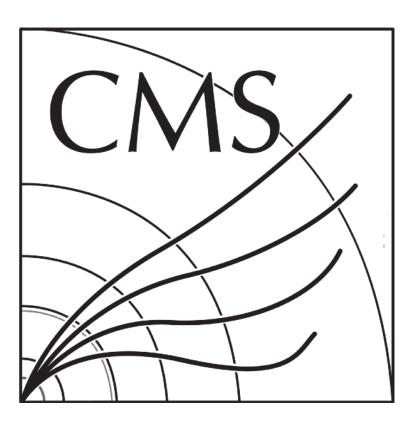
### **BRAM** column





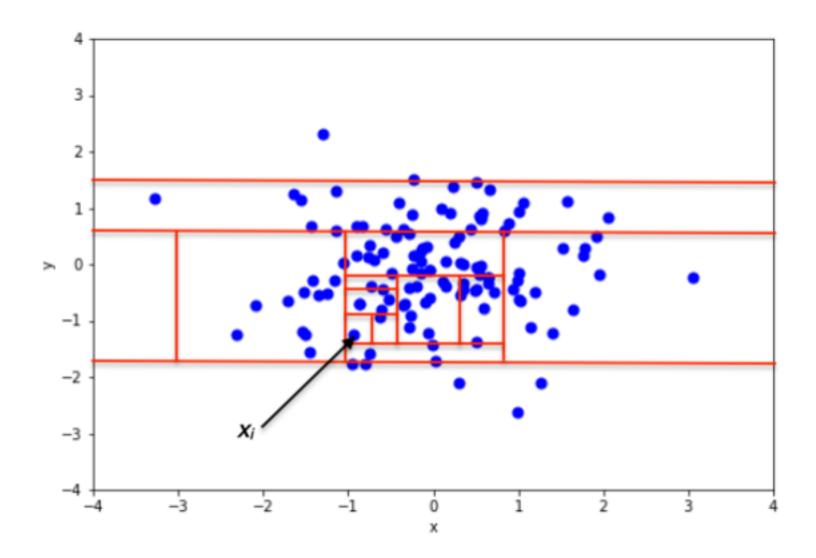
### Part 3: Anomaly Detection





## Anomaly Detection

- Yggdrasil package (ydf)
  - It's not yet release, but is in the master branch and will be in conifer 1.6
- Anomaly Score of a data point is related to the average depth that it takes to segment it
- In this demo we train an Isolation Forest with ydf and deploy to FPGA with conifer
- Liu et al., Isolation Forest



• conifer recently added support for the popular Decision Forest anomaly detection algorithm called "Isolation Forest" with the

