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High Granularity Quantization

Chang Sun
Paper: https://arxiv.org/abs/2405.00645
Repository: https://github.com/calad0i/HGQ
Full Examples: https://github.com/calad0i/HGQ-demos
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Target Audience
• You need neural networks running on FPGAs with super low 

latency
– e.g.: LHC L1 triggers

• You are familiar with python  
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Motivation: FastML@L1
• Issue

• O(100ns) latency
• Limited on-chip resource
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FastML@L1
• Issue

• O(100ns) latency
• Tight onboard resource constraint

• Current approaches
• Use FPGAs with latency strategy on hls4ml
• Smaller networks
• Network compression

• Quantization
• Pruning
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Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine 

granularity with gradient descents
– Pruning is automatically done as bw→0 
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16
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Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine 

granularity with gradient descents
– Pruning is automatically done as bw→0 
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

QKeras

keras-surgeon,
tfmot, ...
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Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine 

granularity with gradient descents
– Pruning is automatically done as bw→0 
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

HGQ
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What is HGQ
• An adaptive QAT algorithm with differentiable bitwidth, and a 

production-ready framework implementing it
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What does HGQ
• HGQ algorithm optimizes the bitwidths of weights or activations 

at arbitrary fine granularity with gradient descents
– Any parameter anywhere, like, per-parameter for fully unrolled ones

● We can benefit from any small bitwidth with FPGAs, not only regular int 
4/8/16

– Pruning is automatically done as bw→0 
● “scale invariance”: resource utilization nolonger scales with layer size
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What does HGQ do
• HGQ framework will let hls4ml generate firmware with exactly 

the same results as in python
– This is not given for a general QKeras→ hls4ml conversion

• HGQ framework offers accurate train-time resource consumption 
estimation

– RTL Synthesis is extremely time consuming. This will give we an 
idea at early stage on how large the firmware will be.
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HGQ vs Qkeras and others
• Performance – Resource trade-off (in one run)
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HGQ vs Qkeras and others
• Performance – Resource trade-off (in one run)
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HGQ
• With good resource

estimation on the fly
– EBOP is the estimator

• Having resource estimation at 
early stage is useful for 
software-hardware co-design

– One don’t need to wait for 
hours for vivado/vitis synth
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HGQ
• “Scale invariant”: Resource does 

not scale with “model size on 
paper”

– With the automatic pruning, 
similar submodel will be used 
no matter how big it was.

– Can be used as NAS that 
sample subnetworks from a 
supernetwork.
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How does HGQ work – Gradients for BW
● The model the model keeps only the number of float bits, f. 

The number of integer bits are determined passively.
● We have a surrogate gradient for f from the model loss:

–                           , where                             is the quantization error
– See full derivation in the paper

● If f is small enough, the output value is constantly zero, and 
we effectively pruned the corresponding parameter(s).
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How does HGQ work – Gradients for BW
● The gradient in the previous page encourages large f, and we need to 

keep it down to optimize for resource
● We use Effective Bit-Operations (EBOPs) as the regulation term

– Basically BOPs with real bitwidth on a per-parameter base and ignoring 
accumulations

● And add a small L1 loss on f everywhere
– for some parameter does not result in additional EBOPs

● Final loss:
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How to use HGQ
● Documentation: https://calad0i.github.io/HGQ/

https://calad0i.github.io/HGQ/
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How to use HGQ
● Documentation: https://calad0i.github.io/HGQ/
● Repository and complete examples:

– https://calad0i.github.io/HGQ/
– https://github.com/calad0i/HGQ-demos

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos
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How to use HGQ

Define and train 
the model

Compute the 
number of 

required integers 

Convert to proxy 
model

Convert to 
hls4ml model

● Documentation: https://calad0i.github.io/HGQ/
● Repository and complete examples:

– https://calad0i.github.io/HGQ/
– https://github.com/calad0i/HGQ-demos

● Interactive Example: https://www.kaggle.com/code/calad0i/small-jet-tagger-with-hgq-1

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos
https://www.kaggle.com/code/calad0i/small-jet-tagger-with-hgq-1
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End of slides – Let’s go to the code
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S-QUARK: Scalable Quantization-Aware Realtime Keras 
(HGQ v2)

● Everything from HGQ v1
– HGQ itself for all common layers ✅
– Bit accurate conversion and synthesis 🚧
– EBOPs for resource estimation  ✅

● Multi-backend support
– Both in terms of training  and synthesis ✅ ❌

● More quantizers
– v1 can do fixed integer with wrap overflow, add saturation based modes ✅

● QKeras emulation 🚧
– And minifloat with differentiable bitwidth ✅

● Others
– Full jit compile for TF and Jax ✅
– QKeras compatible API interface 🚧

Project Page: https://github.com/calad0i/s-quark (plan to beta in 2 weeks)

https://github.com/calad0i/s-quark
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Backups
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How does HGQ work - Quantizer
● Given b bits and i integer bits: define f = b-i

– ⚠️ excluding the sign bit if presents (e.g., included in ap_fixed in vivado_hls)
● The (signed) QKeras quantizer works as (SAT overflow mode)

– vq = clip(round(2f × v)/2f, -2i, 2i-2-f)
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How does HGQ work - Quantizer
● Given b bits and i integer bits: define f = b-i

– ⚠️ excluding the sign bit if presents (e.g., included in ap_fixed in vivado_hls)
● The HGQ quantizer works as (WRAP overflow mode)

– Train time
● vq = round(2f × v)/2f
●

– Test time
● vq = wrap(round(2f × v)/2f, -2i, 2i-2-f)



25 

How does HGQ work - Quantizer
● Why the trouble?
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How does HGQ work - Quantizer
● Why the trouble? – Saturation is expensive

– And the difference can be enormous!
– Example: hls4ml/example-models/keras/qkeras_3layer

● AP_WRAP mode:    9   clk@5ns,   31439 LUT
● AP_SAT:                  16 clk@5ns,   27263 LUT

              There is another pattern where resource changes a lot but not this much in latency
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Quantizers
● Fixed-point numbers

– Two parameterizations (it seems that 1 is for activation, and 2 is better for weights)
● keep_negative, integers, float
● keep_negative, width, integers

– Round mode: floor, (stochestic) round, (stochestic) round_conv
– Overflow mode: wrap around, saturation, and symmetric saturation

● Minifloat (2311.12359)
– Type parameterized by #bits of Mantissa, Exponent, and Zero point of Exponent

● All have gradient, of course
– IEEE-754 like, with subnormal support

● But no special numbers like NaN or +/-inf
– With hls support

● Conversion from/to fixed point in runtime, multiply with fixed point → fixed point
● (planned) multiply with minifloat to fixed-point

https://arxiv.org/abs/2311.12359
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Layer support
Everything is fully quantized and (in theory) hls4ml-friendly

● Supported
– Dense (with fused batchnorm)
– EinsumDense (with fused batchnorm) ⚠️
– Conv*D
– BatchNormalization
– UnaryActivation
– Softmax
– MultiHeadAttention with softmax attention ⚠️

● No need to implement fully passive layers
– No need to pass bitwidth info across layers

⚠️: Currently no hls4ml support
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Layer support
● Planned

– HLS codegen for einsum dense
● General support for latency & parallel io
● Support specific patterns for latency & stream io

– Pooling layers with EBOPs
– Test and finalize Softmax and MultiHeadAttention

● Train some practical model
● And add cossim attention (as used in 2111.09883).

– Masked Average Pooling

https://arxiv.org/abs/2111.09883
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