A\

High Granularity Quantization < V1 >

V

| Chang Sun
Paper: https://arxiv.org/abs/2405.00645

Repository: https://github.com/calad0i/HGQ
Full Examples: https://github.com/calad0i/HGQ-demos

Caltech PMA

https://arxiv.org/abs/2405.00645
https://github.com/calad0i/HGQ
https://github.com/calad0i/HGQ-demos

Target Audience

* You need neural networks running on FPGAs with super low
latency

- e.g.. LHC L1 triggers
* You are familiar with python

Caltech PMA

Motivation: FastML @].1

e [ssue

* O(100ns) latency

* Limited on-chip resource
GAs to retrieve full hit data provides a
e first-level muon trigger’s performance.
a latency within|@(100 ns)|are required.
new system is a fast tracking algorithm

Caltech PMA

system in a particle detector at the CERN
extreme environments in which one can
s. Latency is restricted to|O(1) ps,| gov-
of particle collisions and the number of
system consists of a limited amount of

;0 test in order to assess the time pedestal &
has however to provide robust and reliable |
naximum latency within|a few microseconds
f spurious signal combinations.

ly analytical approaches to the problem can

FastML@L 1

e [ssue

* O(100ns) latency
* Tight onboard resource constraint

* Current approaches
* Use FPGAs with latency strategy on hls4ml
* Smaller networks

* Network compression
* Quantization
* Pruning

Caltech PMA

What does HGQ do

* HGQ optimizes the bitwidths of weights or activations at arbitrary fine
granularity with gradient descents

— Pruning is automatically done as bw—0
— You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

Caltech PMA

What does HGQ do

* HGQ optimizes the bitwidths of weights or activations at arbitrary fine
granularity with gradient descents

— Pruning is automatically done as bw—0
— You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

keras-surgeon,
Pruning

1 HGQ OUG/?(1
* A, leet/o

Caltech PMA 6

tfmot, ...

What does HGQ do

* HGQ optimizes the bitwidths of weights or activations at arbitrary fine
granularity with gradient descents

— Pruning is automatically done as bw—0
— You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

Pruning

Caltech PMA

What 1s HGQ

* An adaptive QAT algorithm with differentiable bitwidth, and a
production-ready framework implementing it

Caltech PMA

What does HGQ)

* HGQ algorithm optimizes the bitwidths of weights or activations
at arbitrary fine granularity with gradient descents

— Any parameter anywhere, like, per-parameter for fully unrolled ones

* We can benefit from any small bitwidth with FPGAs, not only regular int
4/8/16

— Pruning i1s automatically done as bw—0

* “scale invariance”: resource utilization nolonger scales with layer size

Caltech PMA 9

What does HGQ do

* HGQ framework will let hls4ml generate firmware with exactly
the same results as in python

— This 1s not given for a general QKeras— hls4ml conversion

* HGQ framework offers accurate train-time resource consumption
estimation

— RTL Synthesis 1s extremely time consuming. This will give we an
1dea at early stage on how large the firmware will be.

Caltech PMA 10

HGQ vs Qkeras and others

* Performance — Resource trade-off (in one run)

Small Jet Tagger

77
°\° ! G
N - HGQ-1 -
5 .. BP-DSP-RF=2
HGQ-c1
S HGQ-2 MetaML-0tg=1%
(&) &+
(&]
<_t HGQ-3 :
75 ° BP .
B Q6 BF -
i HGQ-c2 L
B []
i HGQ-4
B BH
o . .
73 MetaML-0q = 4% —
i HGQ-5 * 1
L QE
| u i
721 B LogicNets JSC-]
- HGQ-6
71 N —
- SymbolNet LogicNets JSC-M
- L L Ll ‘ L L I N N | ‘ L1l ‘ i
0.1k 1k 10k 100k

Caltech PMA

Resource (LUT + 55 - DSP)

Accuracy (%)
&

92

91

90}

88

O
SN
T

8ol

L] QP 7-bit Q 7-bit
- Jlea2 BP 14-4it
B HGO-S BP-DSP-RF=3 B
L] i
B HGQ-4 |
° |
| HGas _
°
— HGQ-6 -
s
AQP AQ
‘ I I ‘ I ‘ .
30k 100k 300k

SVHN Tagger

HGQ-1

Resource (LUT + 55 - DSP

_

)

11

HGQ vs Qkeras and others

* Performance — Resource trade-off (1n one run)

o

oy

(S
o
o)
[$)

Large Jet Tagger Resource Large Jet Tagger Latency

> T L { T T { T T T T L { T
8 I o° ° ° % ‘. : C>>‘ I § | ¢
o r] 9 o’ ¢]
3 0.801 r 1 3 :
3 of o 0.80 $]
<C t.. O]
B 03. T < : 'o
0.78[~ e] 0.78|- ¢ .
I - ¢ 1 I
° P B
0.76- P . 0.76]- el -
| o 3] s ;:
0.74j vy] 0.74} .s]
. L]
0.721 . 7 0.72|- . -
- ,' 1 3
0.70F : - MMixer 16P . 0.70F : - MMixer 16P .
i U MMixer 32P 1 i : MMixer 32P 1
0.68[- .8 e MMixer 64P 7] 0.68- . o MMixer 64P 5
i N + JEDI-NET 50P U5 - ; e + JEDI-NET 50P U5 |
0.66[+ JEDI-NET 50P U4 0.66]- + JEDI-NET 50P U4
| I I R | I I I | | | | | | | | | | \A
10% 10° 108 107 102
LUT Latency

_ —
Caltech PMA

HGQ

al T
. 0 e Jet Classifier
* With good resource 1P L SVHN Clasater Ve
. . To R § Muon Track
estimation on the fly L *u
. . - Pe
— EBOP 1s the estimator — o
. N o 104:— /// |
* Having resource estimation at : e
early stage 1s usetul for : e
software-hardware co-design * e
. 103 /// .
— One don’t need to wait for * S :
. o« o |
hours for vivado/vitis synth 4
[T —T

EBOP

Caltech PMA

HGQ

e “Scale invariant”: Resource does
not scale with ‘“model size on

paper”
— With the automatic pruning,

similar submodel will be used
no matter how big it was.

— Can be used as NAS that
sample subnetworks from a
supernetwork.

Caltech PMA

14

How does HGQ work — Gradients for BW

* The model the model keeps only the number of float bits, .
The number of integer bits are determined passively.

* We have a surrogate gradient for f from the model loss:
_ 905

of

— See full derivation 1n the paper

 —log2-ds, where 0r = x — f9(x) is the quantization error

* If f1s small enough, the output value is constantly zero, and
we effectively pruned the corresponding parameter(s).

Caltech PMA 15

How does HGQ work — Gradients for BW

* The gradient in the previous page encourages large f, and we need to
keep 1t down to optimize for resource

* We use Effective Bit-Operations (EBOPs) as the regulation term

— Basically BOPs with real bitwidth on a per-parameter base and 1gnoring
accumulations

And add a small L1 loss on f everywhere

— for some parameter does not result in additional EBOPs

* Finalloss: £ = Ly,6e + 8- EBOPs + v - Ll,orm

Caltech PMA

16

How to use HGQ

* Documentation: https://caladO1.github.10/HGQ/

/ High Granularity Quantization ©) Edit on GitHub

Caltech PMA

High Granularity Quantization

HGQ is an gradient-based automatic bitwidth optimization and quantization-aware training
algorithm for neural networks to be deployed on FPGAs, By laveraging gradients, it allows for
bitwidth optimization at arbitrary granularity, up to per-weight and per-activation level.

Pruning

© Quick Start
Model definition & training

Conversion to his4m|

ayers pac

HGQ.pro;

Compare to the other heterogeneous quantization approach, like the QKeras counterpart, HGQ

provides the following advantages: N

+ High Granularity: HGQ supports per-weight and per-activation bitwidth optimization, or any
other lower granularity.

« Automatic Quantization: By setting a resource regularization term, HGQ could automatically
optimize the bitwidth of all parameters during training. Pruning is performed naturally when a
bitwidth is reduced to 0.

« Bit-accurate conversion to hlsdml: You get exactly what you get from Keras models from hlsdml
models. HGQ provides a bit-accurate conversion interface, proxy models, for bit-accurate
conversion to hls4ml models. - still subject to machine float precision limitation.

« Accurate Resource Estimation: BOPs estimated by HGQ is roughly #LUTs + 55#DSPs for actual
(post place & route) FPGA resource consumption. This metric is available during training, and
one can estimate the resource consumption of the final model in a very early stage.

Depending on the specific application, HGQ could achieve up to 20x resource reduction compared
to the AutoQkeras approach, while maintaining the same accuracy. For some more challenging tasks,
where the model is already under-fitted, HGQ could still improve the performance under the same
on-board resource consumption. For more details, please refer to our paper here.

HGQ.quantizer

utils

/ Quick Start @ Edit on GitHub

Quick Start =

te.

This guide is only for models with fully heterogeneous quantized weights (per-weight bitwidth).

Model definition & training

Let's consider the following model for MNIST classification:

import keras

model = keras.models. Sequential([
keras. layers.Reshape((28, 28, 1)),
keras. layers.MaxPooling20((2, 2)),
keras. layers.ConvaD(2, (3, 3), activation='relu'),
keras. layers.MaxPooling2D((2, 2)),
keras.layers.ConvaD(2, (3, 3), activation='relu'),
keras. layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras. layers.Dense(16)

n

opt = keras.optimizers.Adan(learning_rate=0.001)

Toss = keras.losses.SparseCategoricalCrossentropy(fron_logits=True)
model. conpile(optimizer=opt, loss=loss, metrics=['accuracy'])

To quantize the model with HGQ, the following steps are required:

1. Replace all layers by corresponding HGQ layers. For example, replace oense by wpense ,
by prlatten , etc..

Flate
2. The first layer must be a rquantize or signature layer.
3. Add res x() callback to the last of callbacks.

from HGQ.layers import HDense, HConvzD, PMaxPooling2d, PFlatten, PReshape, HQuantize
from HGQ import ResetMinMax, FreeBOPs

model = keras.models. Sequential([

HQuantize(beta=3e-5),

PReshape((28, 28, 1)),

PMaxPooling20((2, 2)),

HConv20(2, (3, 3), activation='relu’, beta=3e-5, parallel factor=144),
PMaxPooling20((2, 2)),

HCOMV2D(2, (3, 3), activation='relu', beta=3e-5, parallel_factor=1e),
PMaxPooling20((2, 2)),

PFlatten(),

HDense(10, beta=3e-5)

n

opt = keras.optimizers.Adam(learning_rate=0.001)

Toss = keras.losses.SparsecategoricalCrossentropy(from_logits=True)
mode,conpi le(optimizer=opt, loss=loss, metrics=['accuracy'])
callbacks = [ResetMinMax(), FreeBops()]

The bveta factoris a regularization factor on the number of BOPs. Higher beta means smaller
bitwidth. The beta factor can be set to different values for different layers.

17

https://calad0i.github.io/HGQ/

How to use HGQ

* Documentation: https://caladO1.github.10/HGQ/

* Repository and complete examples:
— https://caladO1.github.10o/HGQ/

— https://github.com/caladOi/HGQ-demos

Caltech PMA

18

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos

How to use HGQ

* Documentation: https://caladO1.github.10/HGQ/

* Repository and complete examples:
~ https://caladOi.github.io/HGQ/
~ https://github.com/caladOi/HGQ-demos

* Interactive Example: https://www.kaggle.com/code/caladOi/small-jet-tagger-with-hgq-1

19

Caltech PMA

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos
https://www.kaggle.com/code/calad0i/small-jet-tagger-with-hgq-1

End of slides — Let’s go to the code

Caltech PMA

20

S-QUARK: Scalable Quantization-Aware Realtime Keras
(HGQ v2)
Project Page: https://github.com/caladO1/s-quark (plan to beta in 2 weeks)

e Everything from HGQ vl
- HGQ itself for all common layers (/4
— Bit accurate conversion and synthesis ##
- EBOPs for resource estimation (/4
e Multi-backend support
— Both in terms of training [/4 and synthesis)¢

e More quantizers

- vl can do fixed integer with wrap overflow, add saturation based modes ['4
e (QKeras emulation ##
— And minifloat with differentiable bitwidth (4

e Others
~ Full jit compile for TF and Jax [4
- QKeras compatible API interface %%

Caltech PMA

21

https://github.com/calad0i/s-quark

Backups

Caltech PMA

22

How does HGQ work - Quantizer

* Given b bits and i integer bits: define f = b-i

— I excluding the sign bit if presents (e.g., included in ap_fixed in vivado_hls)
* The (signed) QKeras quantizer works as (SAT overflow mode)
~ vq= clip(round (2! x v)/2f -2 21-2)

Caltech PMA

23

How does HGQ work - Quantizer

* Given b bits and i integer bits: define f = b-i

— I\ excluding the sign bit if presents (e.g., included 1n ap_fixed in vivado_hls)

* The HGQ quantizer works as (WRAP overtflow mode)
— Train time
* vq = round(2f x v)/2f
* i = max(|logy |vi.xl] + 1, [logy |vnl])
— Test time
* vq = wrap(round(2' x v)/2f -2i 2i-2-)

Caltech PMA

24

How does HGQ work - Quantizer

* Why the trouble?

Caltech PMA

25

How does HGQ work - Quantizer

* Why the trouble? — Saturation 1s expensive

1. Using the AP_SAT* modes can result in higher resource usage as extra logic will be needed to perform saturation
and this extra cost can be as high as 20% additional LUT usage.

— And the difference can be enormous!
— Example: hls4ml/example-models/keras/qkeras 3layer

° AP WRAP mode: 9 clk@5ns, 31439 LUT
* AP SAT: 16 clk@5ns, 27263 LUT

There 1s another pattern where resource changes a lot but not this much in latency

Caltech PMA 26

Quantizers

* Fixed-point numbers

— Two parameterizations (it seems that 1 is for activation, and 2 is better for weights)
* keep_negative, integers, float
* keep_negative, width, integers

— Round mode: floor, (stochestic) round, (stochestic) round_conv

— Overflow mode: wrap around, saturation, and symmetric saturation

* Minifloat (2311.12359)
— Type parameterized by #bits of Mantissa, Exponent, and Zero point of Exponent
* All have gradient, of course

- IEEE-754 like, with subnormal support
* But no special numbers like NaN or +/-inf

— With hls support
* Conversion from/to fixed point in runtime, multiply with fixed point — fixed point
* (planned) multiply with minifloat to fixed-point

Caltech PMA

27

https://arxiv.org/abs/2311.12359

Layer support

Everything is fully quantized and (in theory) hls4ml-friendly
* Supported I.: Currently no hls4ml support

— Dense (with fused batchnorm)

— EinsumDense (with fused batchnorm) |

- Conv*D

— BatchNormalization

— UnaryActivation

— Softmax

— MultiHeadAttention with softmax attention |

* No need to implement fully passive layers
— No need to pass bitwidth info across layers

Caltech PMA 28

Layer support

* Planned

— HLS codegen for einsum dense
* General support for latency & parallel 10
* Support specific patterns for latency & stream 10

— Pooling layers with EBOPs

— Test and finalize Softmax and MultiHeadAttention
* Train some practical model

* And add cossim attention (as used 1 2111.09883).
— Masked Average Pooling

Caltech PMA

29

https://arxiv.org/abs/2111.09883

	Slide 1
	FastML@L1
	Slide 3
	FastML@L1 (3)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

