
1

High Granularity Quantization

Chang Sun
Paper: https://arxiv.org/abs/2405.00645
Repository: https://github.com/calad0i/HGQ
Full Examples: https://github.com/calad0i/HGQ-demos

V1

https://arxiv.org/abs/2405.00645
https://github.com/calad0i/HGQ
https://github.com/calad0i/HGQ-demos

2

Target Audience
• You need neural networks running on FPGAs with super low

latency
– e.g.: LHC L1 triggers

• You are familiar with python

3

Motivation: FastML@L1
• Issue

• O(100ns) latency
• Limited on-chip resource

4

FastML@L1
• Issue

• O(100ns) latency
• Tight onboard resource constraint

• Current approaches
• Use FPGAs with latency strategy on hls4ml
• Smaller networks
• Network compression

• Quantization
• Pruning

5

Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine

granularity with gradient descents
– Pruning is automatically done as bw→0
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

6

Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine

granularity with gradient descents
– Pruning is automatically done as bw→0
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

QKeras

keras-surgeon,
tfmot, ...

7

Quantization

HGQ PruningQuantization+ Pruning

What does HGQ do
• HGQ optimizes the bitwidths of weights or activations at arbitrary fine

granularity with gradient descents
– Pruning is automatically done as bw→0
– You can benefit from any small bitwidth anywhere, not only regular int 4/8/16

HGQ

8

What is HGQ
• An adaptive QAT algorithm with differentiable bitwidth, and a

production-ready framework implementing it

9

What does HGQ
• HGQ algorithm optimizes the bitwidths of weights or activations

at arbitrary fine granularity with gradient descents
– Any parameter anywhere, like, per-parameter for fully unrolled ones

● We can benefit from any small bitwidth with FPGAs, not only regular int
4/8/16

– Pruning is automatically done as bw→0
● “scale invariance”: resource utilization nolonger scales with layer size

10

What does HGQ do
• HGQ framework will let hls4ml generate firmware with exactly

the same results as in python
– This is not given for a general QKeras→ hls4ml conversion

• HGQ framework offers accurate train-time resource consumption
estimation

– RTL Synthesis is extremely time consuming. This will give we an
idea at early stage on how large the firmware will be.

11

HGQ vs Qkeras and others
• Performance – Resource trade-off (in one run)

0.1k 1k 10k 100k
Resource (LUT + 55 DSP)

71

72

73

74

75

76

77

Ac
cu

ra
cy

 (%
)

BF

BP

BH

Q6

QE

QB

LogicNets JSC-M

LogicNets JSC-L

BP-DSP-RF=2

MetaML- q = 1%

MetaML- q = 4%

SymbolNet

HGQ-1

HGQ-2

HGQ-3

HGQ-4

HGQ-5

HGQ-6

HGQ-c1

HGQ-c2

30k 100k 300k
Resource (LUT + 55 DSP)

88

89

90

91

92

93

94

Ac
cu

ra
cy

 (%
)

BP 14-bit

Q 7-bitQP 7-bit

AQAQP

BP-DSP-RF=3

HGQ-1

HGQ-2

HGQ-3

HGQ-4

HGQ-5

HGQ-6

Small Jet Tagger SVHN Tagger

12

HGQ vs Qkeras and others
• Performance – Resource trade-off (in one run)

Large Jet Tagger Resource Large Jet Tagger Latency

101 102

Latency

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

MMixer 16P
MMixer 32P
MMixer 64P
JEDI-NET 50P U5
JEDI-NET 50P U4

104 105 106

LUT

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

MMixer 16P
MMixer 32P
MMixer 64P
JEDI-NET 50P U5
JEDI-NET 50P U4

13

HGQ
• With good resource

estimation on the fly
– EBOP is the estimator

• Having resource estimation at
early stage is useful for
software-hardware co-design

– One don’t need to wait for
hours for vivado/vitis synth

102 103 104 105

EBOP
102

103

104

105

LU
T

+
55

×D
SP Jet Classifier

SVHN Classifier
Muon Tracker

14

HGQ
• “Scale invariant”: Resource does

not scale with “model size on
paper”

– With the automatic pruning,
similar submodel will be used
no matter how big it was.

– Can be used as NAS that
sample subnetworks from a
supernetwork.

15

How does HGQ work – Gradients for BW
● The model the model keeps only the number of float bits, f.

The number of integer bits are determined passively.
● We have a surrogate gradient for f from the model loss:

– , where is the quantization error
– See full derivation in the paper

● If f is small enough, the output value is constantly zero, and
we effectively pruned the corresponding parameter(s).

16

How does HGQ work – Gradients for BW
● The gradient in the previous page encourages large f, and we need to

keep it down to optimize for resource
● We use Effective Bit-Operations (EBOPs) as the regulation term

– Basically BOPs with real bitwidth on a per-parameter base and ignoring
accumulations

● And add a small L1 loss on f everywhere
– for some parameter does not result in additional EBOPs

● Final loss:

17

How to use HGQ
● Documentation: https://calad0i.github.io/HGQ/

https://calad0i.github.io/HGQ/

18

How to use HGQ
● Documentation: https://calad0i.github.io/HGQ/
● Repository and complete examples:

– https://calad0i.github.io/HGQ/
– https://github.com/calad0i/HGQ-demos

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos

19

How to use HGQ

Define and train
the model

Compute the
number of

required integers

Convert to proxy
model

Convert to
hls4ml model

● Documentation: https://calad0i.github.io/HGQ/
● Repository and complete examples:

– https://calad0i.github.io/HGQ/
– https://github.com/calad0i/HGQ-demos

● Interactive Example: https://www.kaggle.com/code/calad0i/small-jet-tagger-with-hgq-1

https://calad0i.github.io/HGQ/
https://calad0i.github.io/HGQ/
https://github.com/calad0i/HGQ-demos
https://www.kaggle.com/code/calad0i/small-jet-tagger-with-hgq-1

20

End of slides – Let’s go to the code

21

S-QUARK: Scalable Quantization-Aware Realtime Keras
(HGQ v2)

● Everything from HGQ v1
– HGQ itself for all common layers ✅
– Bit accurate conversion and synthesis 🚧
– EBOPs for resource estimation ✅

● Multi-backend support
– Both in terms of training and synthesis ✅ ❌

● More quantizers
– v1 can do fixed integer with wrap overflow, add saturation based modes ✅

● QKeras emulation 🚧
– And minifloat with differentiable bitwidth ✅

● Others
– Full jit compile for TF and Jax ✅
– QKeras compatible API interface 🚧

Project Page: https://github.com/calad0i/s-quark (plan to beta in 2 weeks)

https://github.com/calad0i/s-quark

22

Backups

23

How does HGQ work - Quantizer
● Given b bits and i integer bits: define f = b-i

– ⚠️ excluding the sign bit if presents (e.g., included in ap_fixed in vivado_hls)
● The (signed) QKeras quantizer works as (SAT overflow mode)

– vq = clip(round(2f × v)/2f, -2i, 2i-2-f)

24

How does HGQ work - Quantizer
● Given b bits and i integer bits: define f = b-i

– ⚠️ excluding the sign bit if presents (e.g., included in ap_fixed in vivado_hls)
● The HGQ quantizer works as (WRAP overflow mode)

– Train time
● vq = round(2f × v)/2f
●

– Test time
● vq = wrap(round(2f × v)/2f, -2i, 2i-2-f)

25

How does HGQ work - Quantizer
● Why the trouble?

26

How does HGQ work - Quantizer
● Why the trouble? – Saturation is expensive

– And the difference can be enormous!
– Example: hls4ml/example-models/keras/qkeras_3layer

● AP_WRAP mode: 9 clk@5ns, 31439 LUT
● AP_SAT: 16 clk@5ns, 27263 LUT

 There is another pattern where resource changes a lot but not this much in latency

27

Quantizers
● Fixed-point numbers

– Two parameterizations (it seems that 1 is for activation, and 2 is better for weights)
● keep_negative, integers, float
● keep_negative, width, integers

– Round mode: floor, (stochestic) round, (stochestic) round_conv
– Overflow mode: wrap around, saturation, and symmetric saturation

● Minifloat (2311.12359)
– Type parameterized by #bits of Mantissa, Exponent, and Zero point of Exponent

● All have gradient, of course
– IEEE-754 like, with subnormal support

● But no special numbers like NaN or +/-inf
– With hls support

● Conversion from/to fixed point in runtime, multiply with fixed point → fixed point
● (planned) multiply with minifloat to fixed-point

https://arxiv.org/abs/2311.12359

28

Layer support
Everything is fully quantized and (in theory) hls4ml-friendly

● Supported
– Dense (with fused batchnorm)
– EinsumDense (with fused batchnorm) ⚠️
– Conv*D
– BatchNormalization
– UnaryActivation
– Softmax
– MultiHeadAttention with softmax attention ⚠️

● No need to implement fully passive layers
– No need to pass bitwidth info across layers

⚠️: Currently no hls4ml support

29

Layer support
● Planned

– HLS codegen for einsum dense
● General support for latency & parallel io
● Support specific patterns for latency & stream io

– Pooling layers with EBOPs
– Test and finalize Softmax and MultiHeadAttention

● Train some practical model
● And add cossim attention (as used in 2111.09883).

– Masked Average Pooling

https://arxiv.org/abs/2111.09883

	Slide 1
	FastML@L1
	Slide 3
	FastML@L1 (3)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

