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A  L I T T L E  H I S T O R Y
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IT ’S  BEEN 9 YEARS S INCE THE “HAPPIEST 
THOUGHT” OF ALBERT EINSTE IN’S L IFE  
S ITT ING IN  THE PATENT OFF ICE IN  BERN.  

WORLD WAR I  IS  RAGING ON IN EUROPE 
IN 1916 AND THE NEWLY FAMOUS 
EINSTE IN PUBLISHES THE GENERAL 
THEORY OF RELAT IV ITY .   

INCLUDED IN GR IS  THE CONCEPT OF 
R IPPLES IN  SPACET IME THAT SHOULD BE 
INDUCED BY ACCELERAT ING OBJECTS – 
GRAVITAT IONAL WAVES (GW)! 



A  S A D  S T O R Y !  
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E INSTE IN PREDICTED THE EX ISTENCE OF GWS BUT D IED BEFORE 
EVEN EV IDENCE OF GR COULD BE REAL IZED.  

28 YEARS AFTER H IS  DEATH,  ASTRONOMERS AT  ARECIBO RADIO 
OBSERVATORY DETERMINED THAT A B INARY PULSAR WAS 
INSPIRAL ING PRECISELY PREDICTED BY GR AND SPECIF ICALLY GW 
EMISSIONS.  

DESPITE  EVEN EINSTE IN BEL IEV ING THAT AN OBSERVAT ION OF 
GWS WAS IMPOSSIBLE,  THE RACE WAS ON… 



  A  L O N G  R O A D  F O R  G W S
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GW170817

•1980S – NSF FUNDS MIT AND CALTECH TO 
RESEARCH LASER INTERFEROMETERS 

•1990S – CONSTRUCT ION BEGINS ON LIGO, 
VIRGO, GEO600 

•1999-2003 – LIGO/VIRGO/GEO 
INAUGURAT ION 

•SEPTEMBER 2015 – ADVANCED LIGO 
READY FOR F IRST RUN 

•SEPTEMBER 14TH,  2015 – ALIGO DETECTS 
GWS FROM COLL IS ION OF TWO BLACK HOLES 

•2017 - MULT I-MESSENGER ASTRONOMY 
(MMA) IS  REAL IZED (LIGO/VIRGO) 

•2020S+ – GOLDEN ERA FOR GW 
ASTRONOMY! DETECTORS FROM ALL OVER THE 
WORLD ARE COMING ONLINE



  G R A V I T A T I O N A L  W A V E S  A N D  T H E I R  D E T E C T I O N

ACCELERAT ING MASSES PRODUCE 
DEFORMATIONS IN SPACE T IME THAT  
WE CAN DETECT V IA  INTERFEROMETRY
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  G R A V I T A T I O N A L  W A V E S  A N D  T H E I R  D E T E C T I O N

ACCELERAT ING MASSES PRODUCE 
DEFORMATIONS IN SPACE T IME THAT  
WE CAN DETECT V IA  INTERFEROMETRY
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PRODUCES:  T IME-SERIES 
[1-D STRAIN + 
AUXIL IARY CHANNELS]  



A SIGNAL WILL APPEAR IN AT  LEAST TWO INTERFEROMETERS,  WITH THE T IME DELAY BECAUSE OF THE 
D ISTANCE BETWEEN THE DETECTORS

  T H E  L I G O - V I R G O - K A G R A  C O L L A B O R A T I O N
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LIGO HANFORD

 LIGO LIVINGSTON   
VIRGO

KAGRA



  S O U N D S  T R I V I A L !  
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PRODUCES:  T IME-
SERIES [1-D STRAIN + 
AUXIL IARY CHANNELS]  

BBH EVENT

BNS EVENT



  G W  D A T A  I S  A C T U A L L Y  N O N T R I V I A L !
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•SOUNDS TR IV IAL,  BUT ISN’T  – LENGTH MEASUREMENTS ARE ~ 10^(-22)    M 
•CONSTANTLY CHANGING DETECTOR NOISE USUALLY CLOUDS S IGNAL  
•DETECTOR GL ITCHES OCCUR EVERY O(10 SEC)  – RESEMBLING GWS IN EXCESS POWER!  

[Szczepanczyk et al. (2021) (Phys.Rev.D)][George & Huerta (2017) (Phys.Lett.B)] 

https://arxiv.org/abs/2104.06462
https://arxiv.org/abs/1711.03121
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   W H Y  M L ?  
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Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

ALERT 🚨

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

VISIBLE/ INFRARED L IGHT

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

RADIO WAVES

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

X-RAYS/GAMMA-RAYS

NEUTRINOS

• INCREASING DETECTOR SENSIT IV ITY  →  MORE TEMPLATES FOR MATCHED 
F ILTERING 

• MAKES ML ADVANTAGEOUS IN TERMS OF COMPUTAT IONAL COST AND 
LATENCY (AND POSSIBLY SENSIT IV ITY)  – USEFUL FOR MULT I-
MESSENGER ASTROPHYSICS EFFORTS



   W H Y  M L ?  
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Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

VISIBLE/ INFRARED L IGHT

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

RADIO WAVES

Multi-Messenger Astronomy

Performing fast identification of GWs critical to alerting world!

X-RAYS/GAMMA-RAYS

NEUTRINOS

• INCREASING DETECTOR SENSIT IV ITY  →  MORE TEMPLATES FOR MATCHED 
F ILTERING 

• MAKES ML ADVANTAGEOUS IN TERMS OF COMPUTAT IONAL COST AND 
LATENCY (AND POSSIBLY SENSIT IV ITY)  – USEFUL FOR MULT I-
MESSENGER ASTROPHYSICS EFFORTS

NOISE SUBTRACT ION AND DOWNSTREAM ALGORITHMS NEED TO WORK 
IN REAL-TIME TO CAPTURE AS MUCH DATA AS POSSIBLE AND SAT ISFY 

• HIGH THROUGHPUT 
• LOW LATENCY 
• ROBUST TO CHANGING DATA D ISTRIBUT ION



   M L  A P P L I C A T I O N S  I N  L I G O
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U H  O H … . .
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O H  N O … . .
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O H  N O … . . T H E  M L  J U N G L E

16



   W H E R E  A R E  A L L  T H E  O N L I N E / O F F L I N E  A L G O R I T H M S / R E S U L T S ?  
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MULT I-MESSENGER ASTROPHYSICS (MMA) REQUIRES LOW-LATENCY ALERTS.  

WITH LIGO OBSERVING RUN 4 RUNNING,  GW SIGNALS ARE NO LONGER “RARE” - MMA 
COLLABORATORS REQUIRE ACCURATE ALERTS,  PARAMETER EST IMAT ION,  EVENT PROBABIL IT IES.  

GW-PHYSICS IS  NOT A H IGH STAT IST ICS F IELD.  EVERYTHING NEEDS TO BE TRAINED/
VALIDATED ON YEARS - DECADES OF DETECTOR DATA.  

ONLINE (REAL-TIME)  ML FOR GW HASN'T  HAPPENED BECAUSE THERE IS  WAS NO TEAM 
DEDICATED TO MAKING THE GW-ECOSYSTEM ML-FRIENDLY.  THIS  LEADS TO ISSUES IN DATA 
LOADING,  S IMULAT ION,  INFERENCE,  VAL IDAT ION,  OPT IMIZAT ION,  ETC.  

ENTER:  ML4GW & HERMES

https://github.com/ML4GW


   M L 4 G W  &  H E R M E S
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ML4GW  — TORCH UT IL IT IES FOR TRAIN ING NEURAL NETWORKS IN GRAVITAT IONAL WAVE PHYSICS 
APPLICAT IONS 

FAST DATA LOADING GPU-FRIENDLY IMPLEMENTAT IONS OF 
COMMON ANALYSIS OPERAT IONS 

ALLOWING FOR MORE 
ROBUST USE OF S IMULAT IONS

HERMES  — A SET OF APIS FOR ASSIST ING IN THE ACCELERAT ION,  EXPORT,  SERVING,  AND 
REQUEST ING OF MODELS USING TRITON INFERENCE SERVER

DISTRIBUTE MODELS 
USING CENTRALIZED 

REPOS

PERFORM INFERENCE WITH AN 
OFF-THE-SHELF APPLICAT ION - 

NVIDIA TRITON

USERS INTERACT V IA  
L IGHTWEIGHT CL IENT APIS,  

ABSTRACT ING 
IMPLEMENTAT ION DETA ILS

https://github.com/ML4GW/ml4gw
https://github.com/ML4GW/hermes


I N F E R E N C E - A S - A - S E R V I C E  ( I A A S )  P A R A D I G M  
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•IAAS IS  BECOMING A COMMON PARADIGM (ALSO IN HEP) TO EFF IC IENTLY USE COMPUTE 
RESOURCES 
•HIGHLY PARALLEL IZABLE 
•OFF-THE-SHELF SOLUT ION:  TRITON INFERENCE SERVER 



I N F E R E N C E - A S - A - S E R V I C E  ( I A A S )  +  T I M E S E R I E S  S N A P S H O T T E R  
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•IAAS IS  BECOMING A COMMON PARADIGM (ALSO IN HEP) TO EFF IC IENTLY USE COMPUTE 
RESOURCES 
•HIGHLY PARALLEL IZABLE 
•OFF-THE-SHELF SOLUT ION:  TRITON INFERENCE SERVER 
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   G W  S T R A I N  C O N T E N T
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THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS  

DENOISING GOALS
• The output reconstructed from an interferometer contains 

     

                                  
 
 
 

• Objective: To recover  with best possible signal-to-noise ratio by minimising the 
noise 

• Scientific objectives: 

• Signals that are below the noise (un-detectable) becomes detectable

• Improved SNR improves parameter estimations

h(t) = s(t) + n(t)

s(t)
n(t)

2

Possible GW signal Detector noisePOSSIBLE GW SIGNAL DETECTOR NOISE



   G W  S T R A I N  C O N T E N T
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THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS  

DENOISING GOALS
• The output reconstructed from an interferometer contains 

     

                                  
 
 
 

• Objective: To recover  with best possible signal-to-noise ratio by minimising the 
noise 

• Scientific objectives: 

• Signals that are below the noise (un-detectable) becomes detectable

• Improved SNR improves parameter estimations

h(t) = s(t) + n(t)

s(t)
n(t)

2

Possible GW signal Detector noisePOSSIBLE GW SIGNAL DETECTOR NOISEREMOVABLE AND NON-REMOVABLE 
NOISES

                          

•Non-removable (fundamental 
noise)

•Budgeted by system design

•Eg: photon shot noise, thermal 
noise

•Can be reduced only with  
upgraded design and technology 

3

n(t) = nnw(t) + nw(t)
                          

• Source of noise witnessed by 
dedicated system monitors 
(witness sensors)

• Environmental contamination 
or technical noise eg: noise 
arising from the control of 
suspended optics 
 

NON-REMOVABLE (FUNDAMENTAL NOISE)   
EG:  PHOTON SHOT NOISE,  THERMAL NOISE  

CAN BE REDUCED ONLY WITH UPGRADED DESIGN 
AND TECHNOLOGY 

SOURCE OF NOISE WITNESSED BY DEDICATED 
SYSTEM MONITORS (WITNESS SENSORS)   

ENVIRONMENTAL CONTAMINAT ION OR TECHNICAL 
NOISE EG:  NOISE ARIS ING FROM THE CONTROL 
OF SUSPENDED OPT ICS 



   D E E P C L E A N  D E N O I S I N G
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• CNN-BASED AUTOENCODER TO PREDICT  THE NOISE USING WITNESS CHANNELS 

• ACTIVE-LEARNING:  NETWORK IS  F INE-TUNED AT  F IXED INTERVALS AND THE NEW MODEL IS  
HOSTED ALONGSIDE STABLE MODEL ON INFERENCE SERVICE 

• DEEPCLEAN IS  CAPABLE OF DENOIS ING THE DATA AT  ~ 1 S LATENCY - A PROMIS ING PROSPECT 
FOR ELECTROMAGNET IC  FOLLOW-UP OF GRAVITAT IONAL WAVE OBSERVAT IONS

DEEPCLEAN: A CONVOLUTIONAL 
AUTO-ENCODER

11

21 x 4096 8 x 4096

16 x 2048
32 x 1024 64 x 512 32 x 1024

16 x 2048

8 x 4096 21 x 4096 1 x 4096

Inputs:  
21 witness channels

Latent vector: 
64 high-level features

Output:  
1-D noise prediction

Encoder Decoder

Kernel size = 7,  
strides = 2,  
padding = 3

changes depending  
on the available 

channels 
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   M L  A P P L I C A T I O N S  I N  L I G O
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SIGNAL 

•AS OPPOSED TO DETECTOR NOISE SUBTRACTED BY DEEPCLEAN,  
GL ITCHES ARE SHORT DURAT ION NON-GAUSSIAN NOISE TRANSIENTS 
ORIG INATED FROM INSTRUMENTAL OR ENVIRONMENTAL COUPLINGS.   
•GLITCHES ARE BY FAR THE CULPRIT  OF MOST S IGNIF ICANT FALSE 
ALARMS – EXCESS POWER ISN’T  ENOUGH! 
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   A - F R A M E

• DETECT ING COMPACT B INARY COALESCENCES IN GRAVITAT IONAL WAVE STRAIN T IMESERIES DATA 
USING NEURAL NETWORKS 

• RESNET ARCHITECTURE,  MAPS FROM DETECTOR STRAIN FROM TWO INTERFEROMETERS TO A 
SCALAR NEURAL-NETWORK OUTPUT 

• 2-10 T IMES FASTER THAN MATCHED F ILTERING CBC PIPEL INE

ARXIV2403.18661 

https://arxiv.org/abs/2403.18661v1


COMPET IT IVE PERFORMANCE ON H IGHER-MASS CATALOG D ISTRIBUT IONS 
WORK REMAINS TO BE DONE FOR LOWER MASSES – ALTERNAT IVE ARCHITECTURES OR SMARTER 
TRAIN ING TECHNIQUES 

ARXIV2403.18661 
  A - F R A M E  P E R F O R M A N C E  C O M P A R I S O N
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https://arxiv.org/abs/2403.18661v1
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   F U T U R E  M L - B A S E D  W O R K F L O W

BBHS/NEUTRON STARS/ANOMALIES



KNOWN “UNKNOWNS” POSSIBLE S IGNAL SOURCES THAT ARE POORLY MODELLED AND THEREFORE 
CANNOT BE EASILY DETECTED USING THE MATCH F ILTERING P IPEL INE  

  G W A K  A N O M A L O U S  G R A V I T A T I O N A L  W A V E  S O U R C E S
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CORE-COLLAPSE 
SUPERNOVA (CCSN) NEUTRON STAR GLITCHES



UNKNOWN “UNKNOWNS” NEW, UNEXPECTED GW SOURCES 
WE REFER TO THEM AS ANOMALOUS AND A IM TO DEVELOP A SEMI-SUPERVISED APPROACH WHICH 
WOULD LET  US TO D ISCOVER ANOMALOUS S IGNALS WITHOUT EXPL IC IT  MODELL ING

  G W A K  A N O M A L O U S  G R A V I T A T I O N A L  W A V E  S O U R C E S
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?



  G W A K :  G W  A N O M A L O U S  K N O W L E D G E   
  V A N I L L A  A N O M A L Y  D E T E C T I O N
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THE ALGORITHM IS  INSPIRED BY QUAK ARXIV2011.03550 FROM LHC HEP  

USE THE D ISTANCE BETWEEN THE INPUT AND OUTPUT AS A METRIC FOR ANOMALY DETECT ION

K.GOVORKOVA ET AL MLST 
10.1088/2632-2153/AD3A31

https://arxiv.org/abs/2011.03550
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31


 G W A K  A D D I N G  A X E S  T O  I N C L U D E  M O R E  I N F O R M A T I O N
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INCLUDING MORE AXES,  BOTH S IGNAL AND BACKGROUND,  ALLOWS TO MORE EFF IC IENTLY SELECT A 
S IGNAL-LIKE ANOMALIES

K.GOVORKOVA ET AL MLST 
10.1088/2632-2153/AD3A31

https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31


INCLUDING MORE AXES,  BOTH S IGNAL AND BACKGROUND,  ALLOWS TO MORE EFF IC IENTLY SELECT A 
S IGNAL-LIKE ANOMALIES

 G W A K  A D D I N G  A X E S  T O  I N C L U D E  M O R E  I N F O R M A T I O N
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K.GOVORKOVA ET AL MLST 
10.1088/2632-2153/AD3A31

https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31


STRAIN,  GWAK METRIC RESPONSE AND F INAL 
METRIC RESPONSE FOR SUPERNOVA S IMULATED 
S IGNAL 

THE EVALUAT ION OF GWAK AXES AND PEARSON 
CORRELAT ION WITH T IME AND ON THE TOP R IGHT 
TOTAL METRIC VALUE AND FAR ARE SHOWN AS AN 
EXAMPLE OF THE ALGORITHM'S ' 'REACT ION' '  TO AN 
UNSEEN S IGNAL  

 G W A K  D E T E C T I O N
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K.GOVORKOVA ET AL MLST 
10.1088/2632-2153/AD3A31

https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
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 G W A K  D E T E C T I O N
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K.GOVORKOVA ET AL MLST 
10.1088/2632-2153/AD3A31

https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31


 G W A K  D E T E C T I O N
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 G W A K  D E T E C T I O N
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 G W A K  D E T E C T I O N
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 S T A T I S T I C A L L Y  S O U N D  V A L I D A T I O N
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• GW SEARCH SENSIT IV ITY  EVALUATED BY 
COMPARING TO BACKGROUND EVENTS 
GENERATED THROUGH “T IMESLIDES” 

• ACHIEV ING H IGH S IGNIF ICANCE DETECT IONS 
REQUIRES ANALYZ ING YEARS OF 
BACKGROUND 

• THIS COULD MEAN O(1 YEARS)  TO 
O(100K) OF T IME SL IDES RUN THROUGH 
ALGORITHMS FOR VAL IDAT ION  
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BBHS/NEUTRON STARS/ANOMALIES
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   A M P L F I :  A C C E L E R A T E D  M U L T I - M E S S E N G E R  P A R A M E T E R  
E S T I M A T I O N  U S I N G  L I K E L I H O O D  F R E E  I N F E R E N C E

PERFORM FAST PARAMETER EST IMAT ION USING S IMULAT ION-BASED INFERENCE  
• SIMULATE DATA FROM THE L IKEL IHOOD,  TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR 
• USE SELF-SUPERVIS ION TO MARGINALIZE  SYMMETRIES 

NEURIPS ML4PS_2023_69 PDF

https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf
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   A M P L F I :  A C C E L E R A T E D  M U L T I - M E S S E N G E R  P A R A M E T E R  
E S T I M A T I O N  U S I N G  L I K E L I H O O D  F R E E  I N F E R E N C E

PERFORM FAST PARAMETER EST IMAT ION USING S IMULAT ION-BASED INFERENCE  
• SIMULATE DATA FROM THE L IKEL IHOOD,  TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR 
• USE SELF-SUPERVIS ION TO MARGINALIZE  OVER COALESCENCE T IME 
• NORMALIZ ING FLOWS ( INVERT IBLE TRANSFORMS MAP S IMPLE D ISTRIBUT ION TO COMPLEX 

D ISTRIBUT ION)  EMBED BROAD KNOWLEDGE OF WAVEFORMS

NEURIPS ML4PS_2023_69 PDF

https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf
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   A M P L F I :  A C C E L E R A T E D  M U L T I - M E S S E N G E R  P A R A M E T E R  
E S T I M A T I O N  U S I N G  L I K E L I H O O D  F R E E  I N F E R E N C E

• PE DONE IN SECONDS!

NEURIPS ML4PS_2023_69 PDF

PERFORM FAST PARAMETER EST IMAT ION USING S IMULAT ION-BASED INFERENCE  
• SIMULATE DATA FROM THE L IKEL IHOOD,  TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR 
• USE SELF-SUPERVIS ION TO MARGINALIZE  OVER COALESCENCE T IME 
• NORMALIZ ING FLOWS ( INVERT IBLE TRANSFORMS MAP S IMPLE D ISTRIBUT ION TO COMPLEX 

D ISTRIBUT ION)  EMBED BROAD KNOWLEDGE OF WAVEFORMS

https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf


   S M O O T H  I N T E G R A T I O N  I N T O  O N L I N E !   
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   S M O O T H  I N T E G R A T I O N  I N T O  O N L I N E !   
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   C O N C L U S I O N S
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TO ENABLE A COMPLETE AI  P IPEL INE,  WE HAVE DEVELOPED G ITHUB.COM/ML4GW 
— A SET OF COMPREHENSIVE TOOLS FOR ML PIPEL INE IN  GW PHYSICS  
WHICH ALLOWS TO PERFORM

— LOOKING TO INV ITE  MANY OTHERS TO BUILD ON OUR WORK!  
WE RUN OPEN WEEKLY MEET INGS AND EVERYONE IS  WELCOME TO JO IN

• MODELLED AND UNMODELLED SEARCHES 
• RUN EFF IC IENTLY OFFL INE 
• RUN ONLINE WITH LOW LATENCY 
• SEAMLESS DEVELOPMENT AND FAST DEPLOYMENT 

OF NN-BASED ALGORITHMS 
• SMALL COMPUTAT ION FOOTPRINT AND OPT IMISED 

HETEROGENEITY

NATURE ASTRONOMY DOI.ORG/10.1038/S41550-022-01651-W

https://github.com/ML4GW
https://www.nature.com/articles/s41550-022-01651-w.epdf?sharing_token=w7IQ4Wf8nvW3tQc8s-qCcdRgN0jAjWel9jnR3ZoTv0Ou2LS_lA4KwSLE_33b_sBTHnSVQTA9LeyaKo6SxCjSSOR7H46-rjWWUNfqzxl-7U2_nnNQHeLF6ocEpsYKVhOhHDhgyU4lWetHwN1UV2i3j_VZxTDYku9C1ppZJXhFeL8=


B A C K U P



CONTINUOUS T IME SERIES (1HZ,  128HZ … 16KHZ)  

GRAVITAT IONAL WAVE CHANNEL  
~20GB/DAY (PER INSTRUMENT)  

PHYSICAL ENVIRONMENT MONITORS  
(SE ISMOMETERS,  ACCELEROMETERS,   
MAGNETOMETERS,  MICROPHONES ETC)  

INTERNAL ENGINEERING MONITORS  
(SENSING,  HOUSEKEEPING,  STATUS ETC)  

TOGETHER WITH VARIOUS INTERMEDIATE DATA PRODUCTS >2TB/DAY (PER INSTRUMENT)  

  G R A V I T A T I O N A L - W A V E  D E T E C T O R  D A T A
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COMPET IT IVE PERFORMANCE ON H IGHER-MASS CATALOG D ISTRIBUT IONS 
WORK REMAINS TO BE DONE FOR LOWER MASSES – ALTERNAT IVE ARCHITECTURES OR SMARTER 
TRAIN ING TECHNIQUES 

ZENODO 
  A - F R A M E  P E R F O R M A N C E  C O M P A R I S O N
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https://zenodo.org/records/7890437


WE CHOOSE LSTM ARCHITECTURE TO PROPERLY HANDLE SEQUENT IAL DATA WITH TEMPORAL 
DEPENDENCIES

ARXIV2309.11537 
  G W A K  L S T M
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https://arxiv.org/abs/2309.11537


WE CHOOSE DENSE ARCHITECTURE FOR BACKGROUNDS TO PROPERLY HANDLE SEQUENT IAL DATA 
WITHOUT TEMPORAL DEPENDENCIES

ARXIV2309.11537 
  G W A K  D E N S E
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https://arxiv.org/abs/2309.11537


SAMPLING PARAMETERS AND PRIORS FOR BBH (TOP)  AND S INE-GAUSSIAN (BOTTOM) INJECT IONS.
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ARXIV2309.11537 
 “ S I G N A L ”  D A T A S E T  P R I O R S

https://arxiv.org/abs/2309.11537


EXAMPLE OF GWAK CLASSES:  GL ITCH AND BACKGROUND STRAINS 
THE L IGHT BLUE SHADING H IGHLIGHTS AN EXAMPLE REGION THAT IS  PASSED AS INPUT TO THE 
AUTOENCODERS FOR TRAIN ING

ARXIV2309.11537 
 B A C K G R O U N D  D A T A S E T S
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https://arxiv.org/abs/2309.11537


EXAMPLE OF S IGNAL-LIKE CLASSES:  BBH AND S INE-
GAUSSIAN STRAINS FROM LIV INGSTON AND HANFORD 
THE L IGHT BLUE SHADING H IGHLIGHTS AN EXAMPLE 
REGION THAT IS  PASSED AS INPUT TO THE 
AUTOENCODERS FOR TRAIN ING

ARXIV2309.11537 
 S I G N A L  D A T A S E T S
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https://arxiv.org/abs/2309.11537


ARXIV2309.11537 
 A N O M A L Y  D A T A S E T S
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EXAMPLE OF S IGNAL-LIKE CLASSES:  SUPERNOVA AND 
WHITE  NOISE BURST STRAINS FROM LIV INGSTON AND 
HANFORD 

THOSE ANOMALIES ARE NOT USED TO CREATE THE 
GWAK

https://arxiv.org/abs/2309.11537


EXAMPLE OF RECREAT ION ON INJECTED BBH SIGNAL,  WITH THE NOISE-LESS TEMPLATE SHOWN AS WELL 
THE RECREAT ION OF THE BBH AUTOENCODER FOLLOWS CLOSELY THE ORIG INAL S IGNAL INJECT ION  
WHILE BACKGROUND,  GL ITCHES,  SG 64-512 HZ AND    SG 512-1024 HZ FA IL  TO RECONSTRUCT THE 
INJECTED BBH SIGNAL

ARXIV2309.11537 
 A U T O E N C O D E R  R E C R E A T I O N S
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https://arxiv.org/abs/2309.11537


THE F INAL METRIC AS A FUNCT ION OF SNR FOR GWAK AXES TRAIN ING S IGNALS,  BBH, SG 64-512 
HZ,  SG 512-1024 HZ AND FOR POTENT IAL ANOMALIES,  WNB 40-400 HZ,  WNB 400-1000 HZ,  
AND SUPERNOVA 

ARXIV2309.11537 
 T H E  G W A K  E F F I C I E N C Y
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https://arxiv.org/abs/2309.11537

