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1. Die Grundlage
der allgemeinen Relativitditstheorie;
von A, Finstein.

Die im nachfolgenden dargelegte Theorie bildet die denk-
bar weitgehendste Verallgemeinerung der heuto allgemein als
»Relativititstheorie® bezeichneten Theorie; die lotztere nenne

ich im folgenden zur Unterscheidung von der ersteren ,,speziello
Relativitiitstheorie® und setze sie als bekaunt votraus. Die
Verallgemeinerung der ~Relativititstheorie wurde schr er-
leichtert durch die Gestalt, welehe der spezicllen Relativitits-
theorie durch Minkowski gegeben wurde, welcher Mathe-
matiker zuerst die formale Gleichwertigkeit der riumlichen
Koordinaten und der Zeitkoordinate klar erkannte und fiir
den Aufbau der Theoric nuizbar machte. Dic fiir die all-
gemeine Relativititstheorie nétigen mathematischen  Hilfs-
mittel lagen fortig bereit in dem ,,absoluten Differentialkalkiil®,
welcher auf den Forschungen von. Gauss., Riemann und
Christotfel tiber nichteuklidische Manmigfaltigkeiten rulit und
von Rieci und Levi-Civita in ein System gebracht und
bereits auf Probleme der theoretischen Physik angewendet
wurde. Ieh habe im Abschnitt B der vorliegenden Abhand-
lung alle fiir uns nétigen, bei dem Physiker nicht als bekannt
vorauszuselzenden mathematischon Hilismittel in mdglichst
cinfacher und durchsichtiger Weise entwickelt, so daB ein
Studium mathematischer Literatur fiir das Verstiindnis der
vorliegenden Abhandlung nichl erforderlich ist. TFndlich sei
an dieser Stelle dankbar meines Freundes, des Mathematikers
Grossmann, gedacht, der mir durch seine Hilfe nicht nur
das Studium der einschligigen mathematischen Literatur er-
sparte, sondern mich auch beim Suchen nach den Feldgleichun-
gen der Gravitation unterstiitzte.
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IT°S BEEN 9 YEARS SINCE THE “HAPPIEST
THOUGHT™ OF ALBERT EINSTEIN'S LIFE
SITTING IN THE PATENT OFFICE IN BERN.

WORLDEWARIILISERAGING ON IN'EUROPE
N 191060 AND_THERNEWLY FAMOUS
EINSTEINTRUBIEISHES THE GENERAL
THEORY OF RELATIVlll:TY. }

INCLUDED IN GR IS THE CONCEPT OF
RIPPLES IN SPACETIME THAT SHOULD BE
INDUCED BY ACCELERATING OBJECTS —
GRAVITATIONAL WAVES (GW)!
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19805 — NSF FunNps MIT AND CALTECH T0
RESEARCH LASER INTERFEROMETERS

©1990s — CONSTRUCTION BEGINS ON LIGO, GW170817
VIRGO, GEO600 . Hanford = Livingston

*1999-2003 - LIGO/VIRGO/GEO
INAUGURATION

© SEPTEMBER 2015 — ADVANCED LIGO
READY FOR FIRST RUN

© SEPTEMBER 14TH, 2015 — ALIGO DETECTS
GWS FROM COLLISION OF TWO BLACK HOLES

©2017 - MuLTI-MESSENGER ASTRONOMY s B I N
(MMA) IS REALIZED (LIGO/VIRGU) Lo 046 048 0.50 u.".;) . 0.56 (.46 n‘z.\ u'I.:im(::':] 054 056 046 048 “'I):,'m,:[:' 0.54 056

Time [s]

20205+ — GOLDEN ERA FOR GW
ASTRONOMY! DETECTORS FROM ALL OVER THE
WORLD ARE COMING ONLINE



ACCELERATING MASSES PRODUCE ;
DEFORMATIONS IN SPACE TIME THAT Ei‘@
WE CAN DETECT VIA '
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WILL APPEAR IN AT LEAST TWO , WITH THE TIME DELAY BECAUSE OF THE
DISTANCE BETWEEN THE DETECTORS
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Injection Parameters:

massl = 66.45, mass2 = 33.96, spinlz = 0.54, spin2z = 0.01, ra = 4.73, dec = -0.25, coa_phase = 1.32, inclination = 2.62, polarization = 4.79, injection_snr = 15.10
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©SOUNDS TRIVIAL, BUT ISN'T — LENGTH MEASUREMENTS ARE ~ 10/ (-22) M

© CONSTANTLY CHANGING DETECTOR NOISE USUALLY CLOUDS SIGNAL
® DETECTOR GLITCHES 0CCUR EVERY 0(10 SEC) — RESEMBLING GWS IN EXCESS POWER!
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https://arxiv.org/abs/2104.06462
https://arxiv.org/abs/1711.03121

EVENT DETECTION

DETECTOR
c H A R A c T E R I S AT I 0 N : De‘e?::asf:::‘ the LIGO Hanford Observatory (whitened and bandpassed)
Template

CLEANED

B EVENT
USE INFO FROM WITNESS um CARAGTERISATON
SENSORS T0 PERFORM |

DATA DE-NOISING

~100K AUXILIARY

CHANNELS

CURRENT WORKFLOW USES CPU
DATA GRID WITH RULE BASED ALGORITHMS
CHALLENGE IS TO RUN THIS IN REAL-TIME



* INCREASING
FILTERING

e MAKES
(AND POSSIBLY

= FOR MATCHED

IN TERMS OF AND
) — USEFUL FOR MuLTI-

MESSENGER ASTROPHYSICS EFFORTS

NEUTRINOS

X-RAYS/GAMMA=-RAYS

VISIBLE/INFRARED LIGHT

RADIO WAVES
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* INCREASING = FOR MATCHED
FILTERING

o MAKES IN TERMS OF AND
(AND POSSIBLY ) — USEFUL FOR MuLTI-
MESSENGER ASTROPHYSICS EFFORTS

AND NEED TO WORK
TO CAPTURE AS MUCH DATA AS POSSIBLE AND SATISFY
e HIGH THROUGHPUT
o Low LATENCY
 ROBUST TO CHANGING DATA DISTRIBUTION

NEUTRINOS

X-RAYS/GAMMA=-RAYS

VISIBLE/INFRARED LIGHT

RADIO WAVES
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Glitch cancellation / GW denosing

» Pending:
o [Cuoco et al. (2001) °® (CQG)] - On-line power spectra identification and whitening for the noise in interferometric
gravitational wave detectors
o [Torres-Forné (2016) °° (PRD)] - Denoising of Gravitational Wave Signals Via Dictionary Learning Algorithms
o [Torres et al. (2014) ’° (PRD)] - Total-Variation-Based Methods for Gravitational Wave Denoising
o [Torres-Forné (2018) /' (PRD)] - Total-variation methods for gravitational-wave denoising: Performance tests on
Advanced LIGO data

o [Torres-Forné (2020) ’? (PRD)] - Application of dictionary learning to denoise LIGO’s blip noise transients . 38 - .. . . . .
o [Shen et al. (2019) 7® (IEEE)] - Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders o [Staats & Cavaglia (2018) ™ (Commun. Comput. Phys')] Finding the origin of noise transients in LIGO data with

o [Wei & Huerta (2020) 7 (PLB)] - Gravitational wave denoising of binary black hole mergers with deep learning machine learning (Karoo GP)
o [Vajente et al. (2020) 7° (PRD)] - Machine-learning nonstationary noise out of gravitational-wave detectors [Mukund et al. (2017) ** (PRD)] - Transient classification in LIGO data using difference boosting neural network

o [Alimohammadi et al. (2021) 7° (Scientific Reports)] - A Template-Free Approach for Waveform Extraction of (Wavelet-DBNN, India)
Gravitational Wave Events [Llorens-Monteagudo et al. (2019) “° (CQG)] - Classification of gravitational-wave glitches via dictionary learning
o [Ormiston et al. (2020) 77 (PRR)] - Noise Reduction in Gravitational-Wave Data via Deep Learning (Dictionary learning)
o [Essick etal. (2020) " (Mach. lean. sci. technol.)] - IDQ: Statistical Inference of Non-gaussian Noise with Auxiliary Low latency transient detection and classification (I. Pinto, V. Pierro, L. Troiano, E. Mejuto-Villa, V. Matta, P. Addesso)

Degrees of Freedom in Gravitational-wave Detectors I 33 lassificati ised cl . f d ith r .
o [Mogushi et al. (2021) ’? (Mach. learn.: sci. technol.)] - NNETFIX: an artificial neural network-based denoising engine for [George et al. (2018) ** (PRD)] - Classification and unsupervised clustering of LIGO data with Deep Transfer Learning

gravitational-wave signals (Deep Transfer Learning)

o [Chatterjee et al. (2021) 2° (PRD)] - Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using [Astone et al. (2018) *' (PRD)] - New method to observe gravitational waves emitted by core collapse supernovae (RGB
Deep Learning image SN CNN)

o [Mogushi (2021) ®’ (2105.10522)] - Reduction of Transient Noise Artifacts in Gravitational-wave Data Using Deep [Colgan et al. (2020) “ (PRD)] - Efficient gravitational-wave glitch identification from environmental data through

[Lce a|mIng t al. (2022) ¥ (2203.05086)] - Detecting and Di ing Terrestrial Gravitational-Wave Mimics Through machine learning
o olgan et al. o - betecting an lagnosin errestrial Gravitational-VWave Mimics rou
9 9 g 9 9 [Bahaadini et al. (2017) “* (IEEE)] - Deep Multi-View Models for Glitch Classification

Feature Learning
. . 44 . . . . . . . .
o [Lopez et al. (2022) °* (2203.06494)] - Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks [Bahaadini et al. (2018) “* (Info. Sci.)] - Machine learning for Gravity Spy: Glitch classification and dataset

o [Yu & Adhikari (2022) #* (Front. Artif. Intell.)] - Nonlinear Noise Cleaning in Gravitational-Wave Detectors With [Bahaadini et al. (2018) “° (IEEE)] - DIRECT: Deep Discriminative Embedding for Clustering of LIGO Data
Convolutional Neural Networks o Young-Min Kim - Noise Identification in Gravitational wave search using Artificial Neural Networks (PDF) (4th K-J

o [Lopez et al. (2022) °° (2205.09204)] - Simulating Transient Noise Bursts in LIGO with Gengli workshop on KAGRA @ Osaka Univ.)

o [Vajente (2022) [@PhysRevD.105.102005] (PRD)] - Data Mining and Machine Learning Improve Gravitational-Wave [Biswas et al. (2020) “¢ (CQG)] - New Methods to Assess and Improve LIGO Detector Duty Cycle

Detector Sensitivity - . . . .
+ [Bacon et al. (2022) °° (2205.13513)] - Denoising Gravitational-Wave Signals from Binary Black Holes with Dilated [Morales-Alvarez et al. (2020) *’ (IEEE)] - Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection
in LIGO

Convolutional Autoencoder
o [Kato et al. (2022) °7 (Astron. Comput.)] - Validation of Denoising System Using Non-Harmonic Analysis and Denoising [Marianer et al. (2020) ““ (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-seen

Convolutional Neural Network for Removal of Gaussian Noise from Gravitational Waves Observed by LIGO Gravitational-wave Sources
[Mesuga & Bayanay (2021) “° (2107.01863)] - On the Efficiency of Various Deep Transfer Learning Models in Glitch
Waveform Detection in Gravitational-wave Data
[Sankarapandian & Kulis (2021) °° (2107.10667)] - B-Annealed Variational Autoencoder for Glitches
[Yu & Adhikari (2021) ' (2111.03295)] - Nonlinear Noise Regression in Gravitational-Wave Detectors with Convolutional
Neural Networks
[Sakai et al. (2021) °Z (2111.10053)] - Unsupervised Learning Architecture for Classifying the Transient Noise of
Interferometric Gravitational-wave Detectors
[Merritt et al. (2021) °° (PRD)] - Transient Glitch Mitigation in Advanced LIGO Data
[Colgan et al. (2022) °“ (2202.13486)] - Architectural Optimization and Feature Learning for High-Dimensional Time
Series Datasets
[Davis et al. (2022) °° (2204.03091)] - Incorporating Information from LIGO Data Quality Streams into the PyCBC Search
for Gravitational Waves
[Bahaadini et al. (2022) °° (2205.13672)] - Discriminative Dimensionality Reduction Using Deep Neural Networks for
Clustering of LIGO Data




Glitch cancellation / GW denosing

o Pending:

o [Cuoco et al. (2001) °® (CQG)] - On-line power spectra identification and whitening for the noise in interferometric
gravitational wave detectors

o [Torres-Forné (2016) °° (PRD)] - Denoising of Gravitational Wave Signals Via Dictionary Learning Algorithms

o [Torres et al. (2014) ’° (PRD)] - Total-Variation-Based Methods for Gravitational Wave Denoising

o [Torres-Forné (2018) /' (PRD)] - Total-variation methods for gravitational-wave denoising: Performance tests on
Advanced LIGO data

o [Torres-Forné (2020) ’? (PRD)] - Application of dictionary learning to denoise LIGO’s blip noise transients

o [Shen et al. (2019) 7? (IEEE)] - Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders

o [Wei & Huerta (2020) 7 (PLB)] - Gravitational wave denoising of binary black hole mergers with deep learning

o [Vajente et al. (2020) 7° (PRD)] - Machine-learning nonstationary noise out of gravitational-wave detectors

o [Alimohammadi et al. (2021) 7° (Scientific Reports)] - A Template-Free Approach for Waveform Extraction of
Gravitational Wave Events

o [Ormiston et al. (2020) 77 (PRR)] - Noise Reduction in Gravitational-Wave Data via Deep Learning

o [Essick et al. (2020) ’# (Mach. learn.: sci. technol.)] - iDQ: Statistical Inference of Non-gaussian Noise with Auxiliary
Degrees of Freedom in Gravitational-wave Detectors

o [Mogushi et al. (2021) 7° (Mach. learn.: sci. technol.)] - NNETFIX: an artificial neural network-based denoising engine for
gravitational-wave signals

o [Chatterjee et al. (2021) ®° (PRD)] - Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using
Deep Learning

o [Mogushi (2021) ' (2105.10522)] - Reduction of Transient Noise Artifacts in Gravitational-wave Data Using Deep
Learning

o [Colgan et al. (2022) “* (2203.05086)] - Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through
Feature Learning

o [Lopez et al. (2022) °* (2203.06494)] - Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks

o [Yu & Adhikari (2022) °“ (Front. Artif. Intell.)] - Nonlinear Noise Cleaning in Gravitational-Wave Detectors With
Convolutional Neural Networks

o [Lopez et al. (2022) °° (2205.09204)] - Simulating Transient Noise Bursts in LIGO with Gengli

» Supernova Search

Some burst searches are for targeted sources like supernovae. There is not enough supernova waveforms to match filter
search but some supernova waveform features are known. The known features from supernova simulations can be
incorporated into supernova searches using machine learning.

o [Astone et al. (2018) *' (PRD)] enhance the efficiency of cWB using a neural network. The network is trained on
phenomenological waveforms that represent the g-mode emission in supernova waveforms. They use cWB to prepare
images of the data. They use colours to determine which detectors find the signal. They find their method increases the
sensitivity of traditional cWB.

[less et al. (2020) **' (Mach. learn.: sci. technol.)] have a different approach that does not involve cWB. They use a
trigger generator called WDF to find excess power in the detector. Then they do a neural network classification to decide
if the trigger is a signal or noise. They train directly on supernova waveforms. They use both time series and images of
data. They obtain high accuracies with both methods and include glitches.

[Chan et al. (2019) 22 (PRD)] also train directly on supernova waveforms. They use only the time series waveforms from
different explosion mechanisms.

[Cavaglia et al. (2020) *?* (Mach. learn.: sci. technol.)] - Improving the background of gravitational-wave searches for
core collapse supernovae: a machine learning approach

[Stachie et al. (2020) °?* (Mon. Not. Roy. Astron. Soc.)] - Using Machine Learning for Transient Classification in
Searches for Gravitational-wave Counterparts

[Marianer et al. (2020) “? (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-Seen
Gravitational-Wave Sources

[Millhouse et al. (2020) *?° (PRD)] - Search for Gravitational Waves from 12 Young Supernova Remnants with a Hidden
Markov Model in Advanced LIGO’s Second Observing Run

[Lopez et al. (2021) *?° (PRD)] - Deep Learning for Core-collapse Supernova Detection

[Loperz et al. (2021) *?7 (IEEE)] - Deep Learning Algorithms for Gravitational Waves Core-collapse Supernova Detection
[Antelis et al. (2021) 2% (PRD)] - Using Supervised Learning Algorithms As a Follow-up Method in the Search of
Gravitational Waves from Core-collapse Supernovae

o [Xia et al. (2020) '°® (PRD)] - Improved Deep Learning Techniques in Gravitational-wave Data Analysis
o [Alvares et al. (2020) '*° (CQG)] - Exploring Gravitational-wave Detection and Parameter Inference Using Deep Learning
Methods
[Wang et al. (2019) "*° (New J. Phys.)] - Identifying Extra High Frequency Gravitational Waves Generated from Oscillons
with Cuspy Potentials Using Deep Neural Networks
LIGO & Virgo provide two probabilities in low-latency. [Chatterjee et al. (2020) '°° (ApJ)] The probability that there is a
neutron star in the CBC system, P(HasNS). The probability that there exists tidally disrupted matter outside the final
coalesced object after the merger, P(HasRemnant). Matched filter searches give point estimates of mass and spin but
they have large errors! To solve this a machine learning classification is used. (scikit learn K nearest neighbours, also
tried random forest). A training set is created by injecting fake signals into gravitational wave data and performing a
search. This then produces a map between true values and matched filter search point estimates which is learnt by the
classifier.
[Wei et al. (2020) '®" (ApJ)] - Deep Learning with Quantized Neural Networks for Gravitational Wave Forecasting of
Eccentric Compact Binary Coalescence
[Menéndez-Vazquez et al. (2020) '° (PRD)] - Searches for Compact Binary Coalescence Events Using Neural Networks
in the LIGO/Virgo Second Observation Period
[Krastev et al. (2020) '®* (PLB)] - Detection and Parameter Estimation of Gravitational Waves from Binary Neutron-Star
Mergers in Real LIGO Data Using Deep Learning
[Dodia (2021) '°* (2101.00195)] - Detecting Residues of Cosmic Events Using Residual Neural Network
[Kulkarni et al. (2019) "°° (PRD)] - Random Projections in Gravitational Wave Searches of Compact Binaries (Random
projections)
[Rzeza et al. (2021) " (2101.03226)] - Random Projections in Gravitational Wave Searches from Compact Binaries II:
Efficient Reconstruction of Detection Statistic within LLOID Framework (Random projections)
[Zhan et al. (2021) "7 (2103.03557)] - The Response of the Convolutional Neural Network to the Transient Noise in
Gravitational Wave Detection
[Morawski et al. (2021) "% (Mach. learn.: sci. technol.)] - Anomaly Detection in Gravitational Waves Data Using
Convolutional Autoencoders
[Baltus et al. (2021) '°° (PRD)] - Convolutional Neural Networks for the Detection of the Early Inspiral of a Gravitational-
wave Signal
[Yan et al. (2021) '7° (PRD)] - Generalized Approach to Matched Filtering Using Neural Networks
[Yu et al. (2021) '”" (PRD)] - Early Warning of Coalescing Neutron-star and Neutron-star-black-hole Binaries from
Nonstationary Noise Background Using Neural Networks
[Fan et al. (2021) "/ (ICPR)] - Improving Gravitational Wave Detection with 2d Convolutional Neural Networks
[Baltus et al. (2021) '’* (IEEE)] - Detecting the Early Inspiral of a Gravitational-wave Signal with Convolutional Neural
Networks
o [Schéfer et al. (2021) '7* (2106.03741)] - Training Strategies for Deep Learning Gravitational-wave Searches
o [Goyal et al. (2021) '7° (PRD)] - Rapid Identification of Strongly Lensed Gravitational-wave Events with Machine Learning
o [Dodia et al. (2021) '/ (2107.03607)] - Specgrav — Detection of Gravitational Waves Using Deep Learning
o [Van Lieshout (2021) '’/ (Master Thesis)] - Sparse, Deep Neural Networks for the Early Detection of Gravitational Waves
o [Sankarapandian & Kulis (2021) °° (2107.10667)] - [-Annealed Variational Autoencoder for Glitches
o [Yu & Adhikari (2021) °' (2111.03295)] - Nonlinear Noise Regression in Gravitational-Wave Detectors with Convolutional
Neural Networks
o [Sakai et al. (2021) °? (2111.10053)] - Unsupervised Learning Architecture for Classifying the Transient Noise of
Interferometric Gravitational-wave Detectors
o [Merritt et al. (2021) °° (PRD)] - Transient Glitch Mitigation in Advanced LIGO Data
o [Colgan et al. (2022) 5 (2202.13486)] - Architectural Optimization and Feature Learning for High-Dimensional Time
Series Datasets
o [Davis et al. (2022) °° (2204.03091)] - Incorporating Information from LIGO Data Quality Streams into the PyCBC Search
for Gravitational Waves
o [Bahaadini et al. (2022) °° (2205.13672)] - Discriminative Dimensionality Reduction Using Deep Neural Networks for
Clustering of LIGO Data




o [Xia et al. (2020) '°® (PRD)] - Improved Deep Learning Techniques in Gravitational-wave Data Analysis
o [Alvares et al. (2020) '*° (CQG)] - Exploring Gravitational-wave Detection and Parameter Inference Using Deep Learning

AA_al
* Pending:

o [Staats & Cavaglia (2018) *° (Commun. Comput. Phys.)] - Finding the origin of noise transients in LIGO data with
machine learning (Karoo GP)

o [Mukund et al. (2017) *° (PRD)] - Transient classification in LIGO data using difference boosting neural network
(Wavelet-DBNN, India)

o [Llorens-Monteagudo et al. (2019) “° (CQG)] - Classification of gravitational-wave glitches via dictionary learning
(Dictionary learning)

o Low latency transient detection and classification (1. Pinto, V. Pierro, L. Troiano, E. Mejuto-Villa, V. Matta, P. Addesso)

o [George et al. (2018) ** (PRD)] - Classification and unsupervised clustering of LIGO data with Deep Transfer Learning
(Deep Transfer Learning)

o [Astone et al. (2018) *' (PRD)] - New method to observe gravitational waves emitted by core collapse supernovae (R(
image SN CNN)

o [Colgan et al. (2020) “* (PRD)] - Efficient gravitational-wave glitch identification from environmental data through
machine learning

o [Bahaadini et al. (2017) “* (IEEE)] - Deep Multi-View Models for Glitch Classification

o [Bahaadini et al. (2018) ** (Info. Sci.)] - Machine learning for Gravity Spy: Glitch classification and dataset

o [Bahaadini et al. (2018) “° (IEEE)] - DIRECT: Deep Discriminative Embedding for Clustering of LIGO Data

o Young-Min Kim - Noise Identification in Gravitational wave search using Artificial Neural Networks (PDF) (4th K-J
workshop on KAGRA @ Osaka Univ.)

o [Biswas et al. (2020) “° (CQG)] - New Methods to Assess and Improve LIGO Detector Duty Cycle

o [Morales-Alvarez et al. (2020) “’ (IEEE)] - Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection
in LIGO

o [Marianer et al. (2020) “? (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-seen
Gravitational-wave Sources

o [Mesuga & Bayanay (2021) “° (2107.01863)] - On the Efficiency of Various Deep Transfer Learning Models in Glitch
Waveform Detection in Gravitational-wave Data

o [sankarapandian & Kulis (2021) °° (2107.10667)] - 3-Annealed Variational Autoencoder for Glitches

o [Yu & Adhikari (2021) °" (2111.03295)] - Nonlinear Noise Regression in Gravitational-Wave Detectors with Convolutional
Neural Networks

o [Sakai et al. (2021) °Z (2111.10053)] - Unsupervised Learning Architecture for Classifying the Transient Noise of
Interferometric Gravitational-wave Detectors

o [Merritt et al. (2021) °° (PRD)] - Transient Glitch Mitigation in Advanced LIGO Data

o [Colgan et al. (2022) °* (2202.13486)] - Architectural Optimization and Feature Learning for High-Dimensional Time
Series Datasets

o [Davis et al. (2022) °° (2204.03091)] - Incorporating Information from LIGO Data Quality Streams into the PyCBC Search
for Gravitational Waves

o [Bahaadini et al. (2022) °° (2205.13672)] - Discriminative Dimensionality Reduction Using Deep Neural Networks for
Clustering of LIGO Data

~ l I SAIl GL . \ﬁvﬁﬁ’
Shrinkage Networks and Multiple Detector Coherent SNR
o [Alhassan et al. (2022) ' (2211.13789)] - Detection of Einstein Telescope Gravita

\INED: MIUWVIL MIUVMIIFIJ] VIUVILULUVIIUL FTUVL ULUUUVIT JUDY

o [Cuoco et al. (2001) °* (CQG)] - On-line power spectra identification and whitening for the noise in interferometric

gravitational wave detectors

o [Torres-Forné (2016) °° (PRD)] - Denoising of Gravitational Wave Signals Via Dictionary Learning Algorithms
o [Torres et al. (2014) 7° (PRD)] - Total-Variation-Based Methods for Gravitational Wave Denoising
o [Torres-Forné (2018) 7' (PRD)] - Total-variation methods for gravitational-wave denoising: Performance tests on

Advanced LIGO data

o [Torres-Forné (2020) 7% (PRD)] - Application of dictionary learning to denoise LIGO’s blip noise transients

o [Shen et al. (2019) 7* (IEEE)] - Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders
> [Wei & Huerta (2020) ’“ (PLBY)] - Gravitational wave denoising of binary black hole mergers with deep learning

o [Vajente et al. (2020) ’° (PRD)] - Machine-learning nonstationary noise out of gravitational-wave detectors

o [Alimohammadi et al. (2021) 7° (Scientific Reports)] - A Template-Free Approach for Waveform Extraction of

Gravitational Wave Events

o [Ormiston et al. (2020) 77 (PRR)] - Noise Reduction in Gravitational-Wave Data via Deep Learning
o [Essick et al. (2020) ’® (Mach. learn.: sci. technol.)] - iDQ: Statistical Inference of Non-gaussian Noise with Auxiliary

Degrees of Freedom in Gravitational-wave Detectors

o [Mogushi et al. (2021) 7 (Mach. learn.: sci. technol.)] - NNETFIX: an artificial neural network-based denoising engine for

gravitational-wave signals

o [Chatterjee et al. (2021) ®° (PRD)] - Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using

Deep Learning

o [Mogushi (2021) *' (2105.10522)] - Reduction of Transient Noise Artifacts in Gravitational-wave Data Using Deep

Learning

o [Colgan et al. (2022) °” (2203.05086)] - Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through

Feature Learning

o [Lopez et al. (2022) ®* (2203.06494)] - Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks
o [Yu & Adhikari (2022) °* (Front. Artif. Intell.)] - Nonlinear Noise Cleaning in Gravitational-Wave Detectors With

Convolutional Neural Networks

o [Lopez et al. (2022) ®° (2205.09204)] - Simulating Transient Noise Bursts in LIGO with Gengli
o [Vajente (2022) [@PhysRevD.105.102005] (PRD)] - Data Mining and Machine Learning Improve Gravitational-Wave

Detector Sensitivity

o [Bacon et al. (2022) *° (2205.13513)] - Denoising Gravitational-Wave Signals from Binary Black Holes with Dilated

Convolutional Autoencoder

o [Kato et al. (2022) °/ (Astron. Comput.)] - Validation of Denoising System Using Non-Harmonic Analysis and Denoising

Convolutional Neural Network for Removal of Gaussian Noise from Gravitational Waves Observed by LIGO

d r-mode

Gravitational Waves Generated from Oscillons
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ave Searches of Compact Binaries (Random

'6)] - Random Projections in Gravitational Wave Searches from Compact Binaries II:

in Statistic within LLOID Framework (Random projections)
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o [Nousi et al. (2022) ?'° (2211.01520)] - Deep Residual Networks for Gravitational Wave Detection

ient Noise in

o [Kim (2022) "' (2211.02655)] Search for Microlensing Signature in Gravitational Waves from Binary Black Hole Events

o [Yan et al. (2022) %'? (Res. Astron. Astrophys)] - Gravitational Wave Detection Based on Squeeze-and-excitation

Shrinkage Networks and Multiple Detector Coherent SNR

ta Using

o [Alhassan et al. (2022) *'# (2211.13789)] - Detection of Einstein Telescope Gravitational Wave Signals from Binary

Black Holes Using Deep Learning

f a Gravitational-

o [Jiang & Luo (2022) *'* (ICPR)] - Convolutional Transformer for Fast and Accurate Gravitational Wave Detection

o [Andres-Carcasona et al. (2022) [@2022Andres-Car SearchesMassAsy

] (2212.02829)] -

Searches for Mass-Asymmetric Compact Binary Coalescence Events Using Neural Networks in the LIGO/Virgo Third

Observation Period

o [Zhang et al. (2022) [@PhysRevD.106.122002] (PRD)] - Deep Learning Model Based on a Bidirectional Gated Recurrent

Unit for the Detection of Gravitational Wave Signals

o [Wang et al. (2023) *'° (2302.00295)] - Self-Supervised Learning for Gravitational Wave Signal Identification
o [Ravichandran et al. (2023) ?'° (2302.00666)] - Rapid Identification and Classification of Eccentric Gravitational Wave

Inspirals with Machine Learning

o [Shaikh et al. (2022) *'7 (IEEE)] - Optimizing Large Gravitational-Wave Classifier through a Custom Cross-System

Mirrored Strategy Approach

ficantly the speed of the analysis. [Graff (2012) ?*' (PhD Thesis)]
1 & Vallisneri (2020) ??? (PRL)] produce Bayesian posteriors using neural networks.

reural
Inction

2arning

iabbard et al. (2019) ?%° (Nature Physics)] use a conditional variational autoencoder pre-trained on

Dy wraon 2 signals. We use a variation inference approach to produce samples from the posterior. It does NOT
need to be trained on precomputed posteriors. It is ~6 orders of magnitude faster than existing sampling techniques.
For Chris Messenger, it seems completely obvious that all data analysis will be ML in 5-10 years.

Waves

/olutional

o [Chatterjee et al. (2020) "°° (ApJ)] - A Machine Learning-based Source Property Inference for Compact Binary Mergers

Black Holes Using Deep Learning
o [Jiang & Luo (2022) #'“ (ICPR)] - Convolutional Transformer for Fast and Accurate
o [Andres-Carcasona et al. (2022) [@2022Andres-CarcasonaSearchesMassAsymm
Searches for Mass-Asymmetric Compact Binary Coalescence Events Using Neural
Observation Period
[Zhang et al. (2022) [@PhysRevD.106.122002] (PRD)] - Deep Learning Model Base
Unit for the Detection of Gravitational Wave Signals
[Wang et al. (2023) ?'° (2302.00295)] - Self-Supervised Learning for Gravitational \
[Ravichandran et al. (2023) *’© (2302.00666)] - Rapid Identification and Classificat
Inspirals with Machine Learning
[Shaikh et al. (2022) ?7 (IEEE)] - Optimizing Large Gravitational-Wave Classifier thr
Mirrored Strategy Approach

o [Fan et al. (2019) "2’ (SCI CHINA PHYS MECH)] - Applying deep neural networks to the detection and space parameter
estimation of compact binary coalescence with a network of gravitational wave detectors

o [Green et al. (2020) 2> (PRD)] - Gravitational-Wave Parameter Estimation with Autoregressive Neural Network Flows

o [Carrillo et al. (2016) ?° (GRG)] - Parameter estimates in binary black hole collisions using neural networks Time

o [Carrillo et al. (2018) %2 (INT J MOD PHYS D)] - One parameter binary black hole inverse problem using a sparse
training set

o [Chatterjee et al. (2019) ??/ (PRD)] - Using deep learning to localize gravitational wave sources

o [Yamamoto & Tanaka (2020) ??# (2002.12095)] - Use of conditional variational auto encoder to analyze ringdown
gravitational waves

o [Haegel & Husa (2020) ?° (CQG)] - Predicting the properties of black-hole merger remnants with deep neural networks

o [Belgacem et al. (2020) %*° (PRD)] - Gaussian processes reconstruction of modified gravitational wave propagation

o [Chen et al. (2020) '*° (Sci. China Phys. Mech. Astron.)] - Machine Learning for Nanohertz Gravitational Wave Detection
and Parameter Estimation with Pulsar Timing Array

C Search

<s for

o [Khan et al. (2020) %*" (PLB)] - Physics-inspired deep learning to characterize the signal manifold of quasi-circular,
spinning, non-precessing binary black hole mergers




o [Xia et al. (2020) '°® (PRD)] - Improved Deep Learning Techniques in Gravitational-wave Data Analysis
o [Alvares et al. (2020) '*° (CQG)] - Exploring Gravitational-wave Detection and Parameter Inference Using Deep Learning

AA_al
* Pending:

o [Staats & Cavaglia (2018) *° (Commun. Comput. Phys.)] - Finding the origin of noise transients in LIGO data with
machine learning (Karoo GP)

o [Mukund et al. (2017) *° (PRD)] - Transient classification in LIGO data using difference boosting neural network
(Wavelet-DBNN, India)

o [Llorens-Monteagudo et al. (2019) “° (CQG)] - Classification of gravitational-wave glitches via dictionary learning
(Dictionary learning)

o Low latency transient detection and classification (1. Pinto, V. Pierro, L. Troiano, E. Mejuto-Villa, V. Matta, P. Addesso)

o [George et al. (2018) ** (PRD)] - Classification and unsupervised clustering of LIGO data with Deep Transfer Learning
(Deep Transfer Learning)

o [Astone et al. (2018) *' (PRD)] - New method to observe gravitational waves emitted by core collapse supernovae (R(
image SN CNN)

o [Colgan et al. (2020) “* (PRD)] - Efficient gravitational-wave glitch identification from environmental data through
machine learning

o [Bahaadini et al. (2017) “* (IEEE)] - Deep Multi-View Models for Glitch Classification

o [Bahaadini et al. (2018) ** (Info. Sci.)] - Machine learning for Gravity Spy: Glitch classification and dataset

o [Bahaadini et al. (2018) “° (IEEE)] - DIRECT: Deep Discriminative Embedding for Clustering of LIGO Data

o Young-Min Kim - Noise Identification in Gravitational wave search using Artificial Neural Networks (PDF) (4th K-J
workshop on KAGRA @ Osaka Univ.)

o [Biswas et al. (2020) “° (CQG)] - New Methods to Assess and Improve LIGO Detector Duty Cycle

o [Morales-Alvarez et al. (2020) “’ (IEEE)] - Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection
in LIGO

o [Marianer et al. (2020) “? (Mon. Not. Roy. Astron. Soc.)] - A Semisupervised Machine Learning Search for Never-seen
Gravitational-wave Sources

o [Mesuga & Bayanay (2021) “° (2107.01863)] - On the Efficiency of Various Deep Transfer Learning Models in Glitch
Waveform Detection in Gravitational-wave Data

o [sankarapandian & Kulis (2021) °° (2107.10667)] - 3-Annealed Variational Autoencoder for Glitches

o [Yu & Adhikari (2021) °" (2111.03295)] - Nonlinear Noise Regression in Gravitational-Wave Detectors with Convolutional
Neural Networks

o [Sakai et al. (2021) °Z (2111.10053)] - Unsupervised Learning Architecture for Classifying the Transient Noise of
Interferometric Gravitational-wave Detectors

o [Merritt et al. (2021) °° (PRD)] - Transient Glitch Mitigation in Advanced LIGO Data

o [Colgan et al. (2022) °* (2202.13486)] - Architectural Optimization and Feature Learning for High-Dimensional Time
Series Datasets

o [Davis et al. (2022) °° (2204.03091)] - Incorporating Information from LIGO Data Quality Streams into the PyCBC Search
for Gravitational Waves

o [Bahaadini et al. (2022) °° (2205.13672)] - Discriminative Dimensionality Reduction Using Deep Neural Networks for
Clustering of LIGO Data

~ l I SAIl GL . \ﬁvﬁﬁ’
Shrinkage Networks and Multiple Detector Coherent SNR
o [Alhassan et al. (2022) ' (2211.13789)] - Detection of Einstein Telescope Gravita

\INED: MIUWVIL MIUVMIIFIJ] VIUVILULUVIIUL FTUVL ULUUUVIT JUDY

o [Cuoco et al. (2001) °* (CQG)] - On-line power spectra identification and whitening for the noise in interferometric

gravitational wave detectors

o [Torres-Forné (2016) °° (PRD)] - Denoising of Gravitational Wave Signals Via Dictionary Learning Algorithms
o [Torres et al. (2014) 7° (PRD)] - Total-Variation-Based Methods for Gravitational Wave Denoising
o [Torres-Forné (2018) 7' (PRD)] - Total-variation methods for gravitational-wave denoising: Performance tests on

Advanced LIGO data

o [Torres-Forné (2020) 7% (PRD)] - Application of dictionary learning to denoise LIGO’s blip noise transients

o [Shen et al. (2019) 7* (IEEE)] - Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders
> [Wei & Huerta (2020) ’* (PLBY)] - Gravitational wave denoising of binary black hole mergers with deep learning

o [Vajente et al. (2020) ’° (PRD)] - Machine-learning nonstationary noise out of gravitational-wave detectors

o [Alimohammadi et al. (2021) 7° (Scientific Reports)] - A Template-Free Approach for Waveform Extraction of

Gravitational Wave Events

o [Ormiston et al. (2020) 77 (PRR)] - Noise Reduction in Gravitational-Wave Data via Deep Learning
o [Essick et al. (2020) ’® (Mach. learn.: sci. technol.)] - iDQ: Statistical Inference of Non-gaussian Noise with Auxiliary

Degrees of Freedom in Gravitational-wave Detectors

o [Mogushi et al. (2021) 7 (Mach. learn.: sci. technol.)] - NNETFIX: an artificial neural network-based denoising engine for

gravitational-wave signals

o [Chatterjee et al. (2021) ®° (PRD)] - Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using

Deep Learning

o [Mogushi (2021) *' (2105.10522)] - Reduction of Transient Noise Artifacts in Gravitational-wave Data Using Deep

Learning

o [Colgan et al. (2022) % (2203.05086)] - Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through

Feature Learning

o [Lopez et al. (2022) ®* (2203.06494)] - Simulating Transient Noise Bursts in LIGO with Generative Adversarial Networks
o [Yu & Adhikari (2022) °* (Front. Artif. Intell.)] - Nonlinear Noise Cleaning in Gravitational-Wave Detectors With

Convolutional Neural Networks

o [Lopez et al. (2022) ®° (2205.09204)] - Simulating Transient Noise Bursts in LIGO with Gengli
o [Vajente (2022) [@PhysRevD.105.102005] (PRD)] - Data Mining and Machine Learning Improve Gravitational-Wave

Detector Sensitivity

o [Bacon et al. (2022) *° (2205.13513)] - Denoising Gravitational-Wave Signals from Binary Black Holes with Dilated

Convolutional Autoencoder

o [Kato et al. (2022) ®/ (Astron. Comput.)] - Validation of Denoising System Using Non-Harmonic Analysis and Denoising

Convolutional Neural Network for Removal of Gaussian Noise from Gravitational Waves Observed by LIGO
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o [Nousi et al. (2022) ?'° (2211.01520)] - Deep Residual Networks for Gravitational Wave Detection

ient Noise in

o [Kim (2022) "' (2211.02655)] Search for Microlensing Signature in Gravitational Waves from Binary Black Hole Events

o [Yan et al. (2022) %'? (Res. Astron. Astrophys)] - Gravitational Wave Detection Based on Squeeze-and-excitation

Shrinkage Networks and Multiple Detector Coherent SNR

ta Using

o [Alhassan et al. (2022) *'# (2211.13789)] - Detection of Einstein Telescope Gravitational Wave Signals from Binary

Black Holes Using Deep Learning

f a Gravitational-

o [Jiang & Luo (2022) *'* (ICPR)] - Convolutional Transformer for Fast and Accurate Gravitational Wave Detection

o [Andres-Carcasona et al. (2022) [@2022Andres-Car SearchesMassAsy

] (2212.02829)] -

Searches for Mass-Asymmetric Compact Binary Coalescence Events Using Neural Networks in the LIGO/Virgo Third

Observation Period

o [Zhang et al. (2022) [@PhysRevD.106.122002] (PRD)] - Deep Learning Model Based on a Bidirectional Gated Recurrent

Unit for the Detection of Gravitational Wave Signals

o [Wang et al. (2023) *'° (2302.00295)] - Self-Supervised Learning for Gravitational Wave Signal Identification
o [Ravichandran et al. (2023) ?'° (2302.00666)] - Rapid Identification and Classification of Eccentric Gravitational Wave

Inspirals with Machine Learning

o [Shaikh et al. (2022) *'7 (IEEE)] - Optimizing Large Gravitational-Wave Classifier through a Custom Cross-System

Mirrored Strategy Approach

ficantly the speed of the analysis. [Graff (2012) ?*' (PhD Thesis)]
1 & Vallisneri (2020) ??? (PRL)] produce Bayesian posteriors using neural networks.

reural
Inction

2arning

iabbard et al. (2019) ?%° (Nature Physics)] use a conditional variational autoencoder pre-trained on

Dy wraon 2 signals. We use a variation inference approach to produce samples from the posterior. It does NOT
need to be trained on precomputed posteriors. It is ~6 orders of magnitude faster than existing sampling techniques.
For Chris Messenger, it seems completely obvious that all data analysis will be ML in 5-10 years.

Waves

/olutional

o [Chatterjee et al. (2020) "°° (ApJ)] - A Machine Learning-based Source Property Inference for Compact Binary Mergers

Black Holes Using Deep Learning
o [Jiang & Luo (2022) #'“ (ICPR)] - Convolutional Transformer for Fast and Accurate
o [Andres-Carcasona et al. (2022) [@2022Andres-CarcasonaSearchesMassAsymm
Searches for Mass-Asymmetric Compact Binary Coalescence Events Using Neural
Observation Period
[Zhang et al. (2022) [@PhysRevD.106.122002] (PRD)] - Deep Learning Model Base
Unit for the Detection of Gravitational Wave Signals
[Wang et al. (2023) ?'° (2302.00295)] - Self-Supervised Learning for Gravitational \
[Ravichandran et al. (2023) *’© (2302.00666)] - Rapid Identification and Classificat
Inspirals with Machine Learning
[Shaikh et al. (2022) ?7 (IEEE)] - Optimizing Large Gravitational-Wave Classifier thr
Mirrored Strategy Approach

o [Fan et al. (2019) "?” (SCI CHINA PHYS MECH)] - Applying deep neural networks to the detection and space parameter
estimation of compact binary coalescence with a network of gravitational wave detectors

o [Green et al. (2020) 2> (PRD)] - Gravitational-Wave Parameter Estimation with Autoregressive Neural Network Flows

o [Carrillo et al. (2016) ?° (GRG)] - Parameter estimates in binary black hole collisions using neural networks Time

o [Carrillo et al. (2018) %2 (INT J MOD PHYS D)] - One parameter binary black hole inverse problem using a sparse
training set

o [Chatterjee et al. (2019) ??/ (PRD)] - Using deep learning to localize gravitational wave sources

o [Yamamoto & Tanaka (2020) ??# (2002.12095)] - Use of conditional variational auto encoder to analyze ringdown
gravitational waves

o [Haegel & Husa (2020) ?° (CQG)] - Predicting the properties of black-hole merger remnants with deep neural networks

o [Belgacem et al. (2020) %*° (PRD)] - Gaussian processes reconstruction of modified gravitational wave propagation

o [Chen et al. (2020) '*° (Sci. China Phys. Mech. Astron.)] - Machine Learning for Nanohertz Gravitational Wave Detection
and Parameter Estimation with Pulsar Timing Array

C Search

<s for

o [Khan et al. (2020) %*" (PLB)] - Physics-inspired deep learning to characterize the signal manifold of quasi-circular,
spinning, non-precessing binary black hole mergers




MULTI-MESSENGER ASTROPHYSICS (MMA) REQUIRES

WiTH LIGO OBSERVING RUN & RUNNING, GW SIGNALS ARE NO LONGER “RARE” - MMA
COLLABORATORS REQUIRE

GW-PHYSICS IS NOT A HIGH STATI \VERYTHING NEEDS TO BE TRAINED/

VALIDATED ON YEARS - DECADES OF D

ONLINE (REAL-TIME) ML FOR GW HASN'T HA CAUSE THERE IS WAS NO TEAM
DEDICATED T0O MAKING THE GW-ECOSYSTEM ML-FRIENDLY. THIS LEADS T0 ISSUES IN DATA
LOADING, SIMULATION, INFERENCE, VALIDATION, OPTIMIZATION, ETC.

Pinned

ENTER: ML4AGW & HERMES
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https://github.com/ML4GW

— TORCH UTILITIES FOR TRAINING NEURAL NETWORKS IN GRAVITATIONAL WAVE PHYSICS
APPLICATIONS

GPU-FRIENDLY IMPLEMENTATIONS OF ALLOWING FOR MORE

FAST DATA LOADING

COMMON ANALYSIS OPERATIONS ROBUST USE OF SIMULATIONS

— A SET OF APIs FoR ASSISTIN' TH 'ELERATIUN. EXPORT, SERVING, AND

USERS INTERACT VIA

PERFORM INFERENCE WITH AN
?,Ls.:qzligi:&?zns OFF-THE-SHELF APPLICATION UEHETBIEAT CELT LA
ABSTRACTING
REPOS NVIDIA TRITON

IMPLEMENTATION DETAILS
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https://github.com/ML4GW/ml4gw
https://github.com/ML4GW/hermes

®|AAS 1S BECOMING A COMMON PARADIGM (ALSO IN HEP) TO EFFICIENTLY USE COMPUTE
RESOURCES

® HIGHLY PARALLELIZABLE
® OFF-THE-SHELF SOLUTION: TRITON INFERENCE SERVER

...directly

Model A
Model B
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®|AAS 1S BECOMING A COMMON PARADIGM (ALSO IN HEP) TO EFFICIENTLY USE COMPUTE
RESOURCES

® HIGHLY PARALLELIZABLE
® OFF-THE-SHELF SOLUTION: TRITON INFERENCE SERVER

Traditional l1aaS

—

Snapshot length !

Snapshotter model on inference
service maintains mostrecent  Client only needs to

With hermes input to model as a state send updates to this state

Backend online averagin
m

aintains average ass a e,
t m s back updat

lappi gprdt

—E—P\—'@M
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DETECTOR
CHARACTERISATION

CLEANED

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS



THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

h(t) = s(t) + n(r)

P0oSSIBLE GW SIGNAL
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THE OUTPUT RECONSTRUCTED FROM AN INTERFEROMETER CONTAINS

h(t) = s(t) + n(r)

PoSSIBLE GW SIGNAL ’, DETECTOR NOISE

n(t) =n, () + n, ()

SOURCE OF NOISE WITNESSED BY DEDICATED

NON-REMOVABLE (FUNDAMENTAL NOISE)
SYSTEM MONITORS (WITNESS SENSORS)

EG: PHOTON SHOT NOISE, THERMAL NOISE

ENVIRONMENTAL CONTAMINATION OR TECHNICAL
NOISE EG: NOISE ARISING FROM THE CONTROL
OF SUSPENDED OPTICS

CAN BE REDUCED ONLY WITH UPGRADED DESIGN
AND TECHNOLOGY
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AUTOENCODER TO PREDICT THE NOISE USING

NETWORK IS FINE-TUNED AT FIXED INTERVALS AND THE NEW MODEL IS
HOSTED ALONGSIDE STABLE MODEL ON INFERENCE SERVICE

IS CAPABLE OF DENOISING THE DATA AT ~ 1 S LATENCY - A PROMISING PROSPECT
FOR ELECTROMAGNETIC FOLLOW-UP OF ,6RAVI TIONAL WAVE OBSERVATIONS

21 x 4096 8 x 4096 8x4096 21 x4096 1 x 4096

16 x 2048 16 x 2048

l “N 32“““1‘024 “““‘ it ““““32 “(““ 024“‘“ l
Latent vector:

64 high-level features




~100K AUXILIARY

CHANNELS

DETECTOR

CHARACTERISATION

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

NN-BASED ALGOS FOR EVENT DETECTION
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SIGNAL|

®AS OPPOSED TO DETECTOR NOISE SUBTRACTED BY DEEPCLEAN,

GLITCHES ARE SHORT DURATION NON-GAUSSIAN NOISE TRANSIENTS

ORIGINATED FROM INSTRUMENTAL OR ENVIRONMENTAL COUPLINGS. /
®GLITCHES ARE BY FAR THE CULPRIT OF MOST SIGNIFICANT FALSE

ALARMS — EXCESS POWER ISN'T ENOUGH!

- - ‘ -
- | -

Extremely Loud Koi Fish Light Modulation

Air Compressor Chirp

1080Lines Low Frequency Burst Low Frequency Lines No Glitch Paired Doves Power Line Repeating Blips

—

e

1400Ripples Scattered Light Scratchy Vielin Mode WanderingLine Whistle
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ARXIv2403.18661

- IN GRAVITATIONAL WAVE STRAIN TIMESERIES DATA
USING NEURAL NETWORKS

~ ARCHITECTURE, MAPS FROM DETECTOR STRAIN FROM TWO INTERFEROMETERS TO A
SCALAR NEURAL-NETWORK OUTPUT

e 2-10 TIMES FASTER THAN MATCHED FILTERING CBC PIPELINE

Input Kernel
~-a— NN outputs
-~ = Average of last 1s

-0.5 0

Time from trigger [s]



https://arxiv.org/abs/2403.18661v1

ARXIV2403.18661

ON CATALOG DISTRIBUTIONS

FOR — ALTERNATIVE ARCHITECTURES OR SMARTER
TRAINING TECHNIQUES
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https://arxiv.org/abs/2403.18661v1

NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR
CHARACTERISATION

DEEPCLEAN
NN BASED AE
NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS



KNOWN “UNKNOWNS” THAT ARE POORLY MODELLED AND THEREFORE
CANNOT BE EASILY DETECTED USING THE MATCH FILTERING PIPELINE

CORE-COLLAPSE
SUPERNOVA (CCSN)

NEUTRON STAR GLITCHES
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WE REFER TO THEM AS
WOULD LET US TO

AND AIM TO DEVELOP A SEMI-SUPERVISED APPROACH WHICH
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K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

THE ALGORITHM 1S INSPIRED BY QUAK ARXi1v2011.03550 FrRoM LHC HEP
USE THE AS A METRIC FOR

1D AD Space

Background Selection Selection
Region Region 1 Region 2



https://arxiv.org/abs/2011.03550
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
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2D GWAK Space

Background

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/Ap3A31

EFFICIENTLY SELECT A
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K.GOVORKOVA ET AL MLST
10.1088/2632-2153/Ap3A31
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BBH-like Signal
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https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31
https://iopscience.iop.org/article/10.1088/2632-2153/ad3a31

. AND FINAL :
METRIC RESPONSE FOR SIMULATED :
SIGNAL -
THE EVALUATION OF AND TN

el

WITH TIME AND ON THE TOP RIGHT
ARE SHOWN AS AN

EXAMPLE OF THE ALGORITHM'S “"REACTION " TO AN
UNSEEN SIGNAL

Contribution

K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

supernova strain, SNR = 28.0
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K.GOVORKOVA ET AL MLST
10.1088/2632-2153/A03A31

supernova strain, SNR = 28.0
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Welcome to the
Collection of Anomalies
Detected by the pipeline

O3a analysis

O3b analysis

Burst O3a training

Burst O3b training

1/month

X1/10 years
=

1/100 years

Apr 2019

May 2019

03a GWAK Detections

Jun 2019

Jul 2019 Aug 2019

Date

Sep 2019

Oct 2019
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scaled GWAK features

Without bandpassing

With bandpassing
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B All Time Slides |

10 15 20
Minimum trigger height

9 12 15 18 21 24
Time [seconds] from 2015-09-14 09:50:29 UTC (1126259446.0)

e GW SEARCH SENSITIVITY EVALUATED BY
COMPARING TO BACKGROUND EVENTS
GENERATED THROUGH “TIMESLIDES”

o ACHIEVING HIGH SIGNIFICANCE DETECTIONS

REQUIRES ANALYZING YEARS OF
BACKGROUND

e THIS couLD MEAN O(T YEARS) TO
0(100K) oF TIME SLIDES RUN THROUGH
ALGORITHMS FOR VALIDATION
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NN-BASED ALGOS FOR EVENT DETECTION

DETECTOR
CHARACTERISATION

CLEANED

DEEPCLEAN - ,m NF FOR EVENT
_CHARACTERISATION
NN BASED AE ,A .

NOISE SUBTRACTION

~100K AUXILIARY

CHANNELS
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NEurips MLAPS 2023 69 PDF

PERFORM FAST PARAMETER ESTIMATION USING SIMULATION-BASED INFERENCE

- FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE SYMMETRIES

42


https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_69.pdf

NEURIPS ML4PS 2023 69 PDF

PERFORM USING

. FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE OVER COALESCENCE TIME

. (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX

DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

f1(zo) fz Zi—1) fir1(zs)
‘ OB R O8

JA MA

i~ pz(zz) zg ~ pk(z
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NEURIPS ML4PS 2023 69 PDF

PERFORM USING

- FROM THE LIKELIHOOD, TRAIN NEURAL NETWORK TO APPROXIMATE POSTERIOR
o USE TO MARGINALIZE OVER COALESCENCE TIME

< (INVERTIBLE TRANSFORMS MAP SIMPLE DISTRIBUTION TO COMPLEX

DISTRIBUTION) EMBED BROAD KNOWLEDGE OF WAVEFORMS

f1(zo) fz (zi—1) fiy1(z:)
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‘-wvﬁ GraceDB Public Alerts ~ Latest Search Notifications Pipelines Documentation Logout

Authenticated as: Katya Govorkova

61783271 G1/832/1

Neighbors

Log Messages
Full Event Log Basic Event Information

uiD G1783271

Labels

H1 = Raw output Group CBC

L1 = Integrated output

Search AllSky

Instruments ['H1','L1"

Event Time ~ 139-

FAR (Hz) 3.087e-08

Whitened strain
Detection statistic

FAR (yr'l) 1 per 1.0264 years

7 8 Latency (s) 3.524
GPS time +1.39603681 x 10?

Links Data




‘-w'dﬁ GraceDB Public Alerts ~ Latest Search Notifications Pipelines Documentation Logout

Authenticated as: Katya Govorkova

Sky Localization Parameter Estimation
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NATURE ASTRONOMY D01.0RG/10.1038/541550-022-01651-w

T0 ENABLE , WE HAVE DEVELOPED
— A SET OF COMPREHENSIVE TOOLS FOR ML PIPELINE IN GW PHYSICS
WHICH ALLOWS TO PERFORM

PPPPPP

MODELLED AND UNMODELLED SEARCHES
RUN EFFICIENTLY OFFLINE '
RUN ONLINE WITH LOW LATENCY
SEAMLESS DEVELOPMENT AND FAST DEPLO
OF NN-BASED ALGORITHMS

SMALL COMPUTATION FOOTPRINT AND OPTIMISED
HETEROGENEITY

Tools to make training and deploying neural networks in service of gravitational wave physics simple and accessibletoall ~~ Ppeople

We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for

eeeeeeeeeeeeeeeeeeeeeeeeeeee
aaaaaaaaaaaa

Pinned

Most used topics


https://github.com/ML4GW
https://www.nature.com/articles/s41550-022-01651-w.epdf?sharing_token=w7IQ4Wf8nvW3tQc8s-qCcdRgN0jAjWel9jnR3ZoTv0Ou2LS_lA4KwSLE_33b_sBTHnSVQTA9LeyaKo6SxCjSSOR7H46-rjWWUNfqzxl-7U2_nnNQHeLF6ocEpsYKVhOhHDhgyU4lWetHwN1UV2i3j_VZxTDYku9C1ppZJXhFeL8=
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~20GB/DAY (PER INSTRUMENT)

(SEISMOMETERS, ACCELEROMETERS,
MAGNETOMETERS, MICROPHONES ETC)

(SENSING, HOUSEKEEPING, STATUS ETC)
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ZENODO
COMPETITIVE PERFORMANCE ON HIGHER-MASS CATALOG DISTRIBUTIONS
WORK REMAINS TO BE DONE FOR LOWER MASSES — ALTERNATIVE ARCHITECTURES OR SMARTER
TRAINING TECHNIQUES

V(F) = /dx df e(F;x,0)p(x,0)

m1=35M@,m2=35M@ m1=35Mg,m2:2OMQ

—— MBTA
PyCBC-BBH
PyCBC-Broad

Sensitive volume (Gpc?)
— — — —
() N} = (@]

0

(=]

" 4.0

Sensitive volume (Gpc?)

=N

10! 2 10!

False alarm rate (years™!) False alarm rate (years™!)



https://zenodo.org/records/7890437

WE CHOOSE LSTM ARCHITECTURE TO PROPERLY HANDLE SEQUENTIAL DATA WITH TEMPORAL
DEPENDENCIES

H1 LSTM Preprocessor

L1 LSTM Preprocessor
——

Layer 2 Layer 1

Layer 1 Layer 2
LSTM(4) LSTM(4) Layer 3 Layer 3 LSTM(4) LSTM(4)

tanh(Linear) tanh(Linear)

L1 Input
200 X 1

daysawi)
daysawi]

MAE Loss MAE Loss
Time Domain = / Time Domain
(Training) ] (Training)

tanh(Linear) 200 X 1

L1 Output
200 X 1

L1~ [~
B -
. Layer 9 Linear Layer 9 Linear I |

7 ~_
i Layers 4-8 H1 Output



https://arxiv.org/abs/2309.11537

WE CHOOSE DENSE ARCHITECTURE FOR BACKGROUNDS TO PROPERLY HANDLE SEQUENTIAL DATA
WITHOUT TEMPORAL DEPENDENCIES

Layer 1 Layer 6
ReLU(Linear) Linear

Layer 2
ReLU(Linear)

3

Layer 3,4
ReLU(Linear)

N
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https://arxiv.org/abs/2309.11537

SAMPLING PARAMETERS AND PRIORS FOR BBH (TOP) AND SINE-GAUSSIAN (BOTTOM) INJECTIONS.

Limits

Mass ratio g Uniform
Chirp mass M, | Uniform
Tilts 91’2 Sine

Phase ¢ Uniform
Right Ascension | Uniform

Declination o Cosine

Q Uniform (25,75)
Frequency Uniform (64,512) and (512,1024)
Phase ¢ Uniform (0, 2m)
Eccentricity Uniform (0,0.01)
Declination § Cosine (—m/2,7/2)
Right Ascension | Uniform (0, 2m)

U Uniform (0, 2m)

sine-Gaussian



https://arxiv.org/abs/2309.11537

EXAMPLE OF GWAK CLASSES: GLITCH AND BACKGROUND STRAINS
THE LIGHT BLUE SHADING HIGHLIGHTS AN EXAMPLE REGION THAT IS PASSED AS INPUT TO THE

AUTOENCODERS FOR TRAINING
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https://arxiv.org/abs/2309.11537

SG 64-512Hz, SNR: 33.0
SG 512-1024Hz, SNR: 30.0

BBH, SNR: 43.0
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https://arxiv.org/abs/2309.11537

EXAMPLE OF SIGNAL-LIKE CLASSES: SUPERNOVA AND
WHITE NOISE BURST STRAINS FROM AND

THOSE ANOMALIES ARE NOT USED TO CREATE THE
GWAK
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https://arxiv.org/abs/2309.11537

EXAMPLE OF RECREATION ON INJECTED BBH SIGNAL, WITH THE NOISE-LESS TEMPLATE SHOWN AS WELL

THE RECREATION OF THE AUTOENCODER FOLLOWS CLOSELY
WHILE : . SG6 64-512 Hz AND SG 512-1024 HZ FAIL TO RECONSTRUCT THE

INJECTED BBH SIGNAL

Hanford

= Signal + Noise, AE input

= Signal

m  Background, mae: 0.79

= BBH, mae: 0.73

m Glitches, mae: 0.82
SG 64-512 Hz, mae: 0.81
SG 512-1024 Hz, mae: 0.82
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https://arxiv.org/abs/2309.11537

THE FINAL METRIC AS A FUNCTION OF SNR FOR GWAK AXES TRAINING SIGNALS, , S6 64-512
Hz, S6 512-1024 HZ AND FOR POTENTIAL ANOMALIES,
AND
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