AGENIUM SPACE

SMARTHEP Edge Machine Learning School --25/09/2025 Real time applications in earth-monitoring satellites

Dr. François de Vieilleville

Introduction : Push-broom sensor in earth observation satellite Passive optic

The camera scans earth line by line

- -scan is controlled by movement (attitude, speed)
- -bands are not acquired at the same time
- -image is acquired in focal place geometry, needs reprojection
- @698 kms in sun synchronous orbit
 - -14 orbits/day
 - 7507.5682 m/s
 - 0.09324 ms/line

Al-boosted Space

What are the possibilities ?

Driven for High-tier HW performance

Driven for system (HW+SW) efficiency and intelligence

EVOLUTION OF DL

DL done on the ground

DL done on at the edge (satellite)

Pros:

- Verifiable public/private data reference databases available
- Lots of computational resources at hand (GPU, TPU, ...)

Cons:

- Selective data availability, high cost
- Produced as huge models, requiring a lot computational power/memory

Pros:

- Enables autonomy
- Increases ROI of satellite
- Creates value-added insights
- Increases responsiveness
- Reduces the cost of downloads
 Cons:
- It is constrained as hell requires small models, running at low power within a limited memory consumption footprint

25/09/2024 SMARTHEP Edge Machine Learning Schoolsentation is confidential and should not be reproduced without the permission of Agenium Space

Proposed Generic Pipeline

All master models are around 90% F1 score.

Distillation is measured as model's parameters reduction and attrition.

	CORTEX (Distillation SW v1)			DEEP CUBE (Distillation SW v2)			
	Boat (S2)	Oil spill (S1)	Ocean Features (S1)	Boat (VHR)	Clouds (S2)	Clouds/snow (S2)	Forest (S2)
Reduction Factor	x52 135M → 2.6M	x52 135M → 2.6M	x52 135M → 2.6M	x80 24M → 300k	x60 59M → 1M	x120 59M → 0.5M	x160 16M → 100k
Attrition F1 score (Distillation V1)	<2%	<8%	<5%	NA	~13%	NA	<3%
Attrition F1 score (Distillation V2)	NA	NA	NA	~5%	~6%	<5%	NA

On board AI capabilities depend on both HW and SW tooling:

Soc FPGA/FPGA:	CONS	PROS	
VHDL/Verilog/HLS	Long to develop	Ad Hoc	
VITIS AI (Xilinx HW)	Black Box	Short to develop	
HLS4ML	Small models	Fast to develop, OSS	
CPU (arm)	CONS	PROS	
TensorFlow	Only FP32	Fast to develop, OSS	
TensorFlowLite	INT8 backend is super slow	FP16, Fast to develop, OSS	
Pytorch	INT8 backend is super slow	Fast to develop, OSS	
GPU (AMD G/R series)	CONS	PROS	
TensorFlow	Does not work	OSS	
TensorFlowLite	C++ only backend	Short to develop, OSS	
VPU (Myriad)	CONS	PROS	
OpenVINO	Only fp16	Short to develop, OSS	

25/09/2024 SMARTHEP Edge Machine Learning Schoolsentation is confidential and should not be reproduced without the permission of Agenium Space

) FLIGHT

FLIGHT-PROVEN AI

Adapting to customers' needs and HW

D-Orbit SCV004

- **Computing HW:** Accomplishment: First to demonstrate onboard-ML, followed by AWS, Trillium, etc.
- UniBap iX5, AI execution completed on AMD GPU cores
- Camera: images were preloaded
- **Date**: May'2022

ESA OPS-SAT

- Accomplishment: use of FPGA to accelerate convolution computations for AI.
- **Computing HW:** Altera Cyclone V SoC, with CNNs computed on FPGA and data feed manged on ARM Cortex-A9
- Camera: 12MPx, RGB, bivalent
- Date: Q4.2022

LoftOrbital Yam-3

- Accomplishment: installation of AI onto already launched satellite, FPGA reconfiguration in flight, updates of DNN in flight.
- Computing HW: SoC FPGA with Xilinx Zynq7045
- Camera: 12MPx, Monochromatic
- Date: Nov.2023

ENDUROSAT

EnduroSat Balkan-1&2 ESA Copernicus Contributing Mission

- Accomplishment-1 (ESA Copernicus Contributing Mission): Continuous scanning of oceans for ships
- Accomplishment-2 (Edge-SpAlce – Horizon Europe
 2023): Continuous scanning of oceans for marine-plastic littering
- Computing HW: SoC FPGA
 with Xilinx Ultrascale+
- Camera: 1.5m GSD, multispectral
- Date: 2024-2026

HW Throughput Performances /!\ 2022 Results

No attrition between distilled models and quantized models (INT8 & FP16) Cortex : VITIS AI <= 1.2 / DNNDK Deep Cube : VITIS AI <= 1.4 / VART | TFLite/Pytorch | OpenVino

	Xilinx Zynq SocFPGA-7020 Pixels/W/s	Xilinx ZynqUltraScale+ SocFPGA - ZU9G Pixels/W/s	Intel Movidius 2 VPU Pixels/W/s	AMD G-Series CPU/GPU Pixels/W/s
Classification (2.6M)	NA	570k	NA	NA
Segmentation (0.1M ~ 1M)	70k to 120k	170k to 215k	170k to 350k	8K to 19K
Detection (0.3M ~ 0.4M)	115k to 190k	350k to 600k	320k to 640k	7K to 17k

In orbit service demonstration Thanks to Occitanie Plan de Relance

IA was put on board <u>AFTER</u> YAM-3 satellite was launched Uses Xilinx's 7000 series MPSoc-FPGA

Image payload is a panchromatic matrix 5m GSD Al is done on RAW images

Use cases are:
boat segmentation
boat detection

cloud segmentation

On board performances for 2W: • < 90 s for segmentation on 12Mpx

< 30 s for detection on 12Mpx

On board results for YAM-3 Directly on RAW data

Raw image : Panchromatic@4.75m GSD Matrix sensor, MonoScape100, LoftOrbital Yam-3, © AGENIUM Space

Clouds masked

On board results for YAM-3 Directly on RAW data

Raw images : Panchromatic@4.75m GSD Matrix sensor, MonoScape100, LoftOrbital Yam-3, © AGENIUM Space

Ships detected

Detection algorithm tuned to camera specifics after more images acquired

Future on-board processing ? Case of DSNU + PRNU estimation and correction for CAL/VAL activities

Improve on-ground processing

Case of vibration estimation and correction for geometric improvements

moving direction

VHR example:

- LEO orbit at 500km,
- 0.2 ms for acquisition of 1 line
- High-tier star tracker has 30Hz rate

 \rightarrow Vibration frequencies can be above 1KHz !

ADCS informations cannot help to mesure such fast variations!

Benefits of AI onboard A simple example

Detection is made onboard of 16-u sat

Fast download of : -Image patch with detected object for analysis -Georeferencing & alarm

ightarrow Faster response system

 \rightarrow Selection of ROI

 \rightarrow « Tip and cue » : task other satellite with better imagery

 \rightarrow Continuous screening in near real-time

~100 Meur

~100 Meur

25/09/2024 SMARTHEP Edge Machine Learning Schoolsentation is confidential and should not be reproduced without the permission of Agenium Space

HW Throughput Performances /!\ 2024 Partial Update

	Segmentation (0.1M ~ 1M)		Zynq SocF Pi N	Xilinx JUltraScale+ PGA - ZU9G xels/W/s /ITIS 1.4	Xilinx ZynqUltraScale+ SocFPGA - ZU9G Pixels/W/s VITIS 3.0		
			17	170k to 215k		~2M	