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Asstract: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware i ion of binary requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXuacuINA achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for rea
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.

Asstract: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FwXmackINa features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (ES*) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using

-time

cight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock

speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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of the ing algorithm,

used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,

such as the d

f: [ f the Higgs b The inference is

made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (AD algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
undiscovered BSM physics (see, .g."). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
i ipated BSM physics. Much

algorithms executed ona computing farm. The first-level FPGA portion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining=99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system s capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design”.

this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously™”, decision tree designs depend only on

threshold resulting in fast and efficient FPGA imple-

the existing [ using neural netw

focuses on identifying BSM physics in already collected data' . Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ . A related but separate endeavor, whichis
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

‘The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g, processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
SM-vs-SM classification, would likely outperform an
approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder s able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con:
ventional cut-based algorithms.
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Nanosecond hardware regression trees in FPGA at the LHC
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bSchool of Medicine, Saint Louis University
“Department of Physics and Engineering, Westmont College

September 20, 2024

Abstract

We present a generic parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA).
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the de of missing transverse using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger
algorithms, and Trigger concepts and systems (hardware and software).
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that supports your FPGA part number (most versions support all
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. Scroll down a little and click on the name of the installation method.

For example, Windows users will click the *.exe one

. Once that is downloaded, open up the install wizard and progress

through the installation. Make sure to select "Vivado" and "Vivado
Design Edition"

. Once it is done installing, open Vivado HLS to verify it is working
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fwXmachina Project

Information regarding the fwX project will be available on this page. This project is developed by members of the Hong Group in the Department of
Physics and Astronomy and collaborators.

What is fwX

« Its full name is "firmware ex machina," a play of the phrase in Latin / Greek deus ex machina / 86¢ £k pnyavric. Since it's a mouthful to say, we

refer to it as fwX.

« Itis a software package to design nanosecond implementation of machine learning / artificial intelligence algorithms on FPGA for use in high

energy physics.
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the decision tree grid (center) and implemented by the parallel
decision paths (right). Two-depth deep decision tree (DDT) is
the encoder (step 1) shown as a conventional binary split
diagram; the latent space is the bin number (step 2); the latent
space data is decoded using the decision tree grid (DTG) (step
3); and the simultaneous encoding and decoding with xcoder
(star-coder) architecture (right) represented by parallel decision
paths (PDP) of Ref. [79]. The DTG is the visualization as a grid of
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Demonstration of decision tree-based autoencoder and a
demonstration of data transmission / anomaly detection using
the MNIST dataset, which is a set of images of handwritten
numbers converted to 28 x 28 pixels, or 784-length input vector
V=784, with N = 8 bits per pixel. The ML training is done on 15k
images of handwritten 0 to 4, but not 5to 9, on one tree T=1
at a maximum depth of D = 20. The output is a 784-length
vector with 8 bits per pixel. The data compression-
decompression factor, the ratio of input-output bits to the
latent space dimensions, V- N/(T - D) = 784 - 8/(1 - 20), is about
300. The figure shows two input-output pairs as examples. The
output of 4 resembles 4 while the output of 6 is garbled. The
former yields a smaller input-output distance relative to the
latter case. The input data shown here are not part of the
training sample.
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for the ATLAS trigger upgrade P05.03>1 Narayan, S. Parajuli, D. Yin
and B. Zuo
« Data samples / code
# | Short description Data sample Code / testbench

architecture in HLS

Classification with flat tree

o fwXmachina example: VBF
Higgs vs multijet, Mendeley
Data, doi:10.17632/
kp3myh3v89.1 (2021-05-10)

o Python: gitlab.com/PittHongGroup/fwX
o Installation: README
o Doxygen: link

Hong

Pittsburgh

o fwXmachina example: Anomaly
detection, Mendeley Data, doi: o Python: Available upon request
10.17632/y698s5kscs.1 o IP testbench: Xilinx inputs for nanosecond anomaly
(2023-04-11). This sample is detection with decision trees, http://d-
used in v1 of the paper draft scholarship.pitt.edu/id/eprint/44431 (2023-04-23). This
Anomaly detection with end-to- [arXiv:2304.03836v1] testbench is used in v1 of the paper draft
3 | end decision tree-based o fwXmachina example: Anomaly [arXiv:2304.03836v1]
autoencoder in HLS detection for two photons and o IP testbench: Xilinx inputs for nanosecond anomaly
two jets, Mendeley Data, doi: detection with decision trees for two photons and two
10.17632/44t976dyrj.1 jets, http://d-scholarship.pitt.edu/id/eprint/45784
(2024-02-05). This sample is (2024-02-01). This testbench is used in the final version
used in the final version of the of the paper.
paper.
4 | Application in ATLAS Upgrade o- o-
« Talks / Posters
# | Date Type: Title Venue / Link Speaker
] 2021-05-24 Talk: Comparisons to hls4ml's boosted decision tree thnomenology Symposium, Pheno 2021, T.M. Hong
results indico
Poster: Nanosecond machine learning with BDT for | Virtual HEP conference on Run4@LHC,
2 | 2021-06-06 B.T. Carl
high energy physics Offshell 2021, indico arison
Talk: Nanosecond machine learning with BDT for Division of Particles and Fields (DPF) in the
3 | 20210713 high energy physics American Physical Society (APS), indico B.T Carlson
inar: Invisible Higgs d & tri hall
4 | 2021-09-28 Seminar: Invisible Higgs decays & trigger challenges University of Geneva, Switzerland T.M. Hong
atthe LHC
18th Int'l Conf. on Accelerator and Large
5 | 2021-10-18 | Talk: Presentation of fwX BDT Experimental Physics Control Systems, S.T.Roche
ICALEPCS 2021, indico
Seminar: Machine learning in real-time triggers at Department of Physics, University of
6 | 2021-10-22 | the LHC: A discussion on Machine learning, Boosted Te:nessee Knoxvﬁle . ty T.M. Hong
decision trees, Real-time trigger, and ML on FPGA ’
IEEE Nuclear Science Symposium and
7 | 2021-10-20 | Poster: Presentation of fwX BDT Medical Imaging Conference, 2021 IEEE NSS S.T.Racz
MIC, link
Talk: i f fwX's BDT to hl ' |
8 | 2021-12-04 | T/ Comparisons of fwX's BDT to hisaml's neural | i 41 i gico T.M. Hong
network results
9 | 2023-05-12 Talk: Decision trge autoencoder anomaly detection ?henomenology Symposium, Pheno 2023, ST.Roche
on FPGA at L1 triggers indico
Talk: fwXmachina part 1: Classification with boosted | Fast Machine Learning for Science Workshop
10 | 2023-09-25 . T.M. H
decision trees on FPGA for L1 trigger 2023, indico ong
Talk: fwXmachina part 3: Anomaly detection with Fast Machine Learning for Science Workshop
111 20230925 | ¢ ision tree autoencoder on FPGA for L1 trigger 2023, indico ST.Roche
Seminar: Exotic Higgs decays & Al triggers at the R
12 | 2024-02-28 LHC (ATLAS) University of Pennsylvania, webpage T.M. Hong
Talk: Nanosecond anomaly detection with decision .
Worksh Fast Realtime Syst d
13 | 2024-04-10 | trees for high energy physics and real-time OriShop on rast fealtime systems an T.M. Hong
T > . Realtime Machine Learning, indico
application to exotic Higgs decays (HEP L1 trigger)
P . Division of Particles and Fields Meeting +
14 | 2024-05-13 Talk: Decision "?e autoencoder anomaly detection Phenomenology Symposium, DPF-Pheno T.M. Hong
on FPGA at L1 triggers - take 2 L
2024, indico
Poster: Nanosecond Al for anomaly detection with 42nd Int'l Conf. on High Energy Physics,
15 | 20240624 | 4 ision trees on FPGA ICHEP 2024, indico TM. Hong
16 | 20241107 | Colloquium: TBD Department of Physics, University of Florida, T.M. Hong
webpage

FAQ

1. How to run test vectors on the FPGA.

o Question: In the article | saw that you tested your model on a physical FPGA using a test vector and ILA unit of Vivado. Can you elaborate
how you implemented the test vector in Vivado IP integrator and how you synchronized everything with the clock? | would be happy to
know what is the best way to test the IP block model created on FPGA.

o Answer 1: We generated the clock from one of the clocks we have on-board our development board (VCU118) using the clock wizard. We
only wanted to test specific vectors to verify that the output was what we expected and that the timing was what HLS had estimated, so
we implemented the test vectors as constants in the block design. We implemented MUXes, using bits from a binary counter as select bits
to switch between different sets of test vectors in order to verify the latency.

o Answer 2: If you have access a Zynq then it's pretty easy to run as many test vectors as you want using just an AXI-Lite register file. The
method in Answer 1 works for basic verification, but for more robust verification you'd probably want to use a Microblaze soft processor.

o Answer 3: Another option is to store the test vectors as ROM and then write a simple controller to cycle through the addresses and pass it

to the fwX module. This wouldn't be too difficult either.
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AssTrACT: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware i ion of binary requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXuacHINA achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.
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ABsTRACT: We present a novel application of the machine learning / artificial intelligence method

called boosted decision trees to estimate physical quantities on field programmable gate arrays

(FPGA). The software package FwXMACHINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultracfficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (™) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using

tinput variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock

speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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—————— —— We present an interpretable implementation of the autoencoding algorithm,
Check for updates used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the

boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see, e.g.” ). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedic:
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data'* ™. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rar
anomalous data on the real-time trigger path for more deta
investigation offline,

‘The LHC offers an environment with an abundance of data ata 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

ted studies look for rare BSM events tha

are even

and

alg
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining =99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neur.
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 s,

orithms executed on a computing farm. The frst-level FPGA portion

networks can be

As discussed previously™”, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, ie., BSM-vs:SM classification, would I
unsupervised approach of SM-only training. The physics scenarios
considered in this pape
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con
ventional cut-based algorithms,

ely outperform an

re examples to demonstrate that our auto;
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Abstract

We present a

neric parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA)
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the magnitude of missing transverse momentum using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC,

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Tri
al

rithms, and Tri

g oger concepts and systems (hardware and software)
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Look Up Bin Engine (LUBE)
Input variable E> E> Bin index

Actual layout depends on ML training result
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Paper 1: Bit shifting

Input variable
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Actual layout depends on ML training result
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» fwX paper 1
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N
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. paper 1 NN
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ApstRACT: We present a novel implementation of classification using the machine

rning/artificial
ate arrays (FPGA).
The firmware implementation of binary classification requiring 100 training trees with a maximum

intelligence method called boosted decision trees (BDT) on field programmable

depth of 4 using four input variables gives a latency value of about 10 s, independent of the clock

speed from 100 to 320 MHz in our setup. The low timi

; values are achieved by restructuring the

BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at

ara

ge from 0.01% to 0.2% in our setup. A software package called F

Na achieves this

implementation. Our intended user is an expert in custom electronics-based trigger systems in high

energy physics experiments or anyone that needs decisions at the lowest latency values for real-time

event classification. Two problems from high energy physics are considered, in the separation of

electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the

rejection of the multijet processes.
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AssTrACT: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FwXmachINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (E;.““‘) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
cight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider

at CERN are considered, for which the autoencoder is trained using known

physical processes of the Standard Model. The design is then deployed in real
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the
boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see, e.g.” ). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedic:
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data'* ™. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rar
anomalous data on the real-time trigger path for more deta
investigation offline,

‘The LHC offers an environment with an abundance of data ata 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

ted studies look for rare BSM events tha

are even

and

algorithms executed on a computing farm. The first-level FPGA portion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining =99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neur.
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 s,
As discussed previously™”, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, ie., BSM-vs:SM classification, would I

networks can be

ely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this pape
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con
ventional cut-based algorithms,

re examples to demonstrate that our auto;
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Abstract

We present a

neric parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA)
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the magnitude of missing transverse momentum using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC,
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Paper 2: Estimation

Regression (using o)
* Toy problemin 1-d
- Train /teston  f(x)
« For sample of x: y

sin(x) + Gaussian(x)

f(x) in 16 bits
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Paper 2: Parallel paths M Hong

e Example

e 2d toy dataset, say x = py and y = eta for some SM sample

Data in Data in

Destination bin Decision path

not(g;) and not(q;;)

Data out Data out

q

not(q;) and g;; and not(q;;;)

y.



TM Hong

Paper 2: Results

Table 3: Benchmark configuration and the FPGA cost. Three groups of information are given. The top-most
group defines the FPGA setup. The second group defines the ML training used for the MET problem and the
Nanosecond Optimization. The third group gives the actual results measured on the FPGA for four tree-depth
combinations of 40-5, 40-6, 20-7, and 10-8.

Parameter Value Comments
FPGA setup
Chip family Xilinx Virtex Ultrascale+
Chip model xcvu9p-flga2104-2L-e
Vivado version 2019.2
Synthesis type C synthesis
HLS or RTL HLS HLS interface pragma: None
Clock speed 320 MHz Clock period is 3.125 ns

ML training configuration & Nanosecond Optimization configuration

ML training method

No. of input variables

Bin ENGINE type

No. of bits for all variables

Boosted decision tree
8

Regression, Adaptive boosting

Deep DEecisioN TREE ENGINE (DDTE)

16 bits for each

binary integers

FPGA cost for 40 trees, 5 depth
Latency
Look up tables
Flip flops
FPGA cost for 40 trees, 6 depth
Latency
Look up tables
Flip flops
FPGA cost for 20 trees, 7 depth
Latency
Look up tables
Flip flops
Block RAM
FPGA cost for 10 trees, 8 depth
Latency
Look up tables
Flip flops
Block RAM

6 clock ticks
1675 out of 1 182 240
1460 out of 2 364 480

9 clock ticks
4566 out of 1 182 240
2516 out of 2 364 480

15 clock ticks

4568 out of 1182240
2697 out of 2 364 480
4.5 out of 4320

21 clock ticks
2556 out of 1 182240
2299 out of 2 364 480
5 out of 4320

Common values for the above configurations

Interval

Block RAM

Ultra RAM

Digital signal processors

1 clock tick
0 out of 4320
0 out of 960
0 out of 6840

18.75ns
0.1% of available
< 0.1% of available

28.125ns
0.4% of available
0.1% of available

46.875ns

0.4% of available
0.1% of available
0.1% of available

65.625 ns

0.2% of available
0.1% of available
0.1% of available

3.125ns

If not listed above

Same for all trees and all depth
Same for all trees and all depth
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in-house training
bypassing latent space
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parallel paths using HLS faster & more efficient
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Nanosecond anomaly detection with
decision trees and real-time application to
exotic Higgs decays

Nanosecond machine learning regression with deep
boosted decision trees in FPGA for high energy physics

Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics
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at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-

ABSTRACT: We 1 novel implementation of classification using the machine learning/artific umemggersystemsforanomalyde(ecuonofunknownphys!cal processes,

elligence me boosted decision trees (BD' on field progra 1able g il s (FPC
intelligence mett 1 decision trees (BDT) on field programmat ays (FPGA AssTRACT: We present a novel application of the machine learning / artificial intelligence method suchas the d f the Higgs boson. The inference is
The firmware implementation of binary classification requiring 100 training trees with a maximum : made with a latency value of 30 ns at percent-level resource usage using the

called boosted decision trees to estimate physical quantities on field programmable gate arrays nade wi ;

depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock FPGA) T N ot . e parallen Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
R e e e e (FPGA). The software package FWXuACHINA features a new architecture called parallel decision Jow latency values for edge Al users with resource constraints. R
spe - g values a ¢ cturing paths that allows for deep decision trees with arbitrary number of input variables. It also features a stract
BDT layout and recon s neters. The FPGA ce utilization is also kept low at

new optimization scheme to use different numbers of bits for each input variable, which produces op

H“‘”‘\:;k “" “““‘J“‘ — “‘\‘J ‘:iw " \‘ ‘\‘ ‘”“ ““‘ “‘ “' “ N ) [h,‘, ‘f “‘i‘i; timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics ;’;:;’:[‘;‘;VQ:‘:C:E:";‘E‘:L"z"ﬂt'ﬂg;ﬁ;f;mgg{i"g;"hj“m‘:‘i;?ﬁ'xt ﬂnlrgf:.':2';2:2?3:1‘;’23:25:::‘;5:?;'gul'ﬁzﬁ:;‘lliqvﬁxr% ortion We present a generic parallel implementation of the decision tree-based machine learning (ML)
£ of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missii Large Hadron Collider (LHC) at CERN. The LHC is the highest energy ~ discarding the remaining=99% of the collisions. Therefore, |( i method in hardware description language (HDL) on field programmable gate arrays (FPGA)

energy physics experiments or anyone that needs decisions at th values for real-tin transverse momentum (2% at the firstlevel trigger system at the High Luminosity LHC (HL-LHC proton and heavy ion collider that is designed to discover the Higgs :ﬂsw;-;:md\(sec;\‘f;rg::tet::‘::ihI:ZSVT:‘::SEi;Sﬁ;fe";l:[c:mb:;: A regression problem in high energy physics at the Large Hadron Collider is considered: the
nt classification. Two problems from high energ o the separation o experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize andisovered BSM physes (sce, ). Due o the lack of s of  has shown hae cor f estimation of the magnitude of missing transverse momentum using boosted decision trees
trons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs the firmware performance. The firmware implementation with a maximum depth of up to 10 using "fmi"t:ﬁ‘g":.“i’::“:“g“ﬂ S‘f"'e‘“’)ﬂ’g;“ja’z‘f;C["“d“c‘“’ g“"‘“ﬂ?“‘“’ o with latency values between 80 to 1480 ns, (BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
ction of the multjet processes ¢ input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock e T 0 prsc mong {h mouncain of ordnry Sandrd 104 papr, e presen s e mplemcncation of variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
L | and 0(0.1)% of the available FPGA resources without using digital signal processors indf;'ﬂ'ﬁfﬁéeiu‘.;;"ciﬁi'f?in:!ﬁ;{f?j{:ﬂifn,“’ﬁfﬁeﬁﬁ% Z:’i??fﬁ;”;',’ﬁ.ﬂﬁif;d“‘ﬂ“",!.'.fff.‘,";‘L}'fsk.;.li'rifp"f.fj‘ﬂjfZ‘f.. on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared

Muchof

threshold resulting in fast and efficient FPGA imple-

to similar designs using high level synthesis (HLS)—without the use of digital signal processors

d software); Data reduction methods the existing li using neural netwe I reliance on digital signal processors. We train ) w . e o the use 2 (BR e also demo: s 2 pote
' ' Keyworps: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con focuses on dentiying BSM physcein lready colected datat Such the autoencoder an known Scandard Model (SM) processes @ help (DSPF) while eliminating the use of block RAM (BRAM) _\\) also demonstrate a potential
cepts and systems (hardware and software) ideas have started to produce experimental results on the analysis of  trigger the rare events that may include BSM. application in the estimation of muon momentum for ATLAS RPC at HL-LHC
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the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

'€ LHC offers an environment with an abundance of data at a 40
MH collsion rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g, processes data using custom electronics using
field programmable gate arrays (FPGA) followed by sofeware trigger

dynamics are known, dedicated supervised training against the SM

imple, i.e., BSM-vs-SM classification, would likely outperform an
approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder s able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con:
ventional cut-based algorithms.
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Paper 3: Autoencoder intro TM Hong

-xample: handwritten numbers

e feach it 0, 1, 2, 3, 4 with a sample (doesn’'t know about 9!)
/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)

300x Compress>

Detalls

* |nput-output distance is relatively small = good compression

A

* |nput-output distance is relatively large = bad compression



Paper 3: Training dev’d in-house

Train by samp

e Encoding: Event
Decode by returning a “reconstruction point”
e Decoding: Bin = median of the training data in bin

iINg 1d projections

— which bin it's in

- 2R




Paper 3: AE t0o anomaly detector

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly
e |nput is similar to training data
o Will likely land in a small bin = close

to the reconstruction point

Y

_____..________I.L_:

e Anomaly
e |nput is not similar to training data

o Will likely land in a large bin =
far from the reconstruction point
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Paper 3: SKip latent space T™ Hong

Don't need latent space in firmware

e Closer look at what it means to encode
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ApsTRACT: We present a novel implementation of classification using the machine learning/artificial

intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA

The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock

speed from 100 to 320 MHz in our setup. The low timi

alues are achieved by restructurin

BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at

ara achieves this

ge from 0.01% to 0.2% in our setup. A software package called Fw

implementation. Our intended user is an expert in custom electronics-based trigger systems in high

y physics experiments or anyone that needs decisions at the lowest latency values for real-time

event classification. Two problems from high energy physics are considered, in the separation of

ggs bosons vs. the

electrons vs. photons and in the selection of vector boson fusion-produced Hi

rejection of the multijet processes,
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ABsTRACT: We present a novel application of the machine learning / artificial intelligence method

called boosted decision trees to estimate physical quantities on field programmable

sate arrays
(FPGA). The software package FWXmACHINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-

timal physics results and ultraefficient FPGA resource utilization. Problems in high en

gy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (™) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using

tinput variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock

speed, and O(0.1)% of the available FPGA resources without using digital signal processors.

Keyworps: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con

cepts and systems (hardware and software)
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—————— —— We present an interpretable implementation of the autoencoding algorithm,
Check for updates used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see, e.g.” ). Due to the
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedic:
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
g neural network-based approaches,
12 BSM physics in already collected data . Such
ideas have started to produce experimental results on the analysis of

of signs of

ted studies look for rare BSM events that are even

data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the realtime trigger path for more detailed
investigation offline,

The LHC offers an environment with an abundance of data at a 40

MH collsion rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments™”, e, processes data using custom electronics using

field programmable gate arrays (FPGA) followed by software trigger

algorithms executed on a computing farm, The first-level FPGA portion

the

of

igger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining =99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neur.
implemented on FPGA with latency values between 80 to 1480 s,
depending on the de:

networks can be

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 s,
As discussed previously™”, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
mentation with minimal reliance on

gital signal processors. We train
the autoencoder on known Stand
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its

Model (SM) processes to help

dynamics are known, dedicated supervised training against the SM
sample, ie., BSMvs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this pape

re examples to demonstrate that our auto;

encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con
ventional cut-based algorithms,
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Nanosecond hardware regression trees in FPGA at the LHC
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Abstract

‘We present a generic parallel i of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA).
A regression problem in high energy physics at the Large Hadron Collider is considered: the

of the itude of missing using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger

algorithms, and Trigger concepts and systems (hardware and software).
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Paper 4: Hardware trees

Summary
e Python to write VHDL

Table 1: FPGA results and comparison with Refs. [7, 8, 11]. All results in the table uses the same FPGA
model Xilinx Ultrascale+ VU9P (vu9p-figb2104-2L.-e) with the following available resources 1.2 M LUT,
2.4M FF, 6.8k DSP, and 4.3 k BRAM. Effective depth d is defined as so that 29 = Npin/Niee.

Goal 5 classif’n 2 classif’n EJ"™ regression EF"™ regression. ...
Reference [11] [7] [8] oo Thispaper..........coooviiio...
Setup
Design VHDL HLS HLS HLS VHDL VHDL VIDL  VHDL
Sum strategy - - - - pipeline combin. combin. pipeline
Parallelize - cutwise  pathwise pathwise pathwise pathwise pathwise pathwise
Clock (MHz) 250 320 320 320 320 320 200 320
Bit precision fixeds intg intig intyg intyg intyg intig intig
Nyar 16 4 8 8 8 8 8 8
Niree 100 100 40 10 40 10 20 100
Max. depth D 4 4 6 8 6 8 10 12
Nbin - - 1.7k 1.4k 1.7k 1.4k 29k 15.7k
Effectivedepthd - - 54 7.2 54 7.2 7.2 7.3
Notable identical identical slower larger
clock forest
Results
LUT 96k 1k 6.4k 75k 5.1k 10k 155k 38k
FF 43k 0.1k 35k 24k 1.6k 4.7k 6.6k 19.4k
DSP 0 2 0 0 0 0 0 0
BRAM 0 5.5 0 10 0 0 0 0
URAM - 0 0 0 0 0 0 0
Latency (ns) 52ns 9.375ns  38ns 119ns  25ns 19ns 10ns 28 ns
" (tick) 13 3 12 38 8 6 2 9
q | Interval (tick) 1 1 1 1 1 1 1 1
e S u tS Notable benchmark in abstract

e 5x  smaller

e 10x faster
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R. Ospanov, C. Feng, W. Dong, W. Feng, and S. Yang, Development of FPGA-based neural
o I\/l O C k— u p AT I_ AS R P C fo r P h aS e - 2 network regression models for the ATLAS Phase-II barrel muon trigger upgrade, Eur. Phys. J.

Web of Conf. 251, 04031 (2021).

Made using code adapted from github.com/rustemos/MuonTriggerPhase2RPC
,;éf B u+nearby hits

S’ e_l’_" f:6022769 u+nearby+noise
ru - .

77! BDT,,-26.2
NN -62.6
: : ®

- [l p+nearby hits

Events / 0.1
std dev of rg;
mean of gy

© 9o - =
© © . N

‘ ‘ ‘ ‘ ‘ ‘ ‘ A S‘M hité E
O O nearby
o 1 noise hits 3 ‘
1

12 14 16 18 2 22 24 26 28
Beam axis z (meters)

10-8-6-4-20 2 4 6 8 10
rBDT — (q ° pT)BDT/(q ° pT)truth

Muon pi™" (

Made using code adapted from github.com/rustemos/MuonTriggerPhase2RPC . > F .
or——— /f, ;{ “““““ .| — 5 ] . p+nearby hits Z E 1.2F . u+nearby hits
] e Event 341519 o 10 B u+nearby+noise "'S 5 4 1_
!_:_!;g’;h 245 2 10* § g .15 ||||||IIII||||||||||||||||HHHHHM
-1 BDTo-4.0 o) underflow % IE : ”'“|||||||||||||||||||||||||H
INN - -22.0 b 10% 1 0.9k
,,,,,,,,,,,,,,,,,, . 10 08¢ 15 20 25
A 4 u hits = .
O 3 nearby 104
‘ ‘ ‘ ‘ ‘ ‘ e 1‘noise‘\ hits L1 L overflow
5 55 6 65 7 75 8 85 9 95 10 10-8-6-4-20 2 4 6 8 10
Beam axis z (meters) fw=(q *py) /(q pT)truth

NN

Results

e NN core is sharper
e BDT tail is shorter




Outline

Introduction
e \Who are we
e \What products do we offer
e Summary if you have to leave

Theory
e Parallelizing decision trees
e Classification & regression
e Anomaly detection w/ autoencoder

Practice

¢ Hands-on tutorial videos with
“teaching assistants” in person
& In Zoom breakout rooms




Test bench setup TM Hong

_ Setup to validate against software simulation _
| |
P h I | O S O h Repeat HLS co-simulation
for 100k test vectors
for 200 config / cores fwX

ulated core

e Every training ships
with test vectors /el o I

® Every deSign Creates ﬁN,zj(I.BDTSW bit integer
Its own testbench

For each
config,

Asw, 1

>

SW simulation

Asw, 100k

SW simulation ROC

Note: floating pt x | curves

o Pe rfo r m a n C e Va | u e S The floating point simulation is not part of the

test bench, but is shown here for completeness.

fwX BDT sw floating pt User input is

frO m I m p | e m e n tat I O n ; The blue boxes are also part of Nanosecond floating pt cuts for Nanosec.

Optimization that appears in figure 1. Optimization,

not estimate
Appga = For each
VL
Ofpga — |y setup,
ocosim Afp ga
_ Setup to verify against physical FPGA _
Repeat HLS co-simulation
for 2 FPGA choices simulated
for 3 clock speeds fwX L timing
for a few test vectors ulated core 4
. /it integer x R, =
WX Vivado RTL L | It For each
—>» HLS actual timing[—> setup,
C code C synthesis S ) >\ /sim. timing | Ry
i3 Physical FPGA
Vivado 2
Synthesis fwX IP core
&
Implementation |
actual EM}# integer x
estimated resources »| Rr= For each
resources | actual / est. —> setup,
7| resources R,




Estimates vs. actual

Compared

TM Hong

e Estimated usage / latency vs. actual usage / latency

Table 12: FPGA cost verification against physical FPGA. Comparison of the FPGA cost using the bitstream
on the FPGA (actual), simulated timing using co-simulation and estimated resources using Vivado HLS
(estimated). The actual-to-estimated ratios are given as R. Two FPGA choices and three clock speeds
are considered; the 320 MHz group of columns represent the benchmark clock. For all other configurable
parameters, see table 1. The timing values are reported in units of clock ticks. The Xilinx Vivado version
used for the actual and estimated columns are noted. For the ratios, “1” signifies no difference.

Parameter

Benchmark FPGA

Smaller FPGA

FPGA setup
Family
Model
Speed
Period
Vivado

Xilinx Virtex Ultrascale+
xcvu9p-fliga2104-2L-e

320MHz ..........
3.125ns...........
2019.2 2019.2

2018.2 2018.2

oooooooooooooooooooo

2018.2 2018.2

Xilinx Artix-7.....
xc7z020-clg400-1 .
100MHz .........

2019.1 2019.2

FPGA cost
Latency
Interval
LUT
FF
BRAM
URAM
DSP

actual /estim.=R

3 /3 =1
1 /1 =1
717 /1903 =0.4
147 /138 =1.1
5.5 /8 =0.7
0 /0 =1
2 /0 =NA

actual / estim. =R

2 /2 =1
1 /1 =1
717 /4015 =0.2
147 /113 =1.3
5.6 /15 =04
0 /0 =1
2 /2 =1

actual / estim. = R

1 /1 =1
1 /1 =1
717 /4007 =0.2
147 /2 =73.
5.5 /15 =04
0 /0 =1
2 /2 =1

actual / estim. = R

4 /4 =/
1 /1 =1
482 /3572 =0.1
245 /362 =0.7
75 /15 =0.5
NA /NA =NA
2 /2 =M

e Not always 1




FW testbench w/ IP available

http://d-scholarship.pitt.edu/45784/

Autoencoder Firmware Testbench Tutorial

Please download Vivado 2019.2 at the following link, if you do not currently have it:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-

tools/archive.html

Before Beginning

Before beginning, please make sure that you have (and know the location of) the autoencoder IP
folder, and the VHDL testbench files:

nName vate moariea Iype size
autoencoder8var_ip 2/7 File folder
tb_vhd_files 2/ File folder

Creating New Project in Vivado

Open Vivado 2019.2 and select “create new Project.” On the following pop-up, select “next,” and
you will be prompted to name the project. Name the project as you wish and choose a location to store
it. Keep clicking next until you reach a page that prompts you to select the part/ board. For this tutorial,
we will be using the Virtex UltraScale+ VCU118 board. After you have selected your part or board,
keeping clicking “next” until you have reached the end of the setup page.

4 New Project x
Default Part
Choose a default Xilinx part or board for your project, s
Parts Boards
Reset All Filters Update Board Repositories
Vendor: | All v | Name: Al v BoardRev: Latest v
Search: | O-veu118 v | (1 match)
Display Name: Preview  Vendor File Version ~ Part
Virtex UltraScale+ VCU118 Evaluation Platform ‘ W linccom 23 xcvu9p-figa2104-2L-e
< >

TM Hong

Screenshots in the document

@ @ b > Q + & » C ¢ Default View v
0
ae_testbench_0 oo 0
0
recoCoonneks_070| 120
s——{Cx ATL
detault_syscik1_300 [
ok wiz 0
|+ e i o
resel [—p—] reset
G P i
proc_sys_reset_0
wlowest_syee_ck me_reset
ot rosat_in bea_stnut reseq00)
aux_resmt
b_cs0ug_sys_rst
dem locked
™R
Flow Navigator 3 BLOCK DESIGN - design 1
Add Sources Bos ] expectedDis Diagram
Languege Terspietes 2 @ axEoa + Detault ¥ v %

1P Coislog

¥ IPINTEGRATOR

Create Block Design

Slock Design il
& Bioxck Design
Block Pin Properties oogx 0 s
o )
¥ SIMULATION Frobed - °
. A b0 Doy ace
Run Smulation b
0 input - e
0 T 0 s
v RILaNALYSIS Net 20 restoench 0 change_event o2y reset
* sarated Design b = oot syre Py
Goneral | Fropertios  Intarface < R
Tel Console ports ign R o
Q = 3
0
Ly | laet bd cal
v IMPLEMENTATION ' ! B
> Run implementation t laet b col
~ PROGRAM AND DESUG
¥ Ganerate Bistream < 5
Waveform - hw_ila_1 ?
Q + = & > » B B @ Q@ I o | = 2 4 wl &

ILA Status: Idle
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Backup




Autoencoder intro TM Hong

-xample: handwritten numbers

¢ [each It about the number 4

784 variables (8-bit) Corresponding data set
. age  Pixel | = Pixel 2 s I;)g(gl F;)S(jrl
500k

Detalls

e Fach pixel in the data set are unrelated to each other




Logic flow

¢ | eft-to-right data flow (see right)
e Realized that we can bypass the latent space!

e Encoding = Decoding

X ) .
Distance
Processor
Data X %0 sum | —  Data
D ‘I: . | in Deep Decision Tree Engine,
e a S anomaly detector version _
l DDTE-ad, A= 2y

e Parallel computing

® [REE ENGINES eval. in parallel

DDTE-ad, |

|14 Distance
—1 Fn., Ao

e All combinatoric logic, so no clocking
between steps = fast

fork =0 .. K-1 trees

e Mostly comparisons = fast . E——
e No multiplication = fast A o

e Technical info in backup & t t t

Input data Encoder Encoded data Decoder Intermediate Metric
[2304.03836] output
: Shown conceptually as
actual encode-decode
occur simultaneously.

y.


https://arxiv.org/abs/2304.03836

N

Design v2: Parallelize terminal bins
Go deeper from 4 — 8

° | m p rove FWXV 1 Standard FWX design

decision tree v2

Challenge Does not scale well w/
tree depth & # variables

Cut redundancy 2P

FWXVv2 a

Key design Evaluate decision paths

Benefit Softer scaling vs 2P
%8000 - ] ;35'
% XMachina _: 0.6 g Destination bin Decision path
- — ] §<)
2 6000 N,. = 0.5 o not(q;) and not(q;)
—_ - ] ] o .
O 104 i
g 4000~ =+ 4 ] (% D10 not(q;) and g;; and not(q;;;)
- 5 ] 03 7)) b11
- 10 ] :
20 .
2000 1023
I —0.1
O i = = i ) ) | .
0 2 4 6 8 10 Xg

D, max. tree depth

Carlson et al., JINST 17, P0O9039 (2022)
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Machine learning

Focus on the most popular use cases in HEP

Supervised classification

* Neural networks & Boosted decision trees
« Others (SVM, kNN, Matrix element, etc.)

Structural similarities: NN & BDT

- Step function boundary
* Fuzzy boundary

Use cases
* Regression
 Classification S vs. B
- Anomaly detection B vs. not-B

Il discuss other approaches (estimation, unsupervised) after intro !




Neural networks basics

From Bruce Denby, Tutorial on Neural Network Applications in High
Energy Physics: A 1992 Perspective, FERMILAB-CONF-92 / 121-E

Step function for 1d Step function for 2d  Curved step fn? for 2d

Xa y y

P ol 1

o 0
>

()]

5 C\ .
o

@]

£ 0
zZ

O(Xa — X) O(y —1(x))
=0O(y—(mx +Db)) substitute
=0O(c1y+cex+b) multiply by c1 & define co
= O(c1 X1 + C2X2 + b) generalized notation
=0O(c*x+Db) vector notation

ep functions divide samples given a desired true / false positive rates I



fa

fg

X

> X
@(Ccﬂ X1 + Cc12 X2 + ba) e(CB1 X1 + CBZ X2 + bB)

> X
@(Cy1 X1 + Cy2 X2 + by)

fy

fp

> X1 X1

@(Cm X1 + Ca2 X2 + bq) + @(Ccn X1 + Ca2 X2 + bq) +
©(Cp1 X1 + Cp2 X2 + bp) O(Cp1 X1 + Cp2 X2 + bg) +

@(Cy1 X1 + Cy2 X2 + by)

of step functions can approximate the desired contour




O(Ca* X + ba) + O(Ca* X + ba) +
O(cp* X + bg) + O(cp* X + bp) +
@(Cy'x+by) ——lp @(Cy’x+by)—2 —i

subtract 2 threshold

Step function for
2-dim inputs

The contour is converted to the final step function




Activation function

Fuzzy boundary using a function

1-dim input 2-dim inputs Output score
() o
3 O(Xa — Xx) 3
5 5
3 3
S S
Z P
_ « O
0 1

@) 2
o ®(Xa — X; Xmax) 3
5 o
5 5
®) —
£ 3
Z S

P

- X
Xa  Xmax O
0 1

Ivation fn gives users a handle to control true / false positive rates ’



Decision tree basics

And how it achieves the same result as NN

Step function for 1d Step function for 2d

Xa X2 C1
@ 1
c
% 1 - —
— Cop
S Co2a
3 0
-
- )
=
> X > X1
O(Xa — X) O(x1 — C1) * CICCENT +

Sl b O RMO (X2 — Cop)
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Flip book




One decision tree

tree1 depth1

—0.8

sig bkg

_5 |IIII|IIII|IIII|IIII|IIII _1
25 4 -3 2 1 0 1 2 3 4 5

Binary classification




One decision tree -

tree1 depth2

Binary classification



One decision tree

tree1 depth3

! | | | |
o A W N 4 O a4 0N oW A~ o

Binary classification




One decision tree

tree1 depth4

! | | | |
o A W N 4 O a4 0N oW A~ o

Binary classification




One decision tree

tree1 depth8

Draws diagonal



Depth 2

vary trees




Depth 2

coocoo

vary

Lo
A b b L o L v e s oo

O[T T[T [T T[T ITTT T

tree1 depth2

5 — 1

43_ —0.8
32— —0.6
23— —0.4
13_ 0.2




Depth 2

vary
tree2 depth2
5 — —1
‘= s
3 f_ —10.6
o g




Depth 2

vary

tree4 depth2

-
o
e
o

—0.8

0.6




Depth 2

£ D £k & £k S

vary

|

tree8 depth2




Depth 2 _—

vary

|

tree16 depth2

LS S5 5 L © 9 9 o o =
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Depth 2 R

vary

l

tree32 depth2

LS S5 5 L © 9 9 o o =
® o = b o> > >
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LAALALLAALLALALL




Depth 2

LAALALLAALLALALL
LAALALLAALLALALL
LAALALLAALLALALL
LAALALLAALLALALL

vary

l

tree64 depth2

tree32 depth2

®» o = N MR e @




Depth 2

.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
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vary

|

tree128 depth2

becomes very blurry

tree64 depth2




Put it together on one slide

Tree >

<+— Depth

tree1 depth1

tree2 depth1

tree1 depth2

tree2 depth2

treed depth2

tree8 depth2

tree16 depth2

tree8 depth2

tree1 depthd

tree2 depthd

tree1 depth8

tree2 depthg

tree2 depth16

Sweet spot depends on the physics problem




Forest of decision trees

Fuzzy boundary by averaging step functions
| Neural network 1d Bposted decision tree 1d

7p] N
+— -
(- -
) ()
> >
() ()
Y— Y—
(@) o
—_ —_
() )
0 o)
- -
- >
Z pZd

CD(XOH — X, Xmax1) +
CD(XGZ — X, Xmax2) +

Number of events
Number of events

D(XaN — X; XmaxN)

@ Forest of decision trees provides the gradient




Activation function

Fuzzy boundary using a function

2-dim inputs Projection Output score

NN

Number of events

BDT

Number of events

Different approach, but same result




