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Goal - One device, multiple models

The deployment of deep learning models for computer vision (CV) at the
edge demands a balance between performance, efficiency, and cost.

This challenge is heightened when multiple CV models run concurrently
on a single edge device.

In this project, we benchmark model compression technigues and

hardware platforms for deploying several CV models simultaneously in
three stages:

1. We consider the problem of detecting human faces in unfavorable
Imaging conditions as a prototypical CV task requiring the concurrent
Implementation of multiple image restoration and detection models.

2. We propose Joint Multi-Model Compression (JMMC), an adaptation
of Quantization Aware Training (QAT) and pruning techniques in
which the multi-model system is fine-tuned as a single unit with an
adapted loss function.

3. We port the proposed multi-model system to an edge device
containing a Hailo-8 accelerator, we explore the opportunities of
parallel inference of the multi-model system and evaluate its
efficiency in terms of power consumption and latency.
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Proposal: Joint Multi-Model Compression

Instead of compressing each model separately with independent datasets

and losses, models are jointly compressed for a given downstream task, with
an adapted loss function.
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Case study :
Detection

Compression experiments were performed with a proxy task involving

Image Enhancement and Detection. We consider three models:

e Denoiser

(PMRID) [1];

e Light-enhancer (PMRID) [1];

e Face and Facial Landmark detector (YuNET) [2]:
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JMMC applied to Quantization and Pruning outperform JMMC increases pruning efficiency, although with increased
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Floating Point Baseline 0.579+0.026 0.7339+0.0030 29+1.7
1Q-INQ 231 =017 0.384 +0.028 17.67 £15.31 . 7 -
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Table 3.2: Detection results on degraded images for different quantization configurations of the ';' 5 | ';'
pipelined system: independently quantized with PTQ and single-shot QAT (1Q-sQAT), indepen- O U
dently quantized with INQ (IQ-INQ); jointly quantized with single shot QAT (JMMC-sQAT); jointly W ™ 4
quantized with INQ (JMMC-INQ) é 4 - é
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Model Name Metrics
3 4
PSNR SSIM NME loU FN 2-
PMRID-denoise  29.92+0.72 0.691 £ 0.030 — — — > | 1
PMRID-lle 303 1.0 0.9614 £ 0.0066 — — —
YuNET detector - — — — — 0 20 40 60 80 0 20 40 60 80
P = — 0.78 + .28 0.707 +0.026 64 +37 Pruning ratio [%] Pruning ratio [%]
IMMC — - 0.813 + 0.092 0.721 +0.046 0+ 0 Independent Pruning Joint Multi-Model Pruning
Table 3.4: (top) Pruning performance for each separate model. (Bottom) Pruning results for different
configurations of the pipelined system: independently pruned models (IP); jointly pruned (JMMC);
Results correspond to a pruning ratio of 90%.
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" Future Outlook

Venues of future work:

e Adapting JMMC to hardware-aware
compression pipelines that adapt to a
given computing and memory budget.

e Benchmarking closed-source
compression pipelines across different

e Implementing JMMC to other
downstream tasks and platforms,
targeting other use cases of multi-
systems in CV.
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