logitech

Edge AI chips for Computer Vision: Applications & Possibilities João Prado - Supervisors : Laleh Makarem, Mathieu Salzmann

Goal - One device, multiple models

The deployment of deep learning models for computer vision (CV) at the edge demands a balance between performance, efficiency, and cost. This challenge is heightened when multiple CV models run concurrently

Proposal: Joint Multi-Model Compression

Instead of compressing each model separately with independent datasets and losses, models are jointly compressed for a given downstream task, with an adapted loss function.

on a single edge device.

In this project, we benchmark model compression techniques and hardware platforms for deploying several CV models simultaneously in three stages:

- 1. We consider the problem of detecting human faces in unfavorable imaging conditions as a prototypical CV task requiring the concurrent implementation of multiple image restoration and detection models.
- 2. We propose Joint Multi-Model Compression (JMMC), an adaptation of Quantization Aware Training (QAT) and pruning techniques in which the multi-model system is fine-tuned as a single unit with an adapted loss function.
- 3. We port the proposed multi-model system to an edge device containing a Hailo-8 accelerator, we explore the opportunities of parallel inference of the multi-model system and evaluate its efficiency in terms of power consumption and latency.

60

Case study : Image Enhancement & Detection

Compression experiments were performed with a proxy task involving **Image Enhancement** and **Detection**. We consider three models:

- Denoiser (PMRID) [1];
- Light-enhancer (PMRID) [1];
- Face and Facial Landmark detector (YuNET) [2];

1.2 - Normalized Mean Error (NME) 8.0 - 0.6 - 0.4 -	1.2 1.0 1.0 0.8 0.8 0.6 0.6				80	0.80 - 0.78 - 0.76 - 0.76 - 0.74 - 0.72 - 0.70 - 0.68 - 0.66 - 0	0.80 0.78 0.76 0.74 0.72 0.70 0.68 0.66			20	40 60
		Pr	uning r	ratio [%]			Pruning ratio	[%]			Pruning ratio [%]
Model Name Quantization Methods				82							
2		BNI	CLE	AdaRound	sQAT INQ	NME	IoU	FN			
Floa	Floating Point Baseline				0.579 ± 0.026	0.7339 ± 0.0030	29 ± 1.7				
I	Q-INQ				~	2.31 ± 0.17	0.384 ±0.028	17.67 ± 15.31			
10	Q-sQAT	~	~	~		0.759 ± 0.081	0.7032 ± 0.0058	46.7 ± 19.4			
JM	MC-INQ				~	0.88 ± 0.12	0.716 ± 0.024	0			
JM	MC-sQAT	~	~	~		$\textbf{0.626} \pm \textbf{0.023}$	0.7232 ± 0.0080	38.3 ± 5.859465			

Table 3.2: Detection results on degraded images for different quantization configurations of the pipelined system: independently quantized with PTQ and single-shot QAT (IQ-sQAT), independently quantized with INQ (IQ-INQ); jointly quantized with single shot QAT (JMMC-sQAT); jointly quantized with INQ (JMMC-INQ)

Model Name		Me			
	PSNR	SSIM	NME	IoU	FN
PMRID-denoise	29.92 ± 0.72	0.691 ± 0.030	_	—	_
PMRID-lle	30.3 ± 1.0	0.9614 ± 0.0060	6 —		_
YuNET detector				_	_
IP	_		0.78 ± 0.28	0.707 ± 0.026	64 ± 37
JMMC	-	_	0.813 ± 0.092	0.721 ± 0.046	0 ± 0

Table 3.4: (top) Pruning performance for each separate model. (Bottom) Pruning results for different configurations of the pipelined system: independently pruned models (IP); jointly pruned (JMMC); Results correspond to a pruning ratio of 90%.

- Adapting JMMC to hardware-aware compression pipelines that adapt to a given computing and memory budget.
- Benchmarking closed-source compression pipelines across different providers.
- Implementing JMMC to other downstream tasks and platforms, targeting other use cases of multisystems in CV.

References

[1] Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun Liu, and Jue Wang. Practical Deep Raw Image Denoising on Mobile Devices. 2020. arXiv [2] Wei Wu, Hanyang Peng, and Shiqi Yu. YuNet: A Tiny Millisecond-level Face Detector. Apr. 2023. DOI: 10.1007/ s11633-023-1423-y. U R L: http:// dx.doi.org/10.1007/s11633-023-1423-y.