Geometric Learning for Ultrafast Jet Classification at the HL-LHC

Introduction

Data

measured at the HL-LHC. The data has a dyadic structure: each jet has a number of particles, and each particle is specified by its kinematic properties: $p_T, \eta_{\rm rel}, \phi_{\rm rel}$. We truncate each jet to the N most energetic particles, and consider three realistic scenarios: 8, 16, 32.

The data can be represented in p_T , η_{rel} , ϕ_{rel} space in three ways: tabular, set, and fully-connected graph. These representations correspond to different deep learning architectures: multi-layer perceptron, deep sets, and interaction network, respectively. There exist other representations of the data; however, these three are arguably the simplest.

ETH zürich Imperial College² UC San Diego³

P. Odagiu¹, Z. Que², J. Duarte³, V. Loncar⁴, A. Sznajder⁵, T. Aarrestad¹

Odagiu P., Que Z., Duarte J., Loncar V., Sznajder A., Aarrestad T., et. al., Ultrafast Jet Classification at the HL-LHC, Machine Learning: Science and Technology.

Real-time jet tagging imposes a challenging constraint on the three architectures considered in this work: they need to perform inference in approximately 100 ns. For this reason, the models are synthesised on field-programmable gate arrays. Hence, the weights of the models are quantised to fit into the resource constraints of the FPGA, and quantisation-aware training is performed, along with pruning in some cases.

^a Pruning

The tabular representation loses useful information, while the fully-connected graph representation introduces additional structure that makes the associated network too cumbersome. The set representation is ideal for fast jet classification.

Quantisation

23 bits

mantissa

Results

uents	Latency $[ns]$ (cc)	LUT	
	105(21)	$155,\!080\ (9.0\%)$	
	100(20)	146,515~(8.5%)	
a	105 (21)	$155,\!080\ (7.2\%)$	
	95(19)	386,294~(22.3%)	
	115 (23)	$747,\!374~(43.2\%)$	
a	130(26)	$903,\!284~(52.3\%)$	
	160(32)	472,140~(27.3%)	
	180 (36)	$1,\!387,\!923~(80.3\%)$	
a	205~(41)	1,162,104~(67.3%)	

proxy for FPGA resources