Geometric Learning for Ultrafast Jet Classification at the HL-LHC

Introduction

1 2 3 4 5

P. Odagiu¹, Z. Que², J. Duarte³, V. Loncar⁴, A. Sznajder⁵, T. Aarrestad¹

Data

Quantisation

 $[p_T^1, \eta_{rel}^1, \phi_{rel}^1, ..., p_T^N, \eta_{rel}^N, \phi_{rel}^N]$

 $205(41)$

The data can be represented in $p_T, \eta_{\text{rel}}, \phi_{\text{rel}}$ space in three ways: tabular, set, and fully-connected graph. These representations correspond to different deep learning architectures: multi-layer perceptron, deep sets, and interaction network, respectively. There exist other representations of the data; however, these three are arguably the simplest.

Odagiu P., Que Z., Duarte J., Loncar V., Sznajder A., Aarrestad T., et. al., Ultrafast Jet Classification at the HL-LHC, Machine Learning: Science and Technology.

measured at the HL-LHC. The data has a dyadic structure: each jet has a number of particles, and each particle is specified by its kinematic properties: $p_T, \eta_{\text{rel}}, \phi_{\text{rel}}.$ We truncate each jet to the most energetic particles, and consider *N* three realistic scenarios: 8, 16, 32.

 $32^{\rm a}$

^a Pruning

Real-time jet tagging imposes a challenging constraint on the three architectures considered in this work: they need to perform inference in approximately 100 ns. For this reason, the models are synthesised on field-programmable gate arrays. Hence, the weights of the models are quantised to fit into the resource constraints of the FPGA, and quantisation-aware training is performed, along with pruning in some cases.

The tabular representation loses useful information, while the fully-connected graph representation introduces additional structure that makes the associated network too cumbersome. The set representation is ideal for fast jet classification.

proxy for FPGA resources

 $1,162,104$ (67.3%)