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Geometric Learning for Ultrafast Jet Classification at the HL-LHC

P. Odagiul, Z. Que?, J. Duartes, V. Loncar4, A. Sznajders, T. Aarrestad!

Introduction

Quantisation
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Three machine learning models are used to perform jet origin
classification, increasing the sensitivity at the HL-LHC. These
models are optimised for deployment on a specific field-

Real-time jet tagging imposes a challenging constraint on the
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three architectures considered in this work: they need to
perform inference in approximately 100 ns. For this reason,
the models are synthesised on field-programmable gate arrays.
Hence, the weights of the models are quantised to fit into the
resource constraints of the FPGA, and quantisation-aware
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programmable gate array device. Through quantisation-aware
training and efficient synthetisation, we show that O(100) of
geometric ML architectures such as Deep Sets and Interaction

Networks is feasible at a relatively low computational cost. training is performed, along with pruning in some cases.

Data + 8 bits 23 bits

The data set consists of particle jets as exponent
measure.d at the HL-LHC. lele data has Results
a dyadic structure: each jet has a
number of particles, and each particle is Architecture Constituents Latency [ns] (cc) LUT
specified by its kinematic properties: > 105 (21) 155,080 (9.07%)
. M 16 100 (20) 146,515 (8.5%)
Prs et Pret- We truncate each jet to the 322 105 (21) 155,080 (7.2%)
N most energetic particles, and consider 8 95 (19) 386,294 (22.3%)
three realistic scenarios: 8, 16, 32. N & { 891693 2} 16 115 (23) 747,374 (43.2%)
308 130 (26) 003,284 (52.3%)
. 8 160 (32) 472,140 (27.3%)
Representations B 16 180 (36) 1,387,923 (80.3%)
398 205 (41) 1,162,104 (67.3%)
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constituents

The data can be represented in pp, 7., ¢, Space in three ways: Conclusion

tabular, set, and fully-connected graph. These representations

correspond to ditferent deep learning architectures: multi-layer The tabular representation loses useful information, while the

fully-connected graph representation introduces additional
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perceptron, , and interaction network, respectively.

There exist other representations of the data; however, these structure that makes the associated network too cumbersome.

three are arguably the simplest. The set representation is ideal for fast jet classification.



