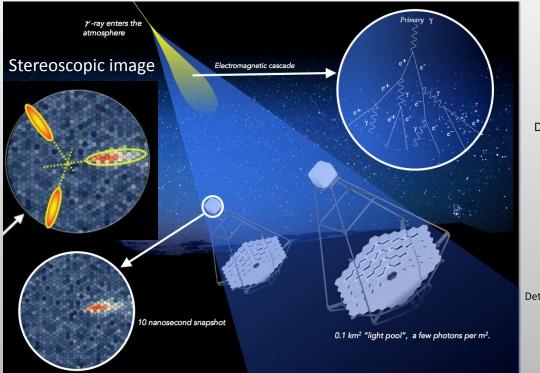
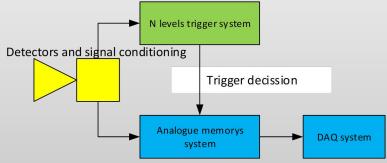


Accelerating Machine Learning algorithms in FPGAs for the trigger system of a SiPM-based upgraded camera of the CTA Large-Sized Telescopes

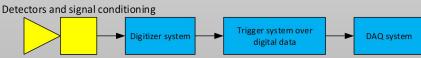
<u>A. Pérez Aguilera¹, L. Á. Tejedor¹, J. A. Barrio¹, T. Miener², D. Martín¹</u>

(1) Grupo de Altas Energías (GAE), Instituto de Física de Partículas y del Cosmos, and EMFTEL Department, Universidad Complutense de Madrid (IPARCOS-UCM), E-28040 Madrid, Spain (2) University of Geneva - Département de physique nucléaire et corpusculaire, 24 Quai Ernest Ansernet, 1211 Genève 4, Switzerland


Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024



CTAO


IACTs introduction

Combined analogue and digital trigger system approach with a separated branch for event data:

Fully digital trigger system approach:

Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

Implementing ML algorithms for the trigger system

Fully digital trigger ⇒ More complex algorithms to tag/eliminate NSB events ⇒ Possibility of Machine Learning

Hundreds of kHz \Rightarrow Processing time few μ s \Rightarrow FPGAs

Reduced TensorFlow model used for IACT offline event analysis.

Preliminary results when simulating with Rols composed of 5 samples of 30x30 pixels

R. Factor	Latency (us)	DSP
1	5.2	122
8	12.9	66
16	15.3	52
32	15	29
64	20.4	17
128	33	9
256	41	6

Discussion and near future activities

- -Several Rols need to be processed in parallel to cover all the area of a camera event.
- -Further optimizations of the CNN models, such as quantization aware training, are yet to be explored.
- -Density-Based Scan models also to be explored.
- -Works to check the tagging performance are ongoing.
- -Recently joined DRD7.5 WP to share expertise.
- -Short-term: test-bench/algorithms characterized by 2026.
- Mid-term: full prototype produced by 2028.