Generative Al for Scientific Research and Discovery
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VIDEO

CODE

SPEECH

MULTI-MODAL
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rocket-powered bike,
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Generative Al Adoption Across Industries

Media & Entertainment

Character Development
Video Editing & Image Creation
Style Augmentation

Enterprise Search / Doc Al
Al Banking Assistant
Investment Insights

Automated Catalog Descriptions
Automatic Price Optimization

Factory Simulation
Product Design

Network Performance Tuning
Remote Support Capabilities

Molecule Design
Al Virtual Assistant

Knowledge Base Q&A
Predictive Maintenance
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Multiple Approaches for Applying Al

Both have Their Strengths

Where GenAl makes
sense’?

* Painful & Impractical to get a
: large corpus of labelled data
SPAM INBOX Sentiment

AN Analysis
@ * Models can learn new tasks

THE QU|CK Optical Ch.a.racter
BROWN FOX . Language » A single model can serve all
J...U..M...P...S Translation use-cases

Predictive Al Generative Al

Predictive Al focuses on understanding historical data Generative Al creates new data based on patterns and

and making accurate predictions trends learned from training data
<A NVIDIA. I



Predict next token (word)
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Foundation Model vs Generative Al Model

There are subtle differences

Foundation Model

Generative Model

GitHub

Serve as the “bedrock” on which
generative Al models are built.

Foundation models can be
Generative Al models, but not all
Generative models are
“Foundation models”

Discern patterns and relationships
within the data

Capable of generating new content
that can resemble in style and
content on training data.

Generates, paragraphs,
poems based on prompts

'‘Q: What virus causes covid?

'Q: Write a poem about a cat

inlove with a zebra.

Generates code

examples

A: There once was a cat
in search for a mate.
She saw a zebra
And knew it was fate...

General purpose Specialization Task Specific
High Versatility Medium
High Adaptability Medium
Wide Range of Tasks Narrow
Medium Accuracy for specific tasks High

\@@ "

Answer/not Answer
questions

'Q: Code Quicksort in C++

'Q: Who do want to win the
next election?

A:Asan Al | do not have
political opinions'
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Intersection of Gen Al and Science
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Image from Mooler0410/LLMsPracticalGuide

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., ... Hu, X.
(2023). Harnessing the Power of LLMs in Practice: A Survey on
ChatGPT and Beyond. arXiv [Cs.CL]. Retrieved from
http://arxiv.org/abs/2304.13712
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https://github.com/Mooler0410/LLMsPracticalGuide

Things to consider when applying GenAl for Science

‘some” Challenges for Scaling & Using LLMs in Science

., '@ Tokenization for arbitrary data types, e © @ Massive datasets: O(1 exabytes) datasets

= | TTT: ©

o | formats, and dimensions m— ~|@ Semi-structured data

& O :

Ly Encodings: vs. positional encoding g @ High dimensional data Data Types differ VaStly

[ g 2 & . .

O |@ Customized decoders to generate S 2 z |@ Different views of same data Custom Tokenizers

. interpretable output %o—@ Tooling for data curation: 10x nightmare! v | N
o @ Extremely long (input) sequences 1_3 @ Streaming vs. accumulate then train Extreme y 10Ng Ssequence engt
+ ©

= |@ Reconcile out of order data “|@ Data managers and repositories Un-ordered / unstructured data
: Model Data

2 |@ Multi-modal content generation in 5 5/@ Human in the loop Not iust dat | ta-dat

N | - g*g o Ol JUuSt Aald, alSO meta-aalad

O multiple modalities I t t, . t T (°|@ Attribution and Provenance

2 @ Instill physics knowledge to model n egra 10N 1IN0 MUItlple modalities

.- |@ Cost ofinference L Simulations Interaction with Simulation applications
O X E L T IEY - ‘ . - R‘-,g';;%;‘ .

- |@ Serving w/ batching Sl Vi < VI

Data management and attribution

=/@ Correctness and UQ: tooling to assuring 2 |@ Tandem simulation and training
%'(_OU correctness and UQ ;r.;t; @ Interacting models: models of different
éf g @ Software engineering: seamless integration é sizes interact in different phases of simulation
G| of Alinto simulations S @ Ensembles of light-weight models as smart agents 6

Source : 1SC2024 session on GenAl for Science by Dr Wahib from Riken NVIDIA.



Biology and Life Sciences



Source: arXiv.org Q-bio: Al, ML, DL, NN

2024

2022

2020

2018

2017

Alphafold3
NeuralPlexer

ESM2
EquiFold
DiffDock
OpenFold
ProteinMPNN
ProtGPT2

AlphaFold2

AlphaFold

Attention is all you need

PREDICT VIRUS
EVOLUTION

PREDICT COMPLEX
STRUCTURES

Transformers Meets Biology

Transcription factor
binding sites

\‘(.
v

"
® Enhancer prediction

Promoter prediction

PREDICT GENE
EXPRESSION

GENERATE
MOLECULES

GENERATE FUNCTIONAL
PROTEINS

CONTROLLED
GENERATION

NVIDIA.



MolMIM

GenAl model for small molecule drug discovery

What does it do

* Controlled molecular generation

Update * Multiparameter Optimization
¢ Accepts User-Defined Oracles (user-specified scoring function)

5 hﬁ“\\ Input

* Hit molecule (SMILES format)
o om - Output

098 * New, optimized molecules

0.59 0.83

| Optimized Architecture
Properties Molecules
J * Encoder-decoder

Where MolMIM can be used

Seed

Molecules

* Virtual screening

* Rapid computational evaluation of large chemical libraries to
identify potential hits that can bind to a target

* Lead optimization
 Improve molecular hits from initial experiments to improve
biochemical qualities needed for a drug (e.qg. low toxicity, proper

MolMIM : https://arxiv.org/abs/2208.09016 distribution)
https://docs.nvidia.com/bionemo-framework/latest/models/molmim.html
NVIDIA Aug 2022
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https://arxiv.org/abs/2208.09016
https://docs.nvidia.com/bionemo-framework/latest/models/molmim.html

DiffDock

Diffusion generative model for molecular blind docking

What does it do

igand & DIFEDOCK . ranked poses & » Predict protein-Ligand binding
S— .
protein confidence score ~ * Generate binding poses
reverse diffusion over out
y P =1 translations, rotations and torsions =0 P
& O e > * Molecule and protein structure(PDB, SDF, MOL2, SMILES)
VN
P * Output

3D pose prodiction

@ * Architecture
e Score-Based Diffusion Model (SBDM)
e GCNN

Where DiffDock can be used

 Rapidly screen large libraries of compounds against target

proteins, identifying potential drug candidates

DiffDock
MIT https://arxiv.org/abs/2210.01776

https://github.com/gcorso/DiffDock?tab=readme-ov-file

<ANVIDIA. I


https://arxiv.org/abs/2210.01776
https://github.com/gcorso/DiffDock?tab=readme-ov-file

GenSLM ACM Gordon Bell Special Prize

Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics for High Performance Computing-Based
COVID-19 Research

PRE-TRAINING | o
Periodically retrain e Base model trained on more than 110 million gene
on new variants sequenced across . .
Train on genome sequences of SARS-CoV-2 epeific time window sequences from prokaryotes, which are single-celled
L perormance: organisms like bacteria.
PREDICTION WORKFLOW DETECTION WORKFLOW e Fine-tuning using 1.5 million high-quality genome
v p N sequences of COVID virus.
Diffusion model to get _ - N - .
hierarchy of gene > Trained Semantic 2 9 e Once trained, GenSLM was able to:
organization (generation) FM(s) —> similarity score 4{ Immune Escape }— b © . L : : ’
(embeddings) g O - e Distinguish between genome sequences of the virus
W = .
l . ' A | L 6‘ variants.
[ CVariantof J - d Luz: e Generate its own nucleotide sequences, predicting
Generated SARS- ST N potential mutations of the COVID genome that could help
Cov=2 genomes . BN I scientists anticipate future variants of concern.

> .Sequence log Fitness Evaluation
likelihood score

N .

PPl interaction
(MD simulations)

II.‘\"'\.

https://github.com/ramanathanlab/gensim

Zvyagin, Maxim, et al. "GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics." The International Journal <2 NVIDIA.
of High Performance Computing Applications 37.6 (2023): 683-705.


https://github.com/ramanathanlab/genslm

Combining Multi-Modality With GenSLM

Incorporating biophysically-informed
fine-tuning schemes to explore a range
of generative tasks

Input data : Protein Sequence and
text/knowledge-based description of
the protein sequence

Applied Direct Preference Optimization
(DPO) for fine tuning the model.

DPO generates protein sequences with
fitness tuning

e Ability to steer the multimodal generative
model to sample new protein sequences
with natural language prompting.

Training GenSLM using DPO

Generating new sequences given
latest LLM weights

Scoring generated sequences to
determine which is most
promising to evaluate further

Evaluating sequences using
molecular dynamics

il Seed Model 1
4 (Pre-trained LLM) !
B

~ B
l Preferred ] { Model } Q2
q Polic =)
" Generic/Instruct type sapls ( [ L rl()g/)g(y’.,_"|;;?)\ 8
User- ]“?{f’rt f'[.Up.n'"'j E
generated/experimental T >
Nz HEskn e o Not Preferred ] Ref Model ([ DPO ) ;E)

samples J (Ref policy) | Loss |
\_ J
Backpropagation

/ The protein designated by the unique identifier AOA140D2T1_ZIKV_M1632, has a PropertyName=<Deep Mutational

Glutamic Acid, accounting for 56.41% of its total 39 residues. This molecule has a mass of 4357.98 Da. Further analysis
reveals the following physicochemical properties: an instability index of 53.96 suggesting its instable disposition, an
aromaticity of 2.56,and an isoelectric point computed to be 9.22. The protein's average flexibility is documented at 1.02,

\ IS <SSEQ>M ISNAKIANINELAAKAKAGVITEEEKANQQKLRQEY L K<ESEQ>

Scanning (DMS) score> of PropertyVal=<-2.34> indicating it is Fitness=<unfit>. It has a composition of Alanine, Lysine, and

with a standard deviation of 0.000561. Additionally, its hydropathicity, as measured by a GRAVY score, is -0.64. Its sequence

\

J

NVIDIA.



Fine Tuning of GenSLM using PPO and DPO

Ensuring that Model’s output is aligned with desired output

Proximal Policy Optimization Direct Proximity Optimization
Policy Initialization DPO Training .
(a function that maps states to " Data Collection
, = FROTralNiRg =q====cecccncsccaccsancncancnnnsccnasancans
actions)

Preference Data: Dp Policy Training Data: Dy,

Model Initialization

-~ ~
\

Data Collection

' ~T— | Reward }
( rompt: X ) ()
Model "

Ry(X,y)

Tramn Preference I\/Iodeling

Responses (offline): y,, ¥,

Estimate Advantage

Ranking: y, >y, |x

Parameter Update

Update Policy

Source: https://arxiv.org/pdf/2406.09279
Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference |te ratiOn
Feedback

lteration

DPO simplifies the training process, also
enhances stability and reduces computational
overhead

Adept at handling complex reward structures
and exploring a wider range of potential
solutions

Well-suited for simpler-narrow focus tasks
Well-suited for complex tasks. E.g Code
generation, Autonomous driving
<A NVIDIA I


https://arxiv.org/pdf/2406.09279

Generative Al in Climate/Weather



Foundation Model And Generative Models for CWO

FOUNDATION MODELS

ClimaX: A foundation model for weather and
climate — (UCLA- Nguyen, Grover, Microsoft, Scaled
Foundations)

— Scaling transformer neural networks for
skillful and reliable medium-range weather
forecasting (UCLA, DOE Argonne)

AURORA: A FOUNDATION MODEL OF THE
ATMOSPHERE (Microsoft)

Prithv-WxC - NASA MSFC(Marshall Space Flight
Center) IBM

— Oak Ridge Base Foundation Model
for Earth System Predictability

AtmoRep — ECMWEF; Juelich SC; CERN AtmoRep: A
stochastic model of atmosphere dynamics using
large scale representation learning (ECMWEF; Juelich

SC; CERN)
— Juelich; AWI; KIT; Hereon

GENERATIVE MODELS GEN Al + Data Assimilation

CorrDiff: Generative diffusion modeling for
regional km-scale downscaling (NVIDIA) (Columbia

, University)
StormCast— Scaling transformer neural

networks for skillful and reliable medium-

range weather forecasting (NVIDIA) (ETH, ECMWF)

GenCAST: Diffusion-based ensemble
forecasting for medium-range weather
(Google Deepmind) (NVIDIA, University of

Oxford, UC-Irvine

NVIDIA.


https://arxiv.org/pdf/2312.03876
https://arxiv.org/html/2404.14712v1
https://www.helmholtz.de/en/newsroom/article/mit-ki-das-klima-neu-berechnen/
https://arxiv.org/pdf/2404.06665
https://arxiv.org/pdf/2404.06665
https://arxiv.org/pdf/2401.05932
https://arxiv.org/pdf/2401.05932
https://arxiv.org/abs/2406.16947
https://arxiv.org/abs/2406.16947
https://arxiv.org/abs/2406.16947

From ClimaX to Stormer
Competitive performance at short to medium-range forecasts with less training data and compute

26 December 20(_)20 00:00 UTC 31 December 2920 00:00 UTC 31 December 2020 00:00 UTC
mimm 25 z .
Projections ' ”
Downscaling ‘ 15 .
z
l Temporal 5
At = hrs At = days At = weeks At = months/year
Nowcasting Short & Medium-range  Sub-seasonal Seasonal .
— - O " f-‘f‘x
4 3 gi;? Initial Conditions S-day Forecast Ground Truth
A foundation model for weather and climate — (UCLA- Nguyen, Grover,
Microsoft, Scaled Foundations) arxiv.org/pdf/2301.10343 [Submitted on 24 Stormer — Scaling transformer neural networks for skillful and reliable medium-range weather
Jan 2023 (v1), last revised 18 Dec 2023 (this version, v5)] forecasting,(UCLA, DOE Argonne) [Submitted 6 Dec 2023]
Dataset : Trained on CMIP6 and fine tuned with ERA5 Dataset : ERAS reanalysis data ECMWEF
Trained on : 80x V100 Trained on. : 128 40GB A100
Adapting Vision Transformer to Weather Data ——
» Uses Randomized iterative forecasting objective * Pressure-weighted loss-function
» Added Weather — specific embedding layer * Multi-step fine-tuning

<ANVIDIA. I


https://arxiv.org/pdf/2312.03876

Notable Foundation Models 2023-2024

What is unique about them?

= B S IAN | Prediction | 2022092700 + 69 H
—_— ~———
reanalysis p ' 'g 3L
P PRETRAINING FINETUNING & INFERENCE SER
OPERATIONAL HRES 0.25° HRES 0.25° T + 6H
> o 7
Forecasting 1
™ hidd i s £ , \ - WAl —_—)
iver / //\.‘\ ‘,‘ . .\ / -' E
vomcw f (ﬁ _) ';:’\_/7 \ /{ ‘ \ ... / .n i
. v W N ‘ OPERATIONAL HRES 0.1° HRES 0.1° T+ 6H
- B [ N \ ' ‘.""' t
- : : : w— '
Z 5 5 — Climate projections ownscaling
| IR AURORA
g g <
> - “ - ' “ ° ! ‘\ 0
] s 9 . ; OPERATIONAL CAMS 0.4—J / . CAMS 0.4°T +124
g3 = =2 — I S B YIRS 0 sessssssssssssssssess L4 e ¢ Y i R e e e
« (CEEEEECEE — Multiformer 32 30 SWIN =22
ol el == TRANSFORMER ===
A s — 30::(?85'5‘:!“ — g wer | > mpen ey SD;EEggtElEVRER o
HSESNENRES RO TH
e !b"ﬁ;;g;""‘ U] L Rggid
JME J 1T .
EEEENG ) ARBITRARY VARIABLES, ARBITRARY VARIABLES,
» 0:09/0:09

PRESSURE LEVELS & RESOLUTION  LATENT ATMOSPHERIC INPUT LATENT ATMOSPHERIC OUTPUT  PRESSURE LEVELS & RESOLUTION
TIMET +1

AtmoREP, ECMWEF; Julich SC; CERN AURORA, Microsoft, Prithvi-WxC, NASA, IBM

Sept 2023 https://arxiv.org/abs/2308.13280 May 2024 https://arxiv.org/pdf/2405.13063v1 May 2024 NASA Blog

<ANVIDIA. I


https://arxiv.org/abs/2308.13280
https://arxiv.org/pdf/2405.13063v1
https://www.earthdata.nasa.gov/learn/blog/prithvi-weather-climate-foundation-model-background-benefits

Diffusion Models for Downscaling and Evolution
of Thunderstorms

Combination of UNet + Diffusion Model

CorrDiff StormCAST

TARGETS: Radar-assimilating

12.5x super resolution + radar Features: ERAS : 36x36
WRF 448x448(4-ch)

channel synthesis (20-ch)

Forward SDE (data — noise)

Q = f(r,t)dt + g(t)

’<—4I [£(r, t){V log py( |y ]dt+g dw@

Reverse SDE (noise — data) [ Initial State (HRRR Analysis) J

Mardani et al. (2023), Generative Residual Diffusion Modeling for Km-scale Kilometer-Scale Convection Allowing Model Emulation using
Atmospheric Downscaling Generative Diffusion Modeling

Super-resolution in natural images is much simpler as it involves local interpolation and
does not require accounting large spatial shifts, correct biases in static features like

topography, and synthesize entirely new channels like radar reflectivity . |


https://arxiv.org/abs/2309.15214
https://arxiv.org/abs/2309.15214
https://research.nvidia.com/publication/2024-08_kilometer-scale-convection-allowing-model-emulation-using-generative-diffusion
https://research.nvidia.com/publication/2024-08_kilometer-scale-convection-allowing-model-emulation-using-generative-diffusion

GEN Al + Data Assimilation

Addressing the Data Assimilation bottleneck needed for the simulation pipeline

DiffDA: A Diffusion Model for Weather-scale Data Assimilation

----------- \

Atmosphere states at |
previous time steps

-

t = —12haaan t = Oh Conditioning for
\ e o/ AT\ the predicted state
t =|-6h Sama N

s !
|
I —
i e -
Sparse observations | CEEEE——IS L B
softbleed I m
Interpolate & i

add noise w

N EI TEIN TN TN TN NN I T N T T - - G T T T - - .-

Autoregressive data assimilation

[
Assimilated data @ =0

Implemented a denoising diffusion model capable of assimilating
atmospheric variables using predicted states
and sparse observations

Adapted the pretrained GraphCast
neural network as the backbone of the diffusion
model.

Generative Data Assimilation of Sparse Weather Station
Observations at Kilometer Scales

a)
add noise add noise
(@))
e
=
4y
p -
-
e ' o) ot A A e e )
D ey IS EN SIS T A
D : A4 et ey S A AR T
§ " __(:i'. -",.‘ ‘,; g ".;..~; ?: {;;t" ',:_ ,..:._'i’_ ;\E:A\‘??‘cr"k:;"f{: lﬁ'_‘
reconstruction '\/
Denoiser D

Denoiser D
= Denoiser D Obs. operator 4
2 /\A A(X) observationsy difference y-4(x)
E A Ay A A‘_‘! 61 i ‘ T,
—— AA J -y
E B - e b
8 A n-;.en.n: & . m;.%uu: a § 0:‘ ‘L]; |;| | |

A 4 AN a .. AA .Q A ” 1 .I
@ .. o £ ||l||” “ ||||U]I|\ }”m ‘
(4] B 3 Rl i A Sl -4 : kil
g m w -6 | l_i"t.

s ~ s ~ | -84 ’
Q 10 20 30 40 50
station num ber
V. logp(ylz) /
: 108 (yl ) calculate
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Examples from Material Science and
Chemistry




LLMs Virtual Assistants For Chemistry

2017 2018 2019 2020 2021 2022 2023 2024 2025

RoBERTa D

o~ _@CatBERTa

ChemBERTa
Megatron-LM

E\?E-i:::-—I"c.-"l-u5=ga.tr:::-n
BioBER

MolBERT
ChemBERT Expanded hypothesis
"""TL‘B?;BERT Initial keywords or random d »
{SchnlarBEﬁT ‘ exploration r Integrated draft
_.MatenalsBERT

{SGIVEEF{T l JSON
MolFormer : EXpandEd Outcome
PubMedBERT . .
ol-BERT Sl Hypothe3|s

Schwaller2020

ChemBERTa-2

ClinicalBERT

SMILES-BERT QOutcome
N MatSciBERT 5 Expanded mechanisms it '
Ry —eMatSe e P Critical review
XLNet Y E— l Mechanisms

SciBERT
- Regression Transformers

Mol-TS
ReactionT5 , Definitions of concepts :
T nchO Subgraph va pafh B oG e Eipandeddesign Critical modeling and
e sampling — principles o
e Relationships simulation (e.g. MD)

TransAntivirus .
Text+Chem T5 GRAPH Unexpected properties
I5chom Expanded unexpecte
elransformers — - Critical experimental (.g.
— TOLGEN Comparisor propertes thetic biol
S ART synthetic biology)
ChemFormer
Molecular-Transformers
MolGPT Novelty :
Galactica Expanded comparison
PMC-LLaMa
Darwin
LLaMa
EpvlepsiLLM
LLaMaz2
BioMedGPT-LM
Alpaca Expanded novelty
ChatDoctor
iupacGPT
ChemSpaceAL
AutoMolDesigner
SPTChem
GPT
BioMedLM
COMNSMI
Mistral
BioMistral
SGPT-RL
chMolGPT
PeTrans
Chinchila
BioGPT
GPT-2
Adilovz2021
2017 2018 2019 2020 2021 2022 2023 2024 2025

SCIAGENTS: AUTOMATING SCIENTIFIC DISCOVERY THROUGH
LARGE LANGUAGE MODELS AND AUTONOMOUS MULTI-AGENT INTELLIGENT GRAPH REASONING

AGENTS IN CHEMISTRY

Source: AREVIEW OF LARGE LANGUAGE MODELS AND AUTONOMOUS AGENTS IN CHEMISTRY

<ANVIDIA. I


https://github.com/ur-whitelab/LLMs-in-science

GNoMe : Using GNNs for Materials Exploration

An Al tool that dramatically increases the speed and efficiency of discovery by predicting the stability of new materials.

Structural pipeline

CT O OO * Trained on data on on crystal structures
R e's 2){‘) a S and their stability, openly available
Candidates Graph ) ' | SR | Energy'n]ode'&; “ through the Mate rlals PrOJeCt
“::‘\---f-”) Compositional pipeline | o | . D‘Zi‘i“zze I | e — ® USEd GNOMe tO generate nOVE|
' [ i B candidates and predict stability
(i)l e ) GNN R
3 > l__ 128207 > '\E§F§§/ + Stability - K,> ' o o o . .
| © @fj@ * Used DFT simulations to periodically

cross-checked the performance via
active learning

Repeat for rounds of active learning

* Achieved materials stability prediction
from around 50%, to 80% - based
on MatBench Discovery

Rb,HfSi O,

A-Lab, a facility at Berkeley Lab where artificial intelligence guides robots in making new

Six examples ranging from a first-of-its-kind Alkaline-Earth Diamond- materials. Photo credit: Marilyn Sargent/Berkeley Lab
Like optical material (Li4MgGe2S7) to a potential superconductor
(Mo5GeB2)

<A NVIDIA. I


https://next-gen.materialsproject.org/
https://matbench-discovery.materialsproject.org/

MatterGen

2 Foward (comuption) process . A diffusion based generative model for designing stable
R - /Y /
o ~ , o tet bt inorganic materials across the periodic table
—— $ o ¢ , o - ATy
Stable | - S ® Random o0 7 0% Ty . .
i R T el gy [ Dler e =R BFT FER With adapter modules it can be steered to generate
" L)k(j ) L'?/(A - K/(A . cremsty o N materials with desired properties.
0y A0, Lo t-1) A1, Lt-1) (Apy Ay Ly T, AT, L 4 ) ; ‘e, o
— = 1iCo0 | ‘.";“ Lo Q‘* LiCoO, _
Be1se {dencishng) posess - AN Doubles the rate of S.U.N. materials that15x closer to
b remmeeee L R A . ground truth structures at the DFT local energy
A X, L, ! 'y Y c ' ‘ N INi
g bl e - l 1 B e ot -ﬁ: % - minimum.
. | | | e ® L b :
E\ sfocqrt:\:]aertl;gtrk E : sf(?rgmaert:ravgtrk 4— Adapter module :
S 2 L4 R ! Propery_ P
| A Xl 1 A Xebee ' @>m=0.15A'3 e '.:”: % h
PreL-tr;in-ing v-v-itt?s.t-ru-c-;ttrre‘data I:-ing-t;n%g-wﬁh-laEe;ed-da-ta-fo; -t b . ‘o"'

Dataset used for base model: 607,684 stable structures with up to 20 atoms
recomputed from the Materials Project

Energy per atom after relaxation: below 0.1 eV/atom (via DFT)

Structure is novel if it’s not in the MP, Alexandria, and Inorganic Crystal
Structure Database (ICSD) datasets

NVIDIA.



MACE-MP

A foundation model for atomistic materials chemistry

MATERIALS PROJECT

* A single general-purpose ML model, trained on a
public database of 150k inorganic crystals, that is
capable of running stable molecular dynamics on
molecules and materials.

:BEREEH

Ice & water :
. Nanoparticles
g \ N;‘\
» “ | e Y A’;\:
\ V"Y‘
A a
i1V

* #1 open model on MatBench

* Using MACE-MPO, A single NVIDIA A100 GPU with
e 80GB of RAM, it can do several nanoseconds per day

E?;;éir:aﬁétafrih S for 1000 atoms.
* The performance depends on the atomic density,
hardware floating point precision, size of model

*» World-wide collaboration of researchers and SCC
sites

VSKI
/ Aqueous interfaces m

Solvent mixtures
s .
'J g"’.’

<A NVIDIA. I



Examples from Physics




Multiple Physics Pretraining for Physical Surrogate Models

Training a transformer-based surrogate model on multiple different
physical systems from PDEBench outperforms specialized baselines
trained on single physical systems.

Multiple physics pretraining transfers more effectively to new physics
through fine-tuning.

Test NRMSE

10°

1071

|x|m N

DiffRe2D CNS M=1.0 CNS M=0.1
Physics

Model
PINN

ORCA-SWIN-B
UNet

FNO
MPP-AVIT-Ti
MPP-AVIT-S
MPP-AVIT-B
MPP-AVIT-L

Comparison of
test MISE on
different physics
(lower is better)

Multiple Physics Pretraining

applied to Axial Vision

om== '[De-ReVIN}-* Prediction

Transformer (AViT) for training
Physical Surrogates
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https://arxiv.org/abs/2210.07182

Distributed and Differentiable N-body
Simulations in JAX powered by cuDecomp

jaxDecomp: JAX primitive bindings for the NVIDIA cuDecomp
adaptive pencil decomposition library.

Enables for the first time the implementation of large-scale and
automatically differentiable N-body simulators for GPU-based
supercomputers.

Unlocks the possibility of performing optimization and high-
dimensional inference over simulation models, which
require backpropagating through these numerical
simulations.
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https://github.com/DifferentiableUniverseInitiative/jaxDecomp
https://nvidia.github.io/cuDecomp/index.html

AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models

AstroCLIP is an extension to astrophysics of the CLIP (Contrastive Language

Image Pretraining) strategy to build semantically alighed embeddings of
diverse data modalities (here astronomical images and optical spectra).
It is the first multi-modal foundation model foy ast.rophysic.s. | [E L=

AstroCLIP embeddings extract meaningful physical information, which can Pardidete

be used as very informative features for downstream tasks.
Spectra spectra
encoder
* . ®\ Nearest
b neighbor

Image '\
. )

encoder / 099
" . log M, = 11.2
Shared embedding oD
lllustration of retrieval space Zero-shot prediction

by cosine similarity. Left Left: illustration of contrastive training strategy used to train the image and
column shows query

objects, right columns spectra encoders. Right: Once trained, the model can be used to infer physical
shows retrieved objects. properties of galaxies simply by nearest neighbour regression.
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Intersection of Gen Al and Science

3 Distinct Categories
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Projects for Science Community to collaborate

MODULUS NEMO FRAMEWORK

Physics-ML Model Training and Inference Developing Scientific Foundational Models at Scale

NVIDIA.


https://github.com/NVIDIA/NeMo

Lots more to do...




	Slide 1
	Slide 2: Generative AI Adoption Across Industries
	Slide 3: Multiple Approaches for Applying AI 
	Slide 4: Foundation Model vs Generative AI Model 
	Slide 5: Intersection of Gen AI and Science 
	Slide 6: Things to consider when applying GenAI for Science
	Slide 7
	Slide 8: Transformers Meets Biology
	Slide 9: MolMIM 
	Slide 10: DiffDock
	Slide 11: GenSLM
	Slide 12: Combining Multi-Modality With GenSLM
	Slide 13: Fine Tuning of GenSLM  using  PPO and DPO
	Slide 14
	Slide 15: Foundation Model And Generative Models for CWO
	Slide 16: From ClimaX to Stormer
	Slide 17: Notable Foundation Models 2023-2024
	Slide 18: Diffusion Models for Downscaling and  Evolution of Thunderstorms
	Slide 19: GEN AI + Data Assimilation
	Slide 20
	Slide 21: LLMs Virtual Assistants For Chemistry 
	Slide 22: GNoMe : Using GNNs for Materials Exploration
	Slide 23: MatterGen
	Slide 24: MACE-MP
	Slide 25
	Slide 26: Multiple Physics Pretraining for Physical Surrogate Models
	Slide 27: Distributed and Differentiable N-body  Simulations in JAX powered by cuDecomp
	Slide 28: AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models
	Slide 29: Intersection of Gen AI and Science
	Slide 30: Projects for Science Community to collaborate 
	Slide 31

