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We propose an end-to-end approach for faster

simulations Do Smuaton
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Main idea: going directly from

the generator output objects to }mé —) ‘

the high level analysis objects 7-

(jets, muons ...)! - ) o Y

We want something: end-to-end conventional

e Fast(er): reached ~kHz!

e Not analysis specific
Depending on Gen (not just
a generic event but the
event)
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Continuous Normalizing Flows
are the backbone of our approach!

We learn an invertible
transformation, taking us
from data x to noise z

Once f has been found we
can invert it, start from
noise and sample new data
from the unknown PDF!
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https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Results are convincing
Simulation speed per object is around 10 kHz.

Our results accurately reproduce the Full
Simulation data of the CMS Experiment, on
both training and unseen processes, for:

e I1-ddistributions;

e correlations between the variables;

e different physical processes;

e analysis-level plots.

For more:
francesco.vaselli@cern.ch

and
https://cds.cern.ch/record/2858890, https://arxiv.org/abs/2402.13684
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Improving the
Inference of the Graph

Neural Networks for
Track Reconstruction

James S Gaboriault-Whitcomb, Henry H Paschke and
Alina Lazar
on behalf of the Exa.TrkX collaboration
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The Exa.TrkX GNN Inference Pipeline

= =
PyTorch FrNN, Faiss
DATA LOADING EMBEDDING BUILD EDGES
0.99s 15.98s
=) “@m h@:ﬁ} : ,a’; 5!
DA
. ‘r‘f
FyToreh TesosFicw connsezitiggr::itrvr:g::\ents
FILTERING GNNs LABELING
5.02s 3.57s 0.10s

GPU (ms) CPU (s)
Data Loading 2.2
Metric Learning 6.7 0.99
Graph building 40%10 15.98
Filtering 370+ 80 5.02
GNN 170+ 30 3.57
Track Building (CC) | 90+8 0.1
Total 700 £ 100 25.66

MPI was used to run events in parallel, using multiple cores.

The most time-consuming steps of the pipeline are Build
Edges and Filtering. To speed-up Build Edges we used Faiss
with 2 threads and multiprocessing for the Filtering for-loop.

The results indicate that it is best to use between 10 and 15
cores per event, however running it on the GPU is still 27

times faster.
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EPFL #% X-HEEP

e Motivation

Analyzing the state-of-the art, we realized the need for a GPU...
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$ Motivation

Analyzing the state-of-the art, we realized the need for a GPU...

Natively Configurable

RISC-V-based

Fully Synthesizable
OpenCL Support
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e Floating-point unit
e Memory hierarchy Memory Hierarchy
o Scratchpad-based
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e Conclusion

The APU code and documentation will be 100% open-source
and the first version will be released very soon...
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EPFL #% X-HEEP

e Conclusion

The APU code and documentation will be 100% open-source
and the first version will be released very soon...

O Stay Tuned!

GitHub
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Thank you for your attention!

e 3 EPFL - Embedded Systems Laboratory (ESL)
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Accelerating Machine Learning algorithms in FPGAs for
the trigger system of a SiPM-based upgraded camera of
the CTA Large-Sized Telescopes

A. Pérez Aquileral, L. A. Tejedor?, J. A. Barrio®, T. Miener?, D. Martin'
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IPARCOS

7 -ray enters the

Primary y
atmosphere z

Stereoscopic image I ———

P e

10 nanosecond snapshot

0.1 km? “light pool”, a few photons per m?.

CTAD

Combined analogue and digital trigger
system approach with a separated
branch for event data:

Detectors and si

»

P N levels trigger system

nal conditioning

Trigger decission

\

‘Analogue memorys

DAQ system

Fully digital trigger system approach:

Detectors and signal conditioning

>

P Digitizer system

| Trigger systemover

digital data

»  DAQ system




G CTNAO
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Implementing ML algorithms for the trigger system

Fully digital trigger = More complex algorithms to tag/eliminate NSB events = Possibility of Machine Learning

Hundreds of kHz = Processing time few us = FPGAs

Model: "CTLearn model"

5 poren ¥ his 4 ml : ETE

Layer (type) Output ape aram i i - “ﬂ

waveforms (InputLayer) [(None, 30, 30, 5)] 0 = 7 ‘ y i

SingleCNN_block (Functiona (None, 16) 1536 5 =

18] |
ﬁ - Ia > AN -1

fc_particletype 1 (Dense)  (None, 32) 544 v+E ' o | 5

particletype (Dense) (None, 3) 99 il [ - > =
el g Y

type (Softmax) (None, 3) [} = XI I I nX I P CAL: 2 d B ‘ e ot |
4 e N : - =i
o i s b i

Total params: 2179 (8.51 KB)
Trainable params: 2179 (8.51 KB) a o

Reduced TensorFlow model used for

IACT offline event analysis. R. Factor Latency (us) DSP
1 5.2 122
Preliminary results when simulating 8 129 66
. 16 15.3 52
with Rols composed of 5 samples of = = -
30x30 pixels 64 20.4 7
128 33 9
256 4 6
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Discussion and near future activities

-Several Rols need to be processed in parallel to cover all the area of a camera event.

-Further optimizations of the CNN models, such as quantization aware training, are yet to be explored.
-Density-Based Scan models also to be explored.

-Works to check the tagging performance are ongoing.

-Recently joined DRD7.5 WP to share expertise.

-Short-term: test-bench/algorithms characterized by 2026.

Mid-term: full prototype produced by 2028.



ATLAS =

EXPERIMENT

Nanosecond ML for
calorimeter segmentation

Clustering Particle 1D

\/

Noah Clarke Hall, Nikos Konstantinidis,

Alex Martynwood, Naoki Kimura



Anna Sfyrla
5


Cells form locally

iform grid

v
e &% 4

‘—4-‘ ‘", <

Cylindrical detector
geometry

—
y
y y
& 3
A
4
4
J}



Towers & topoclusters

Tower (|n|<2.5)

HAD2: Sum of 1 >20 cells

r HAD1: Sum of 1 >20 cells

EM3: Sum of 8 >20 cells

EM2: Sum of 16 >20 cells

EM1: Sum of 32* >20 cells

PS: Sum of 4 >20 cells

—>°0.1

O
<

Topologically Topocluster (|n|<4.9)

connected -~ L,
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Towers & topoclusters
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Two ML approaches
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Physics performance

recon_jet HT

« Form anti-k, central (|n|<2.5) jets ol

« Both approaches give similar e
physics performance T

3 105-§

] I
1
* Large improvement over baselines! .| 1,
] :." - ==~ Topoclusters
:: — Topoclusters + DeepSets
103 3 4 -—-- Towers
1 —— Towers + CNN
I
0.'0 0:2 0.'4 0.'6 0.18 le

SM HH4b efficiency



Resources |eoogeiakeras Tl o 4 m)|

Tensorflow Keras

e Xilinx UltraScale+

XCu250 Precision Fixed <10,5> Fixed <10,5>
« 250 MHz clock # parameters 494 913
Latency (clk) 3 73
» CNN looks fast & light ~_Interval (clk) 2 29
enough to be viable BRAM_18K 0 0
DSP 0 16
* More optimisation FF 1883 54478
needed LUT 33529 270742

URAM 0 0
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EXPERIMENT

Enhancing the LO Muon Trigger:
project goals and needs

SMARTHEP Edge Machine Learning school (23-27 Sept 2024, CERN)

Oliver Kortner (MPI), Verena Martinez Outschoorn (UMass Amherst)
Maria Carnesale (CERN), Rimsky Rojas (CERN)
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Enhancing the LO Muon Trigger

LO MDT trigger: improve the robustness of LO muon trigger Exotic signatures: additional trigger strategies
system against the potential loss of performance due to aging for non-pointing signatures from decay of long-
RPC detectors and to improve acceptance coverage lived exotic particles
dio R d_iséppearing or
Hit Extraction Segment Fitting Momentum Estimation ———y £ kmk?d —_— Y
\ non-pointi
&‘ ,,,,,,,, (:onn\?:rtr:a:)gphotons
RPCs provide seeds to identify =~ RPCs provide timing to RPCs provide second :> R
MDT hits from a muon & set up calibrate hits and derive coordinate for the Pr dislg:)é:gcre:ij:tesptg:,s, / emerging jets
non-uniform /
trackless,
, | low-EMF jets
W aose secse R Seesessse ses0esses sessse sees p
ot B S quasi-stable
W‘vintage” BM / multitrack vertices in the gl ;{artlcles
muon spectrometer

SRR f s and BO RPCs S S e e e s
New Bl RPC -

IR fm - triplet S
) e, S e SRR OO RS OR T
Implement novel trigger strategies in firmware
Pattern recognition algorithms Timing of the muons to Momentum estimation Starting from displaced muons, but also
to identify regions of interest determine bunch crossing  without a second coordinate : - - SNTPN
with only MDT hits with Tile or only MDTs o RPCe |r?terested in closeby muons, hlgh mu.|tlpl|I(.3Ity
signatures, slow moving or highly ionizing
particles

Plenty of room for innovative ML algorithms!



- Study different algorithms/approaches for LO Muon triggers in case of loss of RPC

Enhancing the LO Muon Trigger

Goal is to be forward-thinking and use ML in FPGAs

y A
performance or coverage Al I
: : : : [ 1 '
Studies on muon detectors toy model simulation for segment reconstruction show
promising results o o s oo o f
TGC (El) —- -
- Starting from toy model simulations based on ATLAS muon subsystem —layers of detectors = T T H'/
identifying the crossing position of a passing muon | - comeenat T 7€ & 1
- For muon p; we need to measure the particle bending — must determine both segment AT — NSW -
position and angle
’ mod lar2 run38 p50 atlas nsw_pad z0 residual
? E ; | ; 10° [ x°: u=0std=13.50u 1 NN: u=-0.11u std=5.86u 101 1 x°: u=0std=10.93u 1 NN: u=0.49u std=6.89u
2 0_9:___T_.__'__;_______2_:_:_:_Z_Z_Z_::I:::Z_I_ZI:_:;_Z_Z:Z:ZZ_ _______________________________________________________ X2: i~ 0 std=5.48u 1 NNps: y=-0.14u std=5.85u X2 p=0std=5.53u [ NNps: 4=0.60u std=6.88u
PN I e s 100 - 100 -
0.7:_ ---------------------------------------------------------- 10—1 - 10—1 -
0 e T S
0 E v 102 4 102 -
S ] R S ]
04:_ ----- ATLAS Prellmmary ----------------------------- R 1073 5 |_{V|.|—’|‘-'|“—‘ 10_3_; l* H l,ﬁil | | I
- f 5 E - 1 [RaMll" " |
B L I 1 | L | J 1 | L | J | | | | J | L | 1 ] ] ! '
0-3 O 8 O 85 0-9 O 95 1 10_4 - I I I I nIn nnI I 10_4 I I | I I I I I I ‘ I| Ill I L
: : —-10.0 -7.5 =-5.0 =25 0.0 2.5 5.0 7.5 10.0 -20 -15 -10 -5 0 5 10 15 20
rejection Pred X - True X [mm] Pred 6 - True 6 [mrad]




Enhancing the LO Muon Trigger

= ] - BB foef 3
e EE -
: :': m . ‘["l“‘: T 3 1070700 0,2 : [
» Wtrain-uas, VNG - T
8] P el XILINX
SRR LI . g Sy
\ ; i ol e Y I vl
= 3! 2.\ F
(o % P 1
5 SsoB\EIN 7~ < —— i ™
2 & Rl — - It
o) & e L e T e 3 ®

Al EDGE

FPGA implementation

« Can target the current LO Muon trigger hardware obind Mo
(Xilinx VU13P FPGA) using HLS4ML eerwe B
« Explore potential improvements using different | ;
hardware ' Ok
Use already existing frameworks developed for ML inference on FPGA such as:
Keras
pruning .. compilation Te|;1 S?c: :lf\w
= (optional) quantization - 5 Co-processing kernel
N " ‘ e e  hls 4 ml
e - . mne e ® f ° ) 1001001010100
: > B> > > |
Dense Neural Network — ° re—a— | e e %DPU s compressed
i S Moptmtze B gy ooy " . | mode i
float model ﬂoa:n(g:ll;:led) quantized model d FPGA inference = = ! Custo:;\e :il;r:ware
sual macnine learnin f

software workflow

tune configuration
AMD development platform for optimized deployment of \ rouse/pieln /
deep learning models on FPGA



. . <
Nanosecond Al for anomaly detection with ATLAS
decision trees on FPGA using fwXmachina EXPERIMENT

SMARTHEP Edge Machine Learning School
Mon, 23 Sep 2024

Ben Carlson, Isabelle Taylor, Joerg Stelzer, Kemal Ercikti, Kyle Mo, Pavel Serhiayenka,
Rajat Gupta, Santiago Cane, Stephen Roche, Tae Min Hong, Yuvaraj Elangovan

=

Q|+ Ak Ur{iversityof S_AINT LOUIS UNIVERSITY
¢ ; WE STMONT Plttsburgh SCHOOL OF MEDICINE
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fwX — an efficient BDT implementation on FPGASs

FW Framework for generating
XMachina é nanosecond-scale inference

Anticipated areas of use: event analysis in hardware triggers in HEP
experiments

Work on
> Fast event classification with BDT (Hong et al.. JINST 16, P08016 (2021))
» Fast regression with deep BDT’s (*) (Carlson et al.. JINST 17, P09039 (2022))

» Fast anomaly detection with BDT-based auto-encoders *) (Roche et al.. accepted
for publication)

* Currently being implemented in ATLAS L1 trigger


http://doi.org/10.1088/1748-0221/16/08/P08016
http://doi.org/10.1088/1748-0221/17/09/P09039
https://arxiv.org/abs/2304.03836
https://arxiv.org/abs/2304.03836

BDTs for auto-encoders

Typically constructed using neural networks
> Challenge to implement in pure digital logic on FPGA

Neural Network

Popular Been around HEP since the 80s!

Depth Challenging, so ~3 on FPGA?
Score y=0M - x+ b)
4 4

Activation  Multiplication

Decision Tree
Popular Discovered the Higgs!®

Depth Challenging, so 4 to 8 on FPGA#45.6

Score y = O(x < threshold)
4

N
Step fn Comparison

See: Govorkova et al., Autoencoders on field-
programmable gate arrays for real-time, unsupervised new
physics detection at 40 MHz at the Large Hadron Collider,
Nature Mach. Intell. 4 (2022) 154—161

https://doi.org/10.1038/s42256-022-00441-3

Classification performance of BDTs
is often comparable

Advantages of BDT ﬁ

> Technical (no multiplication)
> Philosophical (interpretable)

FWX approach:

» Goal: make evaluation of the BDT in
FPGA faster while using less resources

> Achieved by parallelizing node evaluation



https://doi.org/10.1038/s42256-022-00441-3

Auto-encoders for anomaly detection

Auto-encoders rely on data-compression algorithm (usually NN, fwX: BDT), trained
on known, expected data (background)

Encoding input into latent (“code”-) space and decoding back into input space
preserves objects which are similar to training sample (known data), but fails to
faithfully re-construct anomalies (unknown data)

RO
«(’b\(\ Q- :

Q\e' faithful
6?)(0 e reconstruction

L

([T

~ -
~ —~
<
— ~
~ -
~_ -
>~
- ~
-
~ Ve
N -
P
e ~
0
~ Ve
e
7N
e ~
~
~ -~
~
~
- ~

7

/ poor \ v
\ reconstruction M

Poor reconstruction

large discrepancy between input and
output => high anomaly score

<




Our approach to using BDTs for auto-encoders

Novel algorithm for using decision trees in auto-encoders for anomaly detection
> Anomaly score from comparison of input with latent space, no decoding step

Method: (a glimpse)

Place small boxes around locations of ol LA
. . ° 1% °ou-o @
high event density ‘ole DL
| D o s
Encoding an event®:  [memmeeee g:’ggg'ts;&;s

» Return index b of the box the event ®falls into

Decoding a box index b:
> Return the median O of the training data in box b 4

——————————————l 2




Want to learn more — join us tomorrow

TUESDAY, SEPTEMBER 24

In-depth introduction to anomaly
detection with FwX by Tae tomorrow
afternoon @16:30.

Followed by a hands-on tutorial

Tutorial with three parts

> Training and fwX-BDT code generation (with TMVA and FwX)
> Synthesis (with Vivado)

> FPGA evaluation (simulation with Vivado)

Each part has a 10’ video (where you can work along), followed by a Q&A session

> If you like to follow the tutorial on your laptop, please make sure you have root, fwX (part 1)
and vivado (parts 2+3) installed



Neural Architectures and Data Processing
Pipelines for Irradiation Experiments:

from the Automatic Assessment of Proposals
to the Monitoring of the Beam Quality

Jarostaw Szumega
CERN EP-DT-DD,
Mines Paris — PSL

on behalf of the team:
Jaroslaw Szumega, Lamine Bougueroua, Blerina Gkotse, Pierre Jouvelot, Federico Ravotti

@ IRRAD.2:

Proton Facility 953"
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1. Introduction to IRRAD facility

Mixed-field Facility| _. |
(CHARM) '

‘l'l.m."'i,,_ IRRAD Proton Facility

7 "lllmm  Located on T8 beamline — a 24 GeV/c
oyl ,
proton beam extracted from PS ring.

—-

—

{Access [t
| Point

Counting Room

'

Proton Facility
(IRRAD)

utt System B

!
=
u

equipped with a shuttle system, it is a place for electronic qualification and radiation
hardness assessment.

IRRADQ%

CERN
' Proton Facility 75
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2. Automatic Assessment of Experimental
Proposals

Goal
* Support to facility users — to prepare better experiments
 Support to User Selection Panels — to prepare better
reviews
Simple goal — yet lots of challenges

)
[ <START>] mo.mos, -0.0471, -0.4295, ..., o.3so7h
RAD [ RADiation ] [ 0.7626, 0.0199, -0.3251, ..., 0.2656 ]
NE?Q{T [ facility ] [ 0.3460, -0.1084, 0.0855, ..., 0.0316 ]
— [ Network ] [ -0.1758, -0.4142, 0.1021, ..., 0.6915 ]
[for] [ -0.0456, 0.2306, 0.2391, ..., -0.3668 ]
— " [the] [ 0.5386, -0.0586, -0.1419, ..., -0.2696 ]
fo'fﬁfe'aéi’ﬂuﬁil'.mm‘éﬁs [ EXploration ] Embedding [ -0.3253, 0.8268, 0.0601, ..., 0.2978 ]
e i — [of] Model [ -0.6003, 0.4434, -0.0784, ..., -0.4778 ]
Y [ effects ] [ 0.9702, 0.2223, 0.0151, ..., 0.0433 ]
[for] [ 0.9163, 0.6283, 0.4158, ..., -1.1019 ]
Input text [indusTry ] [ 0.4269, -0.0314, 0.7130, ..., -0.4530 ]
[and] [ 0.3641, 0.4998, 0.5024, ..., -0.0437 ]
[research] [ -0.5624, 0.4061, 0.0603, ..., 0.0622 ]
[ <END>] &0.8385, -0.0998, -0.3725, ..., —o.szmy
N

Tokens Embeddings

Fig. 2. An illustration of embeddings creation of a short text. The result is a real vector
obtained with the transformer architecture.
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2. Automatic Assessment of Experimental

Rovew | Peer.
VoID : URI tion : Strin. H
ontology : URI : Review
section:
. 0.* (]
submissions C
B S I
OrbSubmission . . OrbPaper OrbReview
article_versions reviews

identifier : URI - 1 title : String 0.% summary : String
- i = review : Strin.

g onfid:
eeeeeeee buttal OrbRebu 1
letter : URI
response : String
OrbV rating_scop:
identifier ; URI o OrbGrading
am? ‘: ttrlng score : Integer
year : Integer description : String
ublisher : String fidence_scope

Fig. 3. The UML diagram presents the architecture of the ORB dataset. It is the third
iteration involving resources like OpenReview, Sci-Post and Peerl.

Values of MAE (Mean Absolute Error) for the final and confidence scores and their variances

Score error Score variance error  Confidence error  Conf. variance error
0.87 0.78 0.40 0.30
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3. Transverse Beam Profile Monitoring

Fig. 4. New BPM DAQ (Data Acquisition) electronics is used to monitor the beam profile. The
existing data was used to create custom dataset for anomaly detection.

XI

7 Decoder -—> SSIM

|

Discriminator

~ 94.5% @

+offline with
16x speed-up

Fig. 5. A Convolutional Autoencoder with SSIM (Structural Similarity Index Measure) metric
provides the foundation for real-time anomaly detection - an off-centred beam.
One problem is that a ,,good” profile is sometimes mistaken for an off-centred.
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