FlashSim: End-to-End simulation with Flow Matching

Istituto Nazionale di Fisica Nucleare

Francesco Vaselli on behalf of the CMS Collaboration francesco.vaselli@cern.ch

We propose an end-to-end approach for faster simulations **Physics Process**

Main idea: going directly from the generator output objects to the high level analysis objects (jets, muons …)!

We want something:

- Fast(er): reached \neg kHz!
- Not analysis specific
- Depending on Gen (not just a generic event but the event)

Continuous Normalizing Flows are the backbone of our approach!

We learn an invertible transformation, taking us from data x to noise z

Once f has been found we can invert it, start from noise and sample new data from the unknown PDF!

https://ehoogeboom.github.io/post/en_flows/

Results are convincing

Simulation speed per object is around 10 kHz.

Our results accurately reproduce the Full Simulation data of the CMS Experiment, on both training and unseen processes, for:

- 1-d distributions;
- correlations between the variables;
- different physical processes;
- analysis-level plots.

For more:

francesco.vaselli@cern.ch

and

<https://cds.cern.ch/record/2858890>, <https://arxiv.org/abs/2402.13684>

2

Improving the Inference of the Graph Neural Networks for Track Reconstruction

James S Gaboriault-Whitcomb, Henry H Paschke and Alina Lazar

on behalf of the **Exa.TrkX** collaboration

Youngstown State University,

The Exa.TrkX GNN Inference Pipeline

FrNN, Faiss

BUILD EDGES

15.98s

DATA LOADING

0.99s

PyTorch

EMBEDDING

PyTorch

FILTERING

5.02s

connected components **LABELING** $0.10s$

MPI was used to run events in parallel, using multiple cores.

The most time-consuming steps of the pipeline are Build Edges and Filtering. To speed-up Build Edges we used Faiss with 2 threads and multiprocessing for the Filtering for-loop.

The results indicate that it is best to use between 10 and 15 cores per event, however running it on the GPU is still 27 times faster.

September 23, 2024

3

An Open-Source RISC-V-based GPGPU Accelerator for Machine Learning-based Edge Computing Applications

EPFL - Embedded Systems Laboratory (ESL)

simone.machetti@epfl.ch

Open-source

Open-source

Natively Configurable

Open-source

Natively Configurable

RISC-V-based

Open-source

Natively Configurable

RISC-V-based

Fully Synthesizable

Open-source

Natively Configurable

RISC-V-based

Fully Synthesizable

OpenCL Support

Streaming Multiprocessor

Streaming Multiprocessor

Memory Hierarchy

Configurable

Configurable

● Number of threads

- **Number of threads**
- Number of warps

- **Number of threads**
- Number of warps
- Floating-point unit

- **Number of threads**
- Number of warps
- Floating-point unit
- Memory hierarchy

- **Number of threads**
- Number of warps
- Floating-point unit
- Memory hierarchy
	- Scratchpad-based

- **Number of threads**
- Number of warps
- Floating-point unit
- Memory hierarchy
	- Scratchpad-based
	- Cache-based

rum
: 125 anna.

Simone Machetti - EPFL (simone.machetti@epfl.ch) 19

The APU code and documentation will be 100% open-source and the first version will be released very soon…

The APU code and documentation will be 100% open-source and the first version will be released very soon…

The APU code and documentation will be 100% open-source and the first version will be released very soon…

Thank you for your attention!

EPFL - Embedded Systems Laboratory (ESL)

simone.machetti@epfl.ch

Accelerating Machine Learning algorithms in FPGAs for the trigger system of a SiPM-based upgraded camera of the CTA Large-Sized Telescopes Machine Learning algorithms in FF
 χ stem of a SiPM-based upgraded carpus

he CTA Large-Sized Telescopes
 $\frac{1}{2}$, L. Á. Tejedor¹, J. A. Barrio¹, T. Miener², D.

A. Pérez Aguilera¹, L. Á. Tejedor¹, J. A. Barrio¹, T. Miener², D. Martín¹

(1) Grupo de Altas Energías (GAE), Instituto de Física de Partículas y del Cosmos, and EMFTEL Department, Universidad Complutense de Madrid (IPARCOS-UCM), E-28040 Madrid, Spain

Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

CTAO

IACTs introduction

Combined analogue and digital trigger system approach with a separated branch for event data:

Fully digital trigger system approach:

Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

Implementing ML algorithms for the trigger system

Fully digital trigger ⇒ More complex algorithms to tag/eliminate NSB events ⇒ Possibility of Machine Learning

Hundreds of kHz \Rightarrow Processing time few μ s \Rightarrow FPGAs

Reduced TensorFlow model used for IACT offline event analysis.

> Preliminary results when simulating with RoIs composed of 5 samples of 30x30 pixels

Discussion and near future activities

- -**Several RoIs** need to be processed in parallel to cover all the area of a camera event.
- -Further optimizations of the CNN models, such as quantization aware training, are yet to be explored.
- -Density-Based Scan models also to be explored.
- -Works to check the tagging performance are ongoing.
- -Recently joined DRD7.5 WP to share expertise.
- -Short-term: test-bench/algorithms characterized by 2026.
- Mid-term: full prototype produced by 2028.

Nanosecond ML for calorimeter segmentation

Noah Clarke Hall, Nikos Konstantinidis, Alex Martynwood, Naoki Kimura

Cells form locally uniform grid

Cylindrical detector geometry

Towers & topoclusters

AUCI

Towers & topoclusters

AUCL

Two ML approaches

Point cloud classification

Physics performance

- Form anti-k_t central ($|\eta|$ <2.5) jets
- Both approaches give similar physics performance
- Large improvement over baselines!

 \triangleq UC

ml

UUU

 G his 4

Resources

google/qkeras

Tensorflow Keras

QKeras: a quantization deep learning library for

- Xilinx UltraScale+ XCU250
- 250 MHz clock
- CNN looks fast & light enough to be viable
- More optimisation needed

Enhancing the L0 Muon Trigger: project goals and needs

[SMARTHEP](https://www.smarthep.org/) Edge Machine Learning school (23-27 Sept 2024, CERN)

Oliver Kortner (MPI), Verena Martinez Outschoorn (UMass Amherst) Maria Carnesale (CERN), Rimsky Rojas (CERN)

Enhancing the L0 Muon Trigger

Plenty of room for innovative ML algorithms!

Exotic signatures: additional trigger strategies for non-pointing signatures from decay of longlived exotic particles

Starting from displaced muons, but also interested in closeby muons, high multiplicity signatures, slow moving or highly ionizing particles

Implement novel trigger strategies in firmware

L0 MDT trigger: improve the robustness of L0 muon trigger system against the potential loss of performance due to aging RPC detectors and to improve acceptance coverage

Momentum Estimation

vide second coordinate for the p_T^{\parallel} e the B-field is ıniform

Pattern recognition algorithms to identify regions of interest with only MDT hits

Timing of the muons to determine bunch crossing with Tile or only MDTs

Momentum estimation without a second coordinate from RPCs

Enhancing the L0 Muon Trigger

- Starting from toy model simulations based on ATLAS muon subsystem \rightarrow layers of detectors identifying the crossing position of a passing muon
- For muon p_T we need to measure the particle bending \longrightarrow must determine both segment position and angle

• Study different algorithms/approaches for L0 Muon triggers in case of loss of RPC performance or coverage

Goal is to be forward-thinking and use ML in FPGAs

Studies on muon detectors toy model simulation for segment reconstruction show promising results

Enhancing the L0 Muon Trigger

Use already existing frameworks developed for ML inference on FPGA such as:

FPGA implementation

- Can target the current L0 Muon trigger hardware (Xilinx VU13P FPGA) using HLS4ML
- Explore potential improvements using different hardware

deep learning models on FPGA

Nanosecond AI for anomaly detection with decision trees on FPGA using fwXmachina

SMARTHEP Edge Machine Learning School

7

Mon, 23 Sep 2024

ATLAS

Ben Carlson, Isabelle Taylor, Joerg Stelzer, Kemal Ercikti, Kyle Mo, Pavel Serhiayenka, Rajat Gupta, Santiago Cane, Stephen Roche, Tae Min Hong, Yuvaraj Elangovan

fwX – an efficient BDT implementation on FPGAs

Framework for generating nanosecond-scale inference BDTs for use in FPGAs

Anticipated areas of use: event analysis in hardware triggers in HEP **experiments**

Work on

- \triangleright Fast event classification with BDT [\(Hong et al., JINST 16, P08016 \(2021\)](http://doi.org/10.1088/1748-0221/16/08/P08016))
- > Fast regression with deep BDT's (*) [\(Carlson et al., JINST 17, P09039 \(2022\)\)](http://doi.org/10.1088/1748-0221/17/09/P09039)
- ► Fast anomaly detection with BDT-based auto-encoders^(*) (Roche et al., accepted [for publication\)](https://arxiv.org/abs/2304.03836)

* Currently being implemented in ATLAS L1 trigger

BDTs for auto-encoders

Typically constructed using neural networks

➢ Challenge to implement in pure digital logic on FPGA

Neural Network Been around HEP since the 80s¹ Popular **Depth** Challenging, so ~3 on FPGA² **Score** $y = \Theta(M \cdot x + b)$ **Activation Multiplication Decision Tree** Discovered the Higgs!³ Popular Challenging, so 4 to 8 on FPGA4,5,6 **Depth** $y = \Theta(x < \text{threshold})$ **Score** Step fn Comparison

Classification performance of BDTs is often comparable

Advantages of BDT

- ➢ Technical (no multiplication)
- ➢ Philosophical (interpretable)

FWX approach:

- \triangleright Goal: make evaluation of the BDT in FPGA faster while using less resources
- ➢ Achieved by parallelizing node evaluation

See: Govorkova et al., *Autoencoders on fieldprogrammable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider,* Nature Mach. Intell. **4** (2022) 154–161 <https://doi.org/10.1038/s42256-022-00441-3>

Auto-encoders rely on data-compression algorithm (usually NN, fwX: BDT), trained on known, expected data (background)

Encoding input into latent ("code"-) space and decoding back into input space preserves objects which are similar to training sample (known data), but fails to faithfully re-construct anomalies (unknown data)

Poor reconstruction

large discrepancy between input and output => high anomaly score

Our approach to using BDTs for auto-encoders

Novel algorithm for using decision trees in auto-encoders for anomaly detection

➢ Anomaly score from comparison of input with latent space, no decoding step

Method: (a glimpse)

Place small boxes around locations of high event density

Encoding an event \bullet :

 \triangleright Return *index b* of the box the event **v** falls into

Decoding a box index *b*:

 \triangleright Return the median \bigcirc of the training data in box *b*

Want to learn more – join us tomorrow

In-depth introduction to anomaly detection with FWX by Tae tomorrow afternoon @16:30.

Followed by a hands-on tutorial

Tutorial with three parts

- \triangleright Training and fwX-BDT code generation (with TMVA and FwX)
- \triangleright Synthesis (with Vivado)
- \triangleright FPGA evaluation (simulation with Vivado)

Each part has a 10' video (where you can work along), followed by a Q&A session

 \triangleright If you like to follow the tutorial on your laptop, please make sure you have root, fwX (part 1) and vivado (parts 2+3) installed

Neural Architectures and Data Processing Pipelines for Irradiation Experiments:

from the Automatic Assessment of Proposals to the Monitoring of the Beam Quality

Jarosław Szumega *CERN EP-DT-DD, Mines Paris – PSL*

on behalf of the team: Jaroslaw Szumega, Lamine Bougueroua, Blerina Gkotse, Pierre Jouvelot, Federico Ravotti

24/05/2024

1. Introduction to IRRAD facility

Fig. 1. The location and layout of the IRRAD facility. Divided into three zones and equipped with a shuttle system, it is a place for electronic qualification and radiation hardness assessment.

2. Automatic Assessment of Experimental Proposals

Goal

- Support to facility users $-$ to prepare better experiments
- Support to User Selection Panels to prepare better reviews

Simple goal – yet lots of challenges

Fig. 2. An illustration of embeddings creation of a short text. The result is a real vector obtained with the transformer architecture.

2. Automatic Assessment of Experimental Proposals

3. Transverse Beam Profile Monitoring

Fig. 4. New BPM DAQ (Data Acquisition) electronics is used to monitor the beam profile. The existing data was used to create custom dataset for anomaly detection.

Fig. 5. A Convolutional Autoencoder with SSIM (Structural Similarity Index Measure) metric provides the foundation for real-time anomaly detection - an off-centred beam. One problem is that a "good" profile is sometimes mistaken for an off-centred.

Proton Facilit

Acknowledgements

www.radnext.web.cern.ch

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008126.

www.web.infn.it/EURO-LABS

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under grant agreement No 101057511.

This project received support in the form of hardware resources and computation time in the framework of the NVIDIA Corporation Cloud GPU Grant program. The access to GPU computation cluster was provided by the Saturn Cloud platform.

