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We propose an end-to-end approach for faster 
simulations
Main idea: going directly from 
the generator output objects to 
the high level analysis objects 
(jets, muons …)!

We want something:

● Fast(er): reached ~kHz!
● Not analysis specific
● Depending on Gen (not just 

a generic event but the 
event)
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Continuous Normalizing Flows 
are the backbone of our approach!

We learn an invertible 
transformation, taking us 
from data x to noise z

Once f has been found we 
can invert it, start from 
noise and sample new data 
from the unknown PDF!

sampling

training

3see https://arxiv.org/abs/2210.02747, and https://arxiv.org/abs/2302.00482, figure from 
https://ehoogeboom.github.io/post/en_flows/

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482


Results are convincing
Simulation speed per object is around 10 kHz.

Our results accurately reproduce the Full 
Simulation data of the CMS Experiment, on 
both training and unseen processes, for:
● 1-d distributions;
● correlations between the variables;
● different physical processes;
● analysis-level plots.

For more: 
francesco.vaselli@cern.ch
and 
https://cds.cern.ch/record/2858890, https://arxiv.org/abs/2402.13684
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Improving the 
Inference of the Graph 
Neural Networks for 
Track Reconstruction

James S Gaboriault-Whitcomb, Henry H Paschke and 

Alina Lazar

on behalf of the Exa.TrkX collaboration

Youngstown State University, 

Anna Sfyrla
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The Exa.TrkX GNN Inference Pipeline

MPI was used to run events in parallel, using multiple cores.

The most time-consuming steps of the pipeline are Build 
Edges and Filtering. To speed-up Build Edges we used Faiss
with 2 threads and multiprocessing for the Filtering for-loop.

The results indicate that it is best to use between 10 and 15 
cores per event, however running it on the GPU is still 27
times faster. 

CPU (s)GPU (ms)

2.2Data Loading

0.996.7Metric Learning

15.9840 ± 10Graph building

5.02370 ± 80Filtering

3.57170 ± 30GNN

0.190 ± 8Track Building (CC)

25.66700 ± 100Total



An Open-Source RISC-V-based GPGPU 
Accelerator for Machine Learning-based Edge 

Computing Applications

EPFL - Embedded Systems Laboratory (ESL)

simone.machetti@epfl.ch

September 23, 2024
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Open-source

Natively Configurable

RISC-V-based

Fully Synthesizable

OpenCL Support

Analyzing the state-of-the art, we realized the need for a GPU…
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Configurable

● Number of threads

● Number of warps

● Floating-point unit

● Memory hierarchy

○ Scratchpad-based

○ Cache-based

GPGPU Accelerator

Memory Hierarchy

Streaming Multiprocessor
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Accelerated Processing Unit (APU)

21Simone Machetti - EPFL (simone.machetti@epfl.ch)

GPGPU AcceleratorX-HEEP

Host Kernel
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24Simone Machetti - EPFL (simone.machetti@epfl.ch)

The APU code and documentation will be 100% open-source 
and the first version will be released very soon…

Stay Tuned!



Thank you for your attention!

EPFL - Embedded Systems Laboratory (ESL)

simone.machetti@epfl.ch



Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

Accelerating Machine Learning algorithms in FPGAs for 
the trigger system of a SiPM-based upgraded camera of 

the CTA Large-Sized Telescopes

A. Pérez Aguilera1, L. Á. Tejedor1, J. A. Barrio1, T. Miener2, D. Martín1 
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IACTs introduction

Stereoscopic image

Combined analogue and digital trigger 
system approach with a separated 

branch for event data:

Fully digital trigger system approach:
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Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

Implementing ML algorithms for the trigger system

Fully digital trigger ⇒ More complex algorithms to tag/eliminate NSB events ⇒ Possibility of Machine Learning

Hundreds of kHz ⇒ Processing time few 𝜇s ⇒ FPGAs

Xilinx IP
Vivado project
and test bench

Reduced TensorFlow model used for 
IACT offline event analysis.

Preliminary results when simulating 
with RoIs composed of 5 samples of 
30x30 pixels
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Grupo de Altas Energías UCM - SMARTHEP Edge Machine Learning School - September 2024

Discussion and near future activities
-Several RoIs need to be processed in parallel to cover all the area of a camera event.

-Further optimizations of the CNN models, such as quantization aware training, are yet to be explored.

-Density-Based Scan models also to be explored.

-Works to check the tagging performance are ongoing.

-Recently joined DRD7.5 WP to share expertise.

-Short-term: test-bench/algorithms characterized by 2026.

Mid-term: full prototype produced by 2028.
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Nanosecond ML for 
calorimeter segmentation

Noah Clarke Hall, Nikos Konstantinidis,
Alex Martynwood, Naoki Kimura

Pile-up 
removal

Particle IDClustering

This talk

Anna Sfyrla
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Cylindrical detector 
geometry

Cells form locally 
uniform grid



Towers & topoclusters

HAD2: Sum of 1 >2σ cells

HAD1: Sum of 1 >2σ cells

EM3: Sum of 8 >2σ cells

EM2: Sum of 16 >2σ cells

EM1: Sum of 32* >2σ cells

PS: Sum of 4 >2σ cells

Tower (|η|<2.5) Topocluster (|η|<4.9) 

Seed cell

Topologically 
connected 
cells
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Two ML approaches

Image 
segmentation

Point cloud 
classification



Physics performance

• Form anti-kt central (|η|<2.5) jets

• Both approaches give similar 
physics performance

• Large improvement over baselines!



Resources

• Xilinx UltraScale+ 
XCU250

• 250 MHz clock

• CNN looks fast & light 
enough to be viable

• More optimisation 
needed

Resource/timing CNN DeepSets
Precision Fixed <10,5> Fixed <10,5>
# parameters 494 913
Latency (clk) 5 73
Interval (clk) 2 25
BRAM_18K 0 0
DSP 0 16
FF 1883 54478
LUT 33529 270742
URAM 0 0



Enhancing the L0 Muon Trigger: 
project goals and needs

SMARTHEP  Edge Machine Learning school (23-27 Sept 2024, CERN)

Oliver Kortner (MPI), Verena Martinez Outschoorn (UMass Amherst) 

Maria Carnesale (CERN), Rimsky Rojas (CERN)

https://www.smarthep.org/
Anna Sfyrla
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Enhancing the L0 Muon Trigger

Plenty of room for innovative ML algorithms!

Exotic signatures: additional trigger strategies 
for non-pointing signatures from decay of long-
lived exotic particles

Starting from displaced muons, but also 
interested in closeby muons, high multiplicity 
signatures, slow moving or highly ionizing 
particles

Implement novel trigger strategies in firmware

L0 MDT trigger: improve the robustness of L0 muon trigger 
system against the potential loss of performance due to aging 
RPC detectors and to improve acceptance coverage

Hit Extraction 

RPCs provide seeds to identify 
MDT hits from a muon & set up 

segment fitting step

Segment Fitting 

RPCs provide timing to 
calibrate hits and derive 

segments

Momentum Estimation  

RPCs provide second 
coordinate for the  

estimate since the B-field is 
non-uniform

pT

Pattern recognition algorithms 
to identify regions of interest 

with only MDT hits

Timing of the muons to 
determine bunch crossing 

with Tile or only MDTs

Momentum estimation 
without a second coordinate  

from RPCs



Enhancing the L0 Muon Trigger
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• Study different algorithms/approaches for L0 Muon triggers in case of loss of RPC 
performance or coverage

Goal is to be forward-thinking and use ML in FPGAs

Studies on muon detectors toy model simulation  for segment reconstruction show 
promising results
• Starting from toy model simulations based on ATLAS muon subsystem layers of detectors 

identifying the crossing position of a passing muon

• For muon  we need to measure the particle bending  must determine both segment 

position and angle

→

pT ⟶



Enhancing the L0 Muon Trigger

Use already existing frameworks developed for ML inference on FPGA such as:

FPGA implementation  

• Can target the current L0 Muon trigger hardware 
(Xilinx VU13P FPGA) using HLS4ML


• Explore potential improvements using different 
hardware 
		

AMD development platform for optimized deployment of 
deep learning models on FPGA

VITIS-AI HLS4ML



Nanosecond AI for anomaly detection with 
decision trees on FPGA using fwXmachina

SMARTHEP Edge Machine Learning School
Mon, 23 Sep 2024

Ben Carlson, Isabelle Taylor, Joerg Stelzer, Kemal Ercikti, Kyle Mo, Pavel Serhiayenka, 
Rajat Gupta, Santiago Cane, Stephen Roche, Tae Min Hong, Yuvaraj Elangovan

Anna Sfyrla
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fwX – an efficient BDT implementation on FPGAs

Anticipated areas of use: event analysis in hardware triggers in HEP 
experiments

Work on
➢ Fast event classification with BDT (Hong et al., JINST 16, P08016 (2021))

➢ Fast regression with deep BDT’s (*) (Carlson et al., JINST 17, P09039 (2022))

➢ Fast anomaly detection with BDT-based auto-encoders (*) (Roche et al., accepted 
for publication)

* Currently being implemented in ATLAS L1 trigger

2

Framework for generating 
nanosecond-scale inference 
BDTs for use in FPGAs

http://doi.org/10.1088/1748-0221/16/08/P08016
http://doi.org/10.1088/1748-0221/17/09/P09039
https://arxiv.org/abs/2304.03836
https://arxiv.org/abs/2304.03836


BDTs for auto-encoders

Typically constructed using neural networks
➢ Challenge to implement in pure digital logic on FPGA

Classification performance of BDTs 
is often comparable

Advantages of BDT
➢ Technical (no multiplication)
➢ Philosophical (interpretable)

3

See: Govorkova et al., Autoencoders on field-
programmable gate arrays for real-time, unsupervised new 
physics detection at 40 MHz at the Large Hadron Collider, 
Nature Mach. Intell. 4 (2022) 154–161
https://doi.org/10.1038/s42256-022-00441-3

FWX approach:
➢ Goal: make evaluation of the BDT in 

FPGA faster while using less resources
➢ Achieved by parallelizing node evaluation

https://doi.org/10.1038/s42256-022-00441-3


Auto-encoders for anomaly detection 

Auto-encoders rely on data-compression algorithm (usually NN, fwX: BDT), trained 
on known, expected data (background)

Encoding input into latent (“code”-) space and decoding back into input space 
preserves objects which are similar to training sample (known data), but fails to 
faithfully re-construct anomalies (unknown data)

4

Poor reconstruction
large discrepancy between input and 
output => high anomaly score

faithful 
reconstruction

poor 
reconstruction



Our approach to using BDTs for auto-encoders 

Novel algorithm for using decision trees in auto-encoders for anomaly detection
➢ Anomaly score from comparison of input with latent space, no decoding step

Method: (a glimpse)

Place small boxes around locations of
high event density

Encoding an event    :
➢ Return index b of the box the event    falls into

Decoding a box index b: 
➢ Return the median    of the training data in box b
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Want to learn more – join us tomorrow

In-depth introduction to anomaly 
detection with FWX by Tae tomorrow 
afternoon @16:30.

Followed by a hands-on tutorial

Tutorial with three parts
➢ Training and fwX-BDT code generation (with TMVA and FWX)
➢ Synthesis (with Vivado)
➢ FPGA evaluation (simulation with Vivado)

Each part has a 10’ video (where you can work along), followed by a Q&A session
➢ If you like to follow the tutorial on your laptop, please make sure you have root, fwX (part 1) 

and vivado (parts 2+3) installed

6
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Neural Architectures and Data Processing 
Pipelines for Irradiation Experiments:

 
from the Automatic Assessment of Proposals 

to the Monitoring of the Beam Quality

24/05/2024

Jarosław Szumega
CERN EP-DT-DD,
Mines Paris – PSL

on behalf of the team:
Jaroslaw Szumega, Lamine Bougueroua, Blerina Gkotse, Pierre Jouvelot, Federico Ravotti

Anna Sfyrla
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1. Introduction to IRRAD facility

Fig. 1. The location and layout of the IRRAD facility. Divided into three zones and 
equipped with a shuttle system, it is a place for electronic qualification and radiation 
hardness assessment.

IRRAD Proton Facility
• Located on T8 beamline – a 24 GeV/c 

proton beam extracted from PS ring.
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2. Automatic Assessment of Experimental 
Proposals

Fig. 2. An illustration of embeddings creation of a short text. The result is a real vector 
obtained with the transformer architecture.

Goal
• Support to facility users – to prepare better experiments
• Support to User Selection Panels – to prepare better 

reviews
Simple goal – yet lots of challenges
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2. Automatic Assessment of Experimental 
Proposals

Fig. 3. The UML diagram presents the architecture of the ORB dataset. It is the third 
iteration involving resources like OpenReview, Sci-Post and PeerJ.
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3. Transverse Beam Profile Monitoring

Fig. 5. A Convolutional Autoencoder with SSIM (Structural Similarity Index Measure) metric 
provides the foundation for real-time anomaly detection - an off-centred beam.
One problem is that a „good” profile is sometimes mistaken for an off-centred.

Fig. 4. New BPM DAQ (Data Acquisition) electronics is used to monitor the beam profile. The 
existing data was used to create custom dataset for anomaly detection.

94.5%
+offline   with 
16x speed-up
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