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Let’s Unify Scales and Units

FLOPS = Floating Point Operations Per Second

eV = Electron Volt:  kinetic energy gained by an electron accelerated through an 
electric potential difference of one volt in a vacuum

1e9 1e12 1e15 1e18

GeV TeV PeV EeV

HEP Energy Units

1e9 1e12 1e15 1e18

GFLOPS

Processing Power Units

TFLOPS PFLOPS EFLOPS



Hardware



A Quick History
▪ Things reached a stable 

point in the 2010s
▪ Majority of CPUs in HPC 

were x86 and Intel
▪ This was and continues to 

be true for the LHC Grid as 
well.

▪ HPC architectures follow 
industry

▪ AI is driving industry 
innovation, so HPCs have 
become GPU machines

https://top500.org/statistics/overtime/
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Need for Speed
Computational Power in 
scientific computing has 
been driven by the ability to 
fit more and more transistors 
in the same chip size.

As time went on, more 
powerful chips resulted in 
faster simulation and more 
science with little effort. All 
you had to do was buy the 
latest CPU.

https://github.com/karlrupp/microprocessor-trend-data



Need for Speed
However, as transistor sizes 
reach the physical limit 
where quantum effects make 
them unreliable, we can no 
longer get free speed ups 
every generation.

https://github.com/karlrupp/microprocessor-trend-data



Need for Speed
We can see similar trends in 
Top 500 data with linear 
increases giving way to 
asymptotes. 

Top 500 Data

https://www.nextplatform.com/2024/05/13/top500-supers
-this-is-peak-nvidia-for-accelerated-supercomputers/



Accelerating Efficiency

Top 10 Only

▪ So how do we continue to improve?
▪ Generic CPUs are capable of doing 

everything not very well (a bit of an 
exaggeration)

▪ Custom accelerators are capable of 
doing a few things very well (not an 
exaggeration)

▪ Things like those calculations used 
in AI, which is driving industry

▪ And HPC follows industry
▪ Here we see the number of 

systems containing accelerators 
has continued to increase.



Accelerating Efficiency
▪ So how do we continue to improve?
▪ Generic CPUs are capable of doing 

everything not very well (a bit of an 
exaggeration)

▪ Custom accelerators are capable of 
doing a few things very well (not an 
exaggeration)

▪ Things like those calculations used 
in AI, which is driving industry

▪ And HPC follows industry
▪ Here we see the number of 

systems containing accelerators 
has continued to increase.

Top 10 Only

Power Efficiency continues to 
increase with more GPUs



Accelerators continue to Accel

Despite CPU performance stalling, GPU performance has managed to continue to 
improve.

https://semiengineering.com/ai-accelerator-architectures-poised-for-big-changes/



Modern HPC Architectures
Frontier:

▪ 1 “blade” has 2 compute nodes.
▪ Each compute node has:

— 1 AMD EPYC CPU
— 4 AMD MI200 GPU
— 4 network interface controllers 

(NIC)
▪ The high speed network is what 

distinguishes an HPC from a cluster.
— Infiniband (Nvidia)
— Slingshot (HPE)



Modern HPC Architectures
Aurora:

▪ 1 “blade” has 1 compute node
▪ 2 Intel Xeon CPU Max Series
▪ 6 Intel Data Center GPU Max Series
▪ 8 NICs per node (1/GPU, 1/CPU)

The tubing is for the water cooling.

PVC PVC

Xeon

Xeon



Modern HPC 
Architectures

16 nodes in a row

4x16 nodes per rack
166 racks
10,624 nodes
63,744 GPUs
21,248 CPUs

Aurora



Looking to the Future: Diversity, Diversity
▪ Already have 3 major GPU 

makers, Nvidia, AMD, Intel, with 
three different methods for 
programming.

▪ Not everyone is happy paying 
$40,000/GPU to Nvidia

▪ European HPC agency is 
developing their own 
architectures based on RISC-V

▪ China already has their own 
chips

▪ Microsoft recently announced 
development of their own chips

▪ Meta wants to dev RISC-V
▪ Apple Silicon exists
▪ There’s a lot of “other” in the 

pipeline
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AI Accelerators
AI Accelerators are very custom chips 
especially made to run AI training and 
inference.

Cerebras is in the process of deploying 
multiple data centers for customers.



Now vendors are making new 
chips that merge GPU+CPU 
capabilities into one package.

Some include “Neural Cores” or 
other kinds of tensor math 
accelerators.

Again, industry is driven by 
investment, investment is chasing 
AI, AI needs accelerators.



So what can we expect to see?*
▪ I think we are in a period of industrial 

experimentation.
▪ HPCs will likely follow some, but not all.
▪ HPCs will have a diverse architectural 

makeup.
▪ Eventually (5-10yrs), some settling will occur 

but our computing landscape will look very 
different.

*By reading these predictions you agree not to hold the 
speaker responsible for any erroneous outcomes.



So what can we expect to see?*
▪ I think we are in a period of industrial 

experimentation.
▪ HPCs will likely follow some, but not all.
▪ HPCs will have a diverse architectural 

makeup.
▪ Eventually (5-10yrs), some settling will occur 

but our computing landscape will look very 
different.

▪ Instead of Chip Maker X producing a single 
D2000 model accelerator, there will be a 
model D2000 for AI, one for finance, one for 
bitcoin, one for the office users, etc.

▪ The silicon real estate will be optimized 
toward a subset of computational tasks.

*By reading these predictions you agree not to hold the 
speaker responsible for any erroneous outcomes.



Software



Parallel Programming & Scaling

Writing software using 
parallelism is important 
to effectively utilize an 
HPC. Without it, one 
does not benefit from the 
architecture.

This is what GPT-4 
thinks it is.



Parallel Programming: Concurrency

import threading

# Shared counter
counter = 0

# Lock for synchronizing access to the counter
lock = threading.Lock()

# Function to increment the counter
def increment_counter():
    global counter
    for _ in range(1000):
        with lock:
            counter += 1

# Create threads
threads = []
for _ in range(10):
    thread = threading.Thread(target=increment_counter)
    threads.append(thread)

# Start threads
for thread in threads:
    thread.start()

# Wait for all threads to complete
for thread in threads:
    thread.join()

print(f"Final counter value (threads): {counter}")

import multiprocessing

# Function to increment the counter
def increment_counter (counter):
    for _ in range(1000):
        counter.value += 1

# Shared counter (using Value)
counter = multiprocessing.Value( 'i', 0)

# Create processes
processes = []
for _ in range(10):
    process =  
multiprocessing.Process(target=increment_counter,  
args=(counter,))
    processes.append(process)

# Start processes
for process in processes:
    process.start()

# Wait for all processes to complete
for process in processes:
    process.join()

print(f"Final counter value (processes):  
{counter.value}" )

Process Parallelism Thread Parallelism



Parallel Programming: Task Parallelism
Task Parallelism distributes 
tasks across available 
hardware.

Example of node-level, and 
many nodes split up doing 
different tasks.

As an HPC user, it would be 
important to balance resources 
to ensure effective utilization.
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Parallel Programming: Task Parallelism

100 Nodes

1000 Nodes

1 Node

Ran-Gen

MC Alg

AI Train

Sim Data

Random 
Numbers

Physics 
Predictions

Data Writer

Task Parallelism distributes 
tasks across available 
hardware.

Example of node-level, and 
many nodes split up doing 
different tasks.

As an HPC user, it would be 
important to balance resources 
to ensure effective utilization.



Parallel Programming: Data Parallelism
Data Parallelism executes the 
same task on different data 
distributed across devices.

Data Parallel training of an AI 
model is depicted in this 
diagram.

GPU

AI Train

GPU

AI Train

GPU
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Data Batch 1

Data Batch 2

Data Batch 3



Parallel Programming
Tools we use to span many nodes via the network:

▪ For parallelism within a node:
— Python (threading,multiprocessing)
— C++: OpenMP, SYCL, Kokkos, CUDA/HIP

▪ For parallelism across nodes:
— MPI (Message Passing Interface)

• mpi4py
— PyTorch DDP, Horovod

This is what you want to 
use on an HPC to make 
effective use of the 
system.



Data Batch 1

Data Parallel AI Training

Data Batch 2

Data Batch 3
GPU
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Both 
implement 
built in easy 
data parallel 
training; 
essentially no 
experience 
needed.



Data Parallelism with 
MPI
▪ Here is a simple example of using 

MPI in python.
▪ In MPI speak:

— If you launch 50 processes
— Each process gets a unique 

ID number 0-49 called “rank”
▪ MPI provides functions to share 

information across these ranks
▪ All-reduce, Broadcasts, Scatters, 

and many others.

from mpi4py import MPI
import numpy as np

def main():
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()

    # Define array size
    array_size = 1000
    array = None

    if rank == 0:
        # Initialize the array with random numbers on the  
root process
        array = np.random.random(array_size)
        print(f"Original array (first 10 elements):  
{array[:10]}")

    # Determine the portion of the array each process will  
handle
    local_size = array_size // size

    # Create a buffer for the local portion of the array
    local_array = np.zeros(local_size)

    # Scatter the array to all processes
    comm.Scatter(array, local_array, root= 0)

    # Each process computes the sum of its local array
    local_sum = np.sum(local_array)

    # Gather all local sums to the root process
    total_sum = comm.reduce(local_sum, op=MPI.SUM, root= 0)

    if rank == 0:
        print(f"Total sum: {total_sum}")

if __name__ == "__main__":
    main()



Software in a Bespoke Future
▪ How do we deal with a “Besoke Chip” future?
▪ Each chip traditionally comes with a custom 

programming library:
— CUDA, HIP, ROCm, SYCL, OpenCL

▪ Could we write our algorithms in every language?
— Increased software support effort
— Software tends to become hard to read 

▪ Could we chose one technology and use it forever?
— Chip prices change as demand changes
— Choosing incorrectly leads to bad things



Portability in Programming
▪ People are (have been) planning for this 

outcome by designing portable frameworks
— C++: Kokkos, SYCL, OpenCL, std::par
— Python: Tensorflow, PyTorch, JAX

▪ These programming libraries allow you to 
write your algorithm once, then they 
manage the creation or use of architecture 
specific code.

▪ C++ version do this at compile time 
typically.

▪ Python contains both compiled versions in 
the library and are called when needed.



Software Abstraction Support
▪ All portable solutions rely on vendors (SYCL, OpenCL, std::par), 

someone else (Kokkos), or both (Tensorflow, PyTorch, JAX) to create 
and support their implementations.

▪ Tensorflow & PyTorch are simply C++ libraries with a Python interface.
▪ The Tensorflow & PyTorch devs first supported Nvidia devices, though 

now Nvidia is directly contributing to the CUDA portions of the code. 
▪ AMD and Intel joined in to add support for their devices.
▪ If software moves away from these tools, vendors likely will too.
▪ Kokkos was developed by the DOE Exascale Program and is developed 

by scientists to support portability. It is not a vendor driven activity.



Science Examples



Modeling Blood Flow
Complex Fluid Dynamics

▪ Modeling deformable blood cells 
traversing capillaries with complex 
geometries.

▪ One of the first times using 3D 
model instead of 1D model.

▪ Improving blood transport models 
will impact the ability to analyze 
cardiovascular disease risks in 
patients.



Drought Prediction
▪ Based on analysis of a large 

community dataset and 
projections from three Global 
Climate Models

▪ Identifies short-term droughts 
and predicts future extreme 
droughts

▪ Including “flash drought” events 
with a quick onset period that 
could be as short as few weeks

The 5, 10, 25, and 50-year return periods in the United States for the 5th, 
median (50th), and 95th percentile of the sampled model ensemble for VPD 
return periods. (Image courtesy of Brandi L. Gamelin of Argonne National 
Laboratory) 



AI for Molecular Energetics 
▪ Using AI, Quantum Chemists were able to 

predict the energetics of larger molecules at a 
fraction of the computing cost, while 
maintaining chemical accuracy.

▪ This new method could have a significant 
impact on fields such as drug discovery, 
materials science, and energy research.



Hypersonic Flight
▪ The fluid dynamics of air when 

objects travel at >5x the speed 
of sound is not well modeled.

▪ This team aims to use 
fundamental quantum 
mechanical interactions to 
model the behavior of this 
system.



Conclusion



Wrapping Up
▪ Computing architectures are growing in diversity.
▪ Things will likely settle into a smaller subset of “winning” architectures.
▪ Software is trying to keep up to facilitate ease of use, but remain 

performant across devices.
▪ Knowledge of underlying hardware is still a benefit to the programmer, 

but with Python supplanting C++ as the commonly learned language 
amongst scientists, this knowledge becomes more obscure. 

▪ In many ways we are dependent on vendors to implement portable 
solutions for their hardware, but this isn’t naturally in their interest.

▪ Our goal in scientific computing is always to enable the most science 
output, while reducing complexity where possible.


