
Supercomputers As a Resource
J. Taylor Childers - Argonne Leadership Computing Facility

AURORA

Let’s Unify Scales and Units

FLOPS = Floating Point Operations Per Second

eV = Electron Volt: kinetic energy gained by an electron accelerated through an
electric potential difference of one volt in a vacuum

1e9 1e12 1e15 1e18

GeV TeV PeV EeV

HEP Energy Units

1e9 1e12 1e15 1e18

GFLOPS

Processing Power Units

TFLOPS PFLOPS EFLOPS

Hardware

A Quick History
▪ Things reached a stable

point in the 2010s
▪ Majority of CPUs in HPC

were x86 and Intel
▪ This was and continues to

be true for the LHC Grid as
well.

▪ HPC architectures follow
industry

▪ AI is driving industry
innovation, so HPCs have
become GPU machines

https://top500.org/statistics/overtime/

Xeon

Xe
on

Xe
onXe

on

Xe
on

Other Other

Xe
on

PowerPC

Sunway

Xe
on

Xe
on

Po
wer

9
Fu

jit
su

AM
D

CPU

Pentium

NV Tesla

NV Tesla

NV Te
sla

Xeon Phi

NV Tesla

NV Tesla

NV TeslaMatrix 2000

AMD Instinct

NV Ampere

NV A
mpe

re

Intel GPU

NV Hopper

NV Ampere

https://top500.org/statistics/overtime/

Need for Speed
Computational Power in
scientific computing has
been driven by the ability to
fit more and more transistors
in the same chip size.

As time went on, more
powerful chips resulted in
faster simulation and more
science with little effort. All
you had to do was buy the
latest CPU.

https://github.com/karlrupp/microprocessor-trend-data

Need for Speed
However, as transistor sizes
reach the physical limit
where quantum effects make
them unreliable, we can no
longer get free speed ups
every generation.

https://github.com/karlrupp/microprocessor-trend-data

Need for Speed
We can see similar trends in
Top 500 data with linear
increases giving way to
asymptotes.

Top 500 Data

https://www.nextplatform.com/2024/05/13/top500-supers
-this-is-peak-nvidia-for-accelerated-supercomputers/

Accelerating Efficiency

Top 10 Only

▪ So how do we continue to improve?
▪ Generic CPUs are capable of doing

everything not very well (a bit of an
exaggeration)

▪ Custom accelerators are capable of
doing a few things very well (not an
exaggeration)

▪ Things like those calculations used
in AI, which is driving industry

▪ And HPC follows industry
▪ Here we see the number of

systems containing accelerators
has continued to increase.

Accelerating Efficiency
▪ So how do we continue to improve?
▪ Generic CPUs are capable of doing

everything not very well (a bit of an
exaggeration)

▪ Custom accelerators are capable of
doing a few things very well (not an
exaggeration)

▪ Things like those calculations used
in AI, which is driving industry

▪ And HPC follows industry
▪ Here we see the number of

systems containing accelerators
has continued to increase.

Top 10 Only

Power Efficiency continues to
increase with more GPUs

Accelerators continue to Accel

Despite CPU performance stalling, GPU performance has managed to continue to
improve.

https://semiengineering.com/ai-accelerator-architectures-poised-for-big-changes/

Modern HPC Architectures
Frontier:

▪ 1 “blade” has 2 compute nodes.
▪ Each compute node has:

— 1 AMD EPYC CPU
— 4 AMD MI200 GPU
— 4 network interface controllers

(NIC)
▪ The high speed network is what

distinguishes an HPC from a cluster.
— Infiniband (Nvidia)
— Slingshot (HPE)

Modern HPC Architectures
Aurora:

▪ 1 “blade” has 1 compute node
▪ 2 Intel Xeon CPU Max Series
▪ 6 Intel Data Center GPU Max Series
▪ 8 NICs per node (1/GPU, 1/CPU)

The tubing is for the water cooling.

PVC PVC

Xeon

Xeon

Modern HPC
Architectures

16 nodes in a row

4x16 nodes per rack
166 racks
10,624 nodes
63,744 GPUs
21,248 CPUs

Aurora

Looking to the Future: Diversity, Diversity
▪ Already have 3 major GPU

makers, Nvidia, AMD, Intel, with
three different methods for
programming.

▪ Not everyone is happy paying
$40,000/GPU to Nvidia

▪ European HPC agency is
developing their own
architectures based on RISC-V

▪ China already has their own
chips

▪ Microsoft recently announced
development of their own chips

▪ Meta wants to dev RISC-V
▪ Apple Silicon exists
▪ There’s a lot of “other” in the

pipeline

Xeon

Xe
on

Xe
onXe

on

Xe
on

Other Other

Xe
on

PowerPC

Sunway

Xe
on

Xe
on

Po
wer

9
Fu

jit
su

AM
D

CPU

Pentium

AI Accelerators
AI Accelerators are very custom chips
especially made to run AI training and
inference.

Cerebras is in the process of deploying
multiple data centers for customers.

Now vendors are making new
chips that merge GPU+CPU
capabilities into one package.

Some include “Neural Cores” or
other kinds of tensor math
accelerators.

Again, industry is driven by
investment, investment is chasing
AI, AI needs accelerators.

So what can we expect to see?*
▪ I think we are in a period of industrial

experimentation.
▪ HPCs will likely follow some, but not all.
▪ HPCs will have a diverse architectural

makeup.
▪ Eventually (5-10yrs), some settling will occur

but our computing landscape will look very
different.

*By reading these predictions you agree not to hold the
speaker responsible for any erroneous outcomes.

So what can we expect to see?*
▪ I think we are in a period of industrial

experimentation.
▪ HPCs will likely follow some, but not all.
▪ HPCs will have a diverse architectural

makeup.
▪ Eventually (5-10yrs), some settling will occur

but our computing landscape will look very
different.

▪ Instead of Chip Maker X producing a single
D2000 model accelerator, there will be a
model D2000 for AI, one for finance, one for
bitcoin, one for the office users, etc.

▪ The silicon real estate will be optimized
toward a subset of computational tasks.

*By reading these predictions you agree not to hold the
speaker responsible for any erroneous outcomes.

Software

Parallel Programming & Scaling

Writing software using
parallelism is important
to effectively utilize an
HPC. Without it, one
does not benefit from the
architecture.

This is what GPT-4
thinks it is.

Parallel Programming: Concurrency

import threading

Shared counter
counter = 0

Lock for synchronizing access to the counter
lock = threading.Lock()

Function to increment the counter
def increment_counter():
 global counter
 for _ in range(1000):
 with lock:
 counter += 1

Create threads
threads = []
for _ in range(10):
 thread = threading.Thread(target=increment_counter)
 threads.append(thread)

Start threads
for thread in threads:
 thread.start()

Wait for all threads to complete
for thread in threads:
 thread.join()

print(f"Final counter value (threads): {counter}")

import multiprocessing

Function to increment the counter
def increment_counter (counter):
 for _ in range(1000):
 counter.value += 1

Shared counter (using Value)
counter = multiprocessing.Value('i', 0)

Create processes
processes = []
for _ in range(10):
 process =
multiprocessing.Process(target=increment_counter,
args=(counter,))
 processes.append(process)

Start processes
for process in processes:
 process.start()

Wait for all processes to complete
for process in processes:
 process.join()

print(f"Final counter value (processes):
{counter.value}")

Process Parallelism Thread Parallelism

Parallel Programming: Task Parallelism
Task Parallelism distributes
tasks across available
hardware.

Example of node-level, and
many nodes split up doing
different tasks.

As an HPC user, it would be
important to balance resources
to ensure effective utilization.

GPU1

GPU2

CPU

Ran-Gen

MC Alg

AI Train

Sim Data

Random
Numbers

Physics
Predictions

Data Writer

Parallel Programming: Task Parallelism

100 Nodes

1000 Nodes

1 Node

Ran-Gen

MC Alg

AI Train

Sim Data

Random
Numbers

Physics
Predictions

Data Writer

Task Parallelism distributes
tasks across available
hardware.

Example of node-level, and
many nodes split up doing
different tasks.

As an HPC user, it would be
important to balance resources
to ensure effective utilization.

Parallel Programming: Data Parallelism
Data Parallelism executes the
same task on different data
distributed across devices.

Data Parallel training of an AI
model is depicted in this
diagram.

GPU

AI Train

GPU

AI Train

GPU

AI Train

Data Batch 1

Data Batch 2

Data Batch 3

Parallel Programming
Tools we use to span many nodes via the network:

▪ For parallelism within a node:
— Python (threading,multiprocessing)
— C++: OpenMP, SYCL, Kokkos, CUDA/HIP

▪ For parallelism across nodes:
— MPI (Message Passing Interface)

• mpi4py
— PyTorch DDP, Horovod

This is what you want to
use on an HPC to make
effective use of the
system.

Data Batch 1

Data Parallel AI Training

Data Batch 2

Data Batch 3
GPU

Forward Backward Sync

GPU

Forward Backward Sync

GPU

Forward Backward Sync

S
hare D

ata A
cross N

odes
PyTorch DDP
Horovod

Both
implement
built in easy
data parallel
training;
essentially no
experience
needed.

Data Parallelism with
MPI
▪ Here is a simple example of using

MPI in python.
▪ In MPI speak:

— If you launch 50 processes
— Each process gets a unique

ID number 0-49 called “rank”
▪ MPI provides functions to share

information across these ranks
▪ All-reduce, Broadcasts, Scatters,

and many others.

from mpi4py import MPI
import numpy as np

def main():
 comm = MPI.COMM_WORLD
 rank = comm.Get_rank()
 size = comm.Get_size()

 # Define array size
 array_size = 1000
 array = None

 if rank == 0:
 # Initialize the array with random numbers on the
root process
 array = np.random.random(array_size)
 print(f"Original array (first 10 elements):
{array[:10]}")

 # Determine the portion of the array each process will
handle
 local_size = array_size // size

 # Create a buffer for the local portion of the array
 local_array = np.zeros(local_size)

 # Scatter the array to all processes
 comm.Scatter(array, local_array, root= 0)

 # Each process computes the sum of its local array
 local_sum = np.sum(local_array)

 # Gather all local sums to the root process
 total_sum = comm.reduce(local_sum, op=MPI.SUM, root= 0)

 if rank == 0:
 print(f"Total sum: {total_sum}")

if __name__ == "__main__":
 main()

Software in a Bespoke Future
▪ How do we deal with a “Besoke Chip” future?
▪ Each chip traditionally comes with a custom

programming library:
— CUDA, HIP, ROCm, SYCL, OpenCL

▪ Could we write our algorithms in every language?
— Increased software support effort
— Software tends to become hard to read

▪ Could we chose one technology and use it forever?
— Chip prices change as demand changes
— Choosing incorrectly leads to bad things

Portability in Programming
▪ People are (have been) planning for this

outcome by designing portable frameworks
— C++: Kokkos, SYCL, OpenCL, std::par
— Python: Tensorflow, PyTorch, JAX

▪ These programming libraries allow you to
write your algorithm once, then they
manage the creation or use of architecture
specific code.

▪ C++ version do this at compile time
typically.

▪ Python contains both compiled versions in
the library and are called when needed.

Software Abstraction Support
▪ All portable solutions rely on vendors (SYCL, OpenCL, std::par),

someone else (Kokkos), or both (Tensorflow, PyTorch, JAX) to create
and support their implementations.

▪ Tensorflow & PyTorch are simply C++ libraries with a Python interface.
▪ The Tensorflow & PyTorch devs first supported Nvidia devices, though

now Nvidia is directly contributing to the CUDA portions of the code.
▪ AMD and Intel joined in to add support for their devices.
▪ If software moves away from these tools, vendors likely will too.
▪ Kokkos was developed by the DOE Exascale Program and is developed

by scientists to support portability. It is not a vendor driven activity.

Science Examples

Modeling Blood Flow
Complex Fluid Dynamics

▪ Modeling deformable blood cells
traversing capillaries with complex
geometries.

▪ One of the first times using 3D
model instead of 1D model.

▪ Improving blood transport models
will impact the ability to analyze
cardiovascular disease risks in
patients.

Drought Prediction
▪ Based on analysis of a large

community dataset and
projections from three Global
Climate Models

▪ Identifies short-term droughts
and predicts future extreme
droughts

▪ Including “flash drought” events
with a quick onset period that
could be as short as few weeks

The 5, 10, 25, and 50-year return periods in the United States for the 5th,
median (50th), and 95th percentile of the sampled model ensemble for VPD
return periods. (Image courtesy of Brandi L. Gamelin of Argonne National
Laboratory)

AI for Molecular Energetics
▪ Using AI, Quantum Chemists were able to

predict the energetics of larger molecules at a
fraction of the computing cost, while
maintaining chemical accuracy.

▪ This new method could have a significant
impact on fields such as drug discovery,
materials science, and energy research.

Hypersonic Flight
▪ The fluid dynamics of air when

objects travel at >5x the speed
of sound is not well modeled.

▪ This team aims to use
fundamental quantum
mechanical interactions to
model the behavior of this
system.

Conclusion

Wrapping Up
▪ Computing architectures are growing in diversity.
▪ Things will likely settle into a smaller subset of “winning” architectures.
▪ Software is trying to keep up to facilitate ease of use, but remain

performant across devices.
▪ Knowledge of underlying hardware is still a benefit to the programmer,

but with Python supplanting C++ as the commonly learned language
amongst scientists, this knowledge becomes more obscure.

▪ In many ways we are dependent on vendors to implement portable
solutions for their hardware, but this isn’t naturally in their interest.

▪ Our goal in scientific computing is always to enable the most science
output, while reducing complexity where possible.

