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What you've heard already

Computing Challenge in High Energy Physics

. Large-scale Monte Carlo (MC) Simulations
» Data Analysis from Particle Detectors
« Complex Computational Models (e.g., Lattic

CMSPrublic
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What you've heard already

50 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

CPU vs GPU: Chip Structure

CPU

e Small number of powerful cores (~10)

o Branch prediction, out-of-order execution, etc.
e Large caches
e Single instruction on multiple data (SIMD)

Core

Core

L1 Cache

L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Image credit

GPU

e Many number of cores (21000)
o A lotsimpler
e Small caches
e Single instruction on multiple threads (SIMT)

L2 Cache

CPU

GPU

Practically GPU can outperform CPU with parallelizable and relatively simple algorithms




Computing technology




Move data expensive, compute cheap

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Adapted from Horowitz
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Move data expensive, compute cheap

Relative Energy Cost i
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Accelerated compute

Embedded Systems Coprocessors

Embedded in our experiments; Traditional datacenter-scale
often (hard) real-time latency compute; throughput-driven;
constraints, custom architectures general purpose architectures




Embedded hardware demo

Embedded Systems

Embedded in our experiments;
often (hard) real-time latency
constraints, custom architectures




cMS Experimen+

40MHz collision rate
~1B detector channels

FPGA filter stack
~Hs latency

On-detector
ASIC compression

~100ns latency



CMS Experiment

40MHz collision rate
~1B detectoer channels

FPGA filter stack
~Hs latency

On-detector
ASIC compression

~100ns latency

10x AVERAGE INTERNET

TRAFFIC IN NORTH AMERICA
(2021)




cMS Experimen+

40MHz collision rate
~1B detector channels

FPGA filter stack
~Hs latency

On-detector 10s Th/s
ASIC compression 100s kHz
~100ns latency _———

On-prem CPU/GPU

10x AVERAGE INTERNET filter farm
TRAFFIC IN NORTH AMERICA ~100 ms latency
(2021)




CMS Experiment
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FPGA filter stack
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Keras
O PyTorch

€ ONNX

Efficient codesign
tools for

his 4 ml

https:/pypi.org/project/hisdml/
1.1k Github stars,
>1200 downloads last month

N .
QKeras (Google) vivapo?~ Menior:
Brevitas (AMD)
HAWQ (UC Berkeley) G
QONNX (Microsoft/AMD)

ASICs

Hardware

adapted from Vladimir Loncar


https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527
https://pypi.org/project/hls4ml/
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MLCommons launches machine learning benchmark for

devices like smartwatches and voice assistants
by Ben Wodecki 6/16/2021

- — - . e

P i  experts from Qualcomm, Fermilab, ant
NCoogle aiding in its development

— _

MLCommons, the open engineering

- consortium behind the MLPerf benchmark test,
nas launched a new measurement suite aimed
at ‘tiny’ devices like smartwatches and voice
assistants.

MLPerf Tiny Inference is designed to compare
performance of embedded devices and models

with a fnnrnrint nf 1NNKER nr laece v maaciirinm

Fermilab, UCSD, Columbia, teamed up with AMD/Xilinx for loT submissions for MLCommons benchmarks
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Siemens simplifies development of Al
accelerators for advanced system-on-
chip designs with Catapuit Al NN

PR Newswire
Tue, May 21, 2024, 8:00 AM CDT « 5 min read

In This Article:

SIEGY -0.78% SMAWF +0.35%

e Catapult Al NN offers software engineers a comprehensive
solution to synthesize Al Neural Nets

e Enables software development teams to seamlessly translate Al
models designed in Python into silicon-based implementations,
facilitating faster and more power-efficient execution compared
to standard processors

PLANO, Texas, May 21, 2024 /PRNewswire/ -- Siemens Digital
Industries Software today announced Catapult™ Al NN software for
High-Level Synthesis (HLS) of neural network accelerators on
Application-Specific Integrated Circuits (ASICs) and System-on-a-chip
(SoCs). Catapult Al NN is a complete solution that starts with a neural
network description from an Al framework, converts it into C++ and
synthesizes it into an RTL accelerator in Verilog or VHDL for
implementation in silicon.

Catapult Al NN brings together hls4ml, an open-source package for
machine learning hardware acceleration, and Siemens' Catapult™ HLS
software for High-Level Synthesis. Developed in close collaboration
with Fermilab, a U.S. Department of Energy Laboratory, and other
leading contributors to hls4ml, Catapult Al NN addresses the unique
requirements of machine learning accelerator design for power,
performance, and area on custom silicon.

| OO RO II=
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Accelerated compute

Coprocessors

Traditional datacenter-scale
compute; throughput-driven;
general purpose architectures
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Coprocessors

COMMUNICATIONS
e “ACM

A New Golden Age for
Computer Architecture

Agriculture Technology
Monitoring Nolse Pollution
The Computation Sprinting Game

Blockehan from a Distrinuted
g Perspective

o e .
».4 :
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Coprocessors

COMMUNICATIONS

A New Golden Age for
Computer Architecture

griculture Technology

IBM NorthPole Other Contemporary Al Architectures
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The Computationd Sprinting Game 4t L L L L L L L]
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Monitoring Noise Pollution

Blockeham from a Distriouted
Computing Perpective

1 billion
transistors

CPU (Zen 3)

GPU (A100)

Inspired by the brain, NorthPole stores memory near compute, with no centralized or off-chip memory,
mitigating von Neumann bottleneck (unlike contemporary architectures).

oyright ©2024 IBM Corporation
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Coprocessors

COMMUNICATIONS
L ATIONS

A New Golden Age for
Computer Architecture
Agriculture Technology

Monitoring Noise Pollution

The Computationid Sprinting Game
Blockehain from a Distrivuted
Gomputing Perspective

Inspired |
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0B (Input/
Output Block)

g S g e S

B CLB (Configureable
Logic Block)

TR

Embedded
Memory

| | DSPBlock
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memory,

yright ©2024 IBM Corporat ion
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Coprocessors
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Coprocessors
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Coprocessors
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Coprocessors
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Coprocessors for Science

» We are not the primary customers of these chips

» How can we leverage advancements in industry??
» Be flexible - map the right architecture to right application
» Build benchmarks for physics workloads

» Programmability important for accessibility - why GPU is
leading the pack
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SONIC

Services for Optimized Network Inference on Coprocessors
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SONIC

Services for Optimized Network Inference on Coprocessors

» SONIC: tools for inference-as-a-service within experimental
SW frameworks

» Abstract software AND hardware with modern
containerization tools

» Scalable, Flexible, Adaptable, Non-disruptive






19



---------------——-\

~ Product Catalog
Microservice

f AP| Gateway

et e W D T R A e e

(BFF) ~- gRPC is a cross-platform open source high
- aRPC ' performance remote procedure call
Shopping ORI framework. .
'%71—» ( It uses HT TP/2 for transport, Protocol Buffers
e U | N | over client as the interface description language, and
provides features such as authentication,
E bidirectional streaming and flow control, blocking
; ORPC 5 or nonblocking bindings, and cancellation and

Mobile Client ’ _ )

Shopping timeouts. It generates cross-platform client and
mEy server bindings for many longuaoges.
= e | o
‘ ~ o https://en.wikipedia.org/wiki/GRPC

\——-———-——-——

‘__———.—————_—————-——_—._I
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aaS vs direct connect

~

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

J

Pros:
scalable algorithms
scalable to the grid/cloud
heterogeneity (mixed hardwares)

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

Pros:

less system complexity
no network latency



aaS vs direct connect

~

COPROCESSOR
(GPU,FPGA,ASIC) Algo 1

COPROCESSOR

(GPU,FPGA,ASIC)

J

Pros:
scalable algorithms
scalable to the grid/cloud

1 heterogeneity (mixed hardwares)
2

COPROCESSOR

(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

/
Pros:

less system complexity
no network latency




22

SONIC

Services for Optimized Network Inference on Coprocessors

Scalable: Not bound to coprocessors directly connected to
CPUs at a given node

Flexible: Can be used on any hardware and can “right-size”
the number of coprocessors needed based on the task

Adaptive: Abstracts server software stack including compiling
latest TF or Torch, custom libraries or languages

Non-disruptive: builds off current experimental infrastructure,
can offload as needed without changing current paradigm
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» First deployed on FPGAs for

CMS in collaboration with
Microsoft Brainwave

» Then deployed on GPUs for
L HC and neutrino

applications

» Demonstrated for GW

experiments and now
explored in many other areos

» See recent SONIC mini-workshop:
https://indico.cern.ch/event/

15/220]

https://arxiv.orq/abs/1904.08986
https://arxiv.orq/abs/2009.04509

| |
A b rl ef h I Sio ry https://en.wikipedia.orq/wiki/Amdahl|%27s law

Multiple FPGAs at datacenter scale can form a persistent DNN
HW microservice, enabling scale-out of models at ultra-low latencies

Wall time (s)
ML module non-ML modules Total
CPU only 220 110 330
CPU + GPUaaS 13 110 123



https://indico.cern.ch/event/1372201
https://indico.cern.ch/event/1372201
https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2009.04509
https://en.wikipedia.org/wiki/Amdahl%27s_law
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State-of-the-art

> Most popular/tlexible workflows currently use GPUs anad
leverage Nvidia Triton Server

E CMSSW Chent E E --------------------------------------------- ’-]:r;t-()-r; IE
: : o Al Inference Cluster Server "
m ' acquire() di:,. 9 (CPU| GPU) (Local/Remote)E
E produce) 1 JEEE
o . _: Balancer «
N . Receive outputs =
o : :
: OVS :H -
- Y“C\“O“ . Al Model
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State-of-the-art

» Most popular/tlexible workflows currently use GPUs anad
leverage Nvidia Triton Server

External ' FPGA,
| ,\‘»@  GPU, eftc.
processing 0\  GPU, etc. | |

CMSSW 1= == |
thread

(other work) ' produce()




State-of-the-art

Most popular/tflexible workflows currently use GPUs and
leverage Nvidia Triton Server

l') Google Cloud Platform

Google Kubernetes Engine

@ “NVIDIA

Server
2% Fermilab Pod s nvioia
@ Local Compute Internet @ @
o .
FermiGrid farm (gRPC) hwt |
Service Pod
~ 1,200 requests per test submitted TCP Network Load I NVIDIA
10 Mb per request Balancer @ Q
Staggered start and ram
9 g us-centrali
Server

Pod



Highlight: first CMS paper

CMS simulation Preliminary (13 TeV)
'a — 1 1 I 1 | I 1 I I ] 1 I 1 I ] 1 I I 1 l 1 1 Ll 1 -1
I~ i —e— SONIC with GCP Server
& !
— - —=— SONIC with Purdue Server
5 5[ _
_g. - mmees Average of "Direct-inference" Jobs
5 i
3 -
O !
< 45| -
= UL
4 _
3.5 _
i 1 ] 1 | | 1 | | 1 I ] 1 | ] l | | 1 | l 1 1
0 5 10 15 20 25

Number of synchronized 4-threaded jobs

9 0.24
C

g 0.22
1] 0.2
S 0.18
E- 0.16
5 0.14
Z 0.12
S

o 0.1
g 0.08
®© 0.06
E 0.04

> 0.02

o bt | |

CMS Simulation Preliminary
|| | | | | I | | 1 | | I I | | I | 1 | I | |

(13 TeV)

SONIC Jobs

3 L e CPU "Direct-inference" Jobs =

:-|--i--nur'r'l-e-l'r{-.;-.uTJ\j::b:_—_::

4 42 44 46 48 5
Throughput [evl/s]

3 32 34 36 3.8

O Similar performance for servers running at different sites. Network overload impacts is smalll

O Scales up well with large number of CPUs and GPUs

O CMS-PAS-MLG-25-001: First CMS poper systematically studying the computing performance on
GPUs, ond also first study of the inference as-a-service opprooch

27
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» SONIC is one of the most promising approa

COopro

» A lot of inferesting areas to work on: ben

cessors for ac

-

Outlook

celerating

survey, scale-out, resource or

» Now you have a

yourselvesl|

computing workloads in s

chestration, etc.

Tutorial time
chance to try SONIC/ Triton tools out

ches To using

clen

chmarking & tech




