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Computing technology

4

HARDWARE ALTERNATIVES �11
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Accelerated compute
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Coprocessors 

Traditional datacenter-scale 
compute; throughput-driven; 
general purpose architectures

Embedded Systems 
  

Embedded in our experiments; 
often (hard) real-time latency 

constraints, custom architectures 
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Efficient codesign
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^tools for

QKeras (Google)
Brevitas (AMD)

HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)

https://pypi.org/project/hls4ml/
1.1k Github stars, 
>1200 downloads last month

adapted from Vladimir Loncar

https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527
https://pypi.org/project/hls4ml/
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Fermilab, UCSD, Columbia, teamed up with AMD/Xilinx for IoT submissions for MLCommons benchmarks 
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Coprocessors for Science
‣ We are not the primary customers of these chips 
‣ How can we leverage advancements in industry? 
‣ Be flexible - map the right architecture to right application 
‣ Build benchmarks for physics workloads 
‣ Programmability important for accessibility - why GPU is 
leading the pack
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SONIC
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Services for Optimized Network Inference on Coprocessors 

• Services for Optimized Network Inference on Coprocessors

o Convert experimental data to neural network input,
send to coprocessor using communication protocol

o Use ExternalWork mechanism for asynchronous, non-blocking requests

• SonicCMS repository on GitHub

o Currently supports gRPC w/ TensorFlow

• Performance metrics:

o Latency (time for a single request to complete)

o Throughput (number of requests per unit time)

SONIC for CMS

8CHEP 2019 Kevin Pedro

External 
processing

CMSSW 
thread

acquire()

FPGA, 
GPU, etc.

produce()(other work)
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18

Services for Optimized Network Inference on Coprocessors 

‣ SONIC: tools for inference-as-a-service within experimental 
SW frameworks 

‣ Abstract software AND hardware with modern 
containerization tools 

‣ Scalable, Flexible, Adaptable, Non-disruptive
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gRPC is a cross-platform open source high 
performance remote procedure call 

framework… 

It uses HTTP/2 for transport, Protocol Buffers 
as the interface description language, and 
provides features such as authentication, 

bidirectional streaming and flow control, blocking 
or nonblocking bindings, and cancellation and 

timeouts. It generates cross-platform client and 
server bindings for many languages. 

https://en.wikipedia.org/wiki/GRPC
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Services for Optimized Network Inference on Coprocessors 

‣ Scalable: Not bound to coprocessors directly connected to 
CPUs at a given node 

‣ Flexible: Can be used on any hardware and can “right-size” 
the number of coprocessors needed  based on the task 

‣ Adaptive: Abstracts server software stack including compiling 
latest TF or Torch, custom libraries or languages 

‣ Non-disruptive: builds off current experimental infrastructure, 
can offload as needed without changing current paradigm  



A brief history
‣ First deployed on FPGAs for 
CMS in collaboration with 
Microsoft Brainwave 

‣ Then deployed on GPUs for 
LHC and neutrino 
applications 

‣ Demonstrated for GW 
experiments and now 
explored in many other areas 
‣ See recent SONIC mini-workshop: 

https://indico.cern.ch/event/
1372201
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https://arxiv.org/abs/1904.08986

https://arxiv.org/abs/2009.04509


https://en.wikipedia.org/wiki/Amdahl%27s_law

Solution: Persistency at Datacenter Scale

47

Catapult v3 – Converged Boards

© Microsoft Corporation

Accelerator Integration

FPGAsCPUs FPGAs CPUs

FPGAsCPUsFPGAs CPUs

https://indico.cern.ch/event/1372201
https://indico.cern.ch/event/1372201
https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2009.04509
https://en.wikipedia.org/wiki/Amdahl%27s_law


State-of-the-art
‣ Most popular/flexible workflows currently use GPUs and 
leverage Nvidia Triton Server
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FPGA-accelerated machine learning inference as a service for particle physics computing 9

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental 

Software

gRPC protocol Heterogeneous  
Cloud Resource

Fig. 7: An illustration of FPGA-accelerated ML cloud
resources integrated into the experimental physics com-
puting model as a service.

gRPC interface protocols are used to communicate with
the FPGA hardware, and the software access for fast
inference is unchanged. To benchmark this scenario, we
run our application on a virtual machine (VM) in the
cloud datacenter. Results comparing both these scenar-
ios with other hardware from the literature are pre-
sented in Section 5.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Fig. 8: An illustration of FPGA-accelerated ML edge
resources integrated into the experimental physics com-
puting model as a service.

4.2 Particle physics computing model with services

For our demonstration study, we use the CMS exper-
iment software framework, CMSSW [45]. This software
uses Intel Thread Building Blocks [46] for task-based
multithreading. A typical module, such as those de-
picted in Fig. 1, has a produce function that obtains
data from an event, operates on it, and then outputs
derived data. This pattern assumes that all of the op-
erations occur on the same machine.

Our goal is to utilize the Brainwave hardware as a
service to perform inference of a large ML model such as
ResNet-50. Within CMSSW, a hook to the gRPC system is
established using a special feature called ExternalWork.
Optimal use of both CPU and heterogeneous computing
resources requires that requests be transmitted asyn-

chronously, freeing up a CPU thread to do other work
rather than forcing it to wait until a request is com-
plete. The ExternalWork pattern accomplishes this by
splitting the simpler pattern described above into two
steps. The first step, the acquire function, obtains data
from an event, launches an asynchronous call to a het-
erogeneous resource, and then returns. Once the call
is complete, a callback function is executed to place
the corresponding produce function for the module back
into the task queue. This is depicted in Fig. 9.

External 
processing

CMSSW 
thread

acquire()

FPGA, 
GPU, etc.

produce()(other work)

Fig. 9: A diagram of the ExternalWork feature in
CMSSW, showing the communication between the soft-
ware and external processors such as FPGAs.

In this case, the event data provided to the service is
a TensorFlow tensor with the appropriate size (224 ⇥
224 ⇥ 3) for inference with ResNet-50. A list of the
classification results is returned back to the module,
which employs ExternalWork. For simplicity, we refer
to the full chain of inference as a service within our
experimental software stack as “Services for Optimized
Network Inference on Coprocessors” or SONIC [47].

5 Computing performance and results

5.1 Brainwave performance

We benchmark the performance of the SONIC package
within CMSSW, measuring the total end-to-end latency of
an inference request using Brainwave. In a simple test,
we create an image from a jet (as described in Sec. 3)
from a simulated CMS dataset. We take reconstructed
particle candidates and combine them as pixels in a 2D
grayscale image tensor input to the ResNet-50 model
(as in Sec. 3.2).

We perform two latency tests: remote and on-
premises or on-prem. The remote test communicates
with the Brainwave system as a cloud service, as illus-
trated in Fig. 7. For this test, we execute our exper-
imental software, CMSSW, on the local Fermilab CPU
cluster (Intel Xeon 2.6 GHz) in Illinois, US, and com-
municate via gRPC with the service located at the Azure
East 2 Datacenter in Virginia, US. The on-prem tests
are executed at the same datacenter as the Brainwave
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Highlight: first CMS paper
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Similar performance for servers running at different sites. Network overload impacts is small! 

Scales up well with large number of CPUs and GPUs 

CMS-PAS-MLG-23-001: First CMS paper systematically studying the computing performance on 
GPUs, and also first study of the inference as-a-service approach



Outlook 
‣ SONIC is one of the most promising approaches to using 
coprocessors for accelerating computing workloads in science 

‣ A lot of interesting areas to work on: benchmarking & tech 
survey, scale-out, resource orchestration, etc.
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‣ Now you have a chance to try SONIC/Triton tools out 
yourselves! 

Tutorial time


