
Introduction to SONIC + Triton 

(ML) Inference as a Service

Yongbin Feng, Kevin Pedro, Nhan Tran (Fermilab)


Computational HEP Traineeship Summer School 


May 22nd, 2024



Introduction

2

• After having trained a ML model, I need to put it into (large-scale) production. What should I do?


✤ Does your software stack (e.g. CMSSW) supports these different ML framework and operations - TensorFlow, PyTorch, 
ONNX, XGBoost/TMVA


✤ Does your software stack (e.g. CMSSW) supports different hardware - CPUs/GPUs/TPUs/IPUs/DPUs…?


✤ Does your computing cluster have these hardware? What if you have some remote computing hardware available but 
not accessible to the production cluster?


✤ My algorithms can be accelerated on these hardware, but the fraction of these tasks are very small, not worth the 
effort. But I have lots of jobs to process 


• I don’t like ML. I have algorithms written in CUDA/ROCm. I want to run these on NVIDIA/AMD GPUs



ML Inference Infrastructure

3

Two ML Inference Infrastructures:


• Directly connect CPUs and coprocessors


✤ Inference running on the coprocessors 
directly connected to the CPU


✤ Simple connection; no network load


• Inference as a service (aaS)


✤ Clients communicate with the server, 
prepare the model inputs to the server 
and receive model outputs from the 
server


✤ Server directs the coprocessor for 
model inference

Clients Servers

PCI Network



Benefits of Inference aaS

4

• Factorize the ML framework out of your main software 
stack


✤ Only need to handle input and output conversions on the 
client side (i.e., in CMSSW). Different frameworks supported 
on the server side.


• Simple support for different coprocessors:


✤ No need to rewrite algorithms in processor-specific languages


•More flexibility, better efficiency 


✤ One coprocessor can serve many CPU clients


✤ ML models can be deployed on different coprocessors 
simultaneously; choose the best coprocessor for each specific 
job


•Dynamic Batching:


✤ Server can batch inference requests from different clients 


•Allow access remote GPUs

Clients Servers



SONIC in CMSSW As an Example

5

• SONIC (Service for Optimized Network Inference on Coprocessors) available in CMSSW


• The Client in CMSSW sends the inference request with inputs for the model, and receives outputs from the server


• NVIDIA Triton server runs the inference



Modesl for the server

6

• One example can be found here


• Model directory structured as:


✤ Model config file


✤ Version/model_file


• Model config file specifies:


✤ The model names and types


✤ Inputs and outputs names and dimensions


✤ Some parameters for version control and optimizations (max batch size, 
latency, dynamic batching, precision reduction, etc)


• Model files: TF, ONNX, PyTorch, Scikit-learn, etc


• More information about the model configs and these parameters can be 
found here and here


https://github.com/fastmachinelearning/sonic-models/tree/master/models/deepmet
https://yongbinfeng.gitbook.io/sonictutorial/sonic-models
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md


Client

7

• NVIDIA Triton provides PerfClient to mimic (multiple) clients communicating with server, in order to benchmark 
(ML) model inference performance:


✤ Inference batch sizes, request concurrency, number of model instances on the servers, etc


✤ Optimizing model configs: TensorRT optimization, Just-In-Time compilation/XLA, quantization/reduced precision, etc


• Python and cpp based clients sending/receiving gRPC calls


• PyTriton building and testing both server and clients in one shot


• In practice, will probably need to integrate these into your (experiment) software stack: CMSSW, Coffea, 
(Proto-)DUNE, either via a build, or pip install


https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2310/user-guide/docs/user_guide/perf_analyzer.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/client/README.html
https://triton-inference-server.github.io/pytriton/latest/
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/CoffeaTeam/coffea/blob/master/src/coffea/ml_tools/triton_wrapper.py


SONIC Producers in CMSSW

8

• One SONIC producer example can be found here. More examples here


• The producer inherits from the TritonEDProducer:


• Core Parts:


✤ Acquire function sending inputs

https://github.com/cms-sw/cmssw/blob/master/RecoMET/METPUSubtraction/plugins/DeepMETSonicProducer.cc
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test


SONIC Producers in CMSSW

9

• One SONIC producer example can be found here. More examples here


• The producer inherits from the TritonEDProducer:


• Core Parts:


✤ Acquire function sending inputs


✤ Produce function receiving outputs

https://github.com/cms-sw/cmssw/blob/master/RecoMET/METPUSubtraction/plugins/DeepMETSonicProducer.cc
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test


Running Everything

10

• Besides the regular configurations and 
loadings, etc, control the inference 
with TritonService


✤ Point to the “remote” servers: server 
name, address, and GRPC port number 
that the server is running on (by default 
is 8001)


• Most of the time servers are running in 
containers, through docker/podman/
apptainer(singularity) apptainer run --nv -B /path/to/triton/repo:/models 

triton_21.10.sif tritonserver --model-repository=/models


docker run -it --gpus=1 --rm -p8000:8000 -p8001:8001 
-p8002:8002 -v/path/to/triton/models/:/models nvcr.io/
nvidia/tritonserver:23.10-py3 tritonserver --model-
repository=/models/



Useful Links (Mostly for CMS)

11

• Document on the NVIDIA Triton inference server:


https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_230/user-guide/docs/


• SONIC Core:


https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore


• SONIC Triton:


https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton


• cmsTrion script to launch the triton server:


https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton


• SONIC + Triton examples:


https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_230/user-guide/docs/
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test


Back Up

12



SONIC Framework in CMSSW

13

• SonicCore (repo)


✤ Modules (EDProducer, EDFilter, EDAnalyzer) and client based classes


✤ Synchronous and Asynchronous modes for clients


• SonicTriton (repo)


✤ Modules, clients, data types, and services for Triton inference server


✤ cmsTriton script to launch and manage the Triton server via Docker or Singularity


•Requirements for running inferences, very similar to the direct inferences:


✤ One model directory with the models and configs


✤ One SONIC producer to handle the pre/post processings and the IOs


✤ One python config file


•Most of the materials in the slides can be found here.


https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton
https://yongbinfeng.gitbook.io/sonictutorial/

