F
e

Introduction to SONIC + Triton
(ML) Inference as a Service

Yongbin Feng, Kevin Pedro, Nhan Tran (Fermilab)
Computational HEP Traineeship Summer School

May 22nd, 2024

s
<]
n
3
]
£
Q
Q

Introduction

* After having trained a ML model, | need to put it into (large-scale) production. What should | do?

<% Does your software stack (e.g. CMSSW) supports these different ML framework and operations - TensorFlow, PyTorch,
ONNX, XGBoost/TMVA

¢ Does your software stack (e.g. CMSSW) supports different hardware - CPUs/GPUs/TPUs/IPUs/DPUs...?

<% Does your computing cluster have these hardware? What if you have some remote computing hardware available but
not accessible to the production cluster?

<% My algorithms can be accelerated on these hardware, but the fraction of these tasks are very small, not worth the
effort. But | have lots of jobs to process

* | don't like ML. I have algorithms written in CUDA/ROCm. | want to run these on NVIDIA/AMD GPUs

PYTHRCH

ONNX
¥ TensorFlow R

ML Inference Infrastructure

Two ML Inference Infrastructures:

as a Service

\Y/[eYo [=1WAY
Model B

COPROCESSOR
(GPU FPGA ASIC)

® Directly connect CPUs and coprocessors D ! reCt
% Inference running on the coprocessors / \
directly connected to the CPU
<% Simple connection; no network load - I
® Inference as a service (aaS) :
< Clients communicate with the server, |

prepare the model inputs to the server
(GPU FPGA ASIC)

Network

and receive model outputs from the
server

% Server directs the coprocessor for
model inference @

p

COPROCESSOR

(GPU,FPGA ASIC)

Clients Servers

Benefits of Inference aaS

® Factorize the ML framework out of your main software as a SerVice
stack

< Only need to handle input and output conversions on the
client side (i.e., in CMSSW). Different frameworks supported Model A

on the server side. Model B
* Simple support for different coprocessors:
<% No need to rewrite algorithms in processor-specific languages - (%23':235;-;,?3
® More flexibility, better efficiency
< One coprocessor can serve many CPU clients

== (COPROCESSOR
(GPU,FPGA ASIC)

C]lents Servers

<% ML models can be deployed on different coprocessors
simultaneously; choose the best coprocessor for each specific
job

® Dynamic Batching:

% Server can batch inference requests from different clients

® Allow access remote GPUs

SONIC in CMSSW As an Example

ECMSSW Al Inference Cluster Server
gClient acquire() (CPU/GPU/IPU/etc) (Local/Remote)
Client CPU ;>
: Send inputs Triton Inference Server

Client CPU
Model

Asynchronously E Load Balancer Triton Inference Server I

Triton Inference Server

Client CPU

Repository

: produce() -
Client CPU i Receive outputs :

Triton Inference Server

® SONIC (Service for Optimized Network Inference on Coprocessors) available in CMSSW
® The Client in CMSSW sends the inference request with inputs for the model, and receives outputs from the server

® NVIDIA Triton server runs the inference

Modesl for the server

5 name: "deepmet"
¢ One example Can be found —here 6 platform: ftensorflow_graphdef“
7 max_batch_size: 100
® Model directory structured as: oo
o 1 deeptau_nosplit/ 10 hame: "input"
oge Mode COnflg flle) config.pbtxt 11 data_type: TYPE_FP32
12 dims: [4500, 8]
% Version/model file 1/ .
model.graphdef 1
15 name: "input_cato"
16 data_type: TYPE_FP32
17 dims: [4500, 1]
. . . o (e . 18
Model config file specifies: O
20 name: "input_catl"
* The model names and types 21 data_type: TYPE_FP32
22 dims: [4500, 1]
¢ Inputs and outputs names and dimensions S
. 25 name: "input_cat2"
» Some parameters for version control and optimizations (max batch size, 26 data_type: TYPE_FP32
. . .« e . 27 dims: [4500, 1]
latency, dynamic batching, precision reduction, etc) T
29]
30 output [
31 {
® Model files: TF, ONNX, PyTorch, Scikit-learn, etc e
34 dims: [2]
® More information about the model configs and these parameters can be S
found here and here 37

38 version_policy: { all { }}
39 dynamic_batching {

6 40 preferred_batch_size: [8, 16]
41 '}

https://github.com/fastmachinelearning/sonic-models/tree/master/models/deepmet
https://yongbinfeng.gitbook.io/sonictutorial/sonic-models
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md

Client

NVIDIA Triton provides PerfClient to mimic (multiple) clients communicating with server, in order to benchmark
(ML) model inference performance:

% Inference batch sizes, request concurrency, number of model instances on the servers, etc

% Optimizing model configs: TensorRT optimization, Just-In-Time compilation/XLA, quantization/reduced precision, etc

Python and cpp based clients sending/receiving gRPC calls

PyTriton building and testing both server and clients in one shot

In practice, will probably need to integrate these into your (experiment) software stack: CMSSW, Coffea,
(Proto-)DUNE, either via a build, or pip install

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2310/user-guide/docs/user_guide/perf_analyzer.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/optimization.html#framework-specific-optimization
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/client/README.html
https://triton-inference-server.github.io/pytriton/latest/
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/CoffeaTeam/coffea/blob/master/src/coffea/ml_tools/triton_wrapper.py

The producer inherits from the TritonEDProducer:

® Core Parts:

2 Acquire function sending inputs

SONIC Producers in CMSSW

One SONIC producer example can be found here. More examples here

30 DeepMETSonicProducer: :DeepMETSonicProducer(const edm::ParameterSet& cfg)

31 : TritonEDProducer<>(cfg),

32 pf_token_(consumes<std::vector<pat::PackedCandidate>>(cfg.getParameter<edm::InputTag>("pf_src"))),
33 norm_(cfg.getParameter<double>("norm_factor")),

34 ignore_leptons_(cfg.getParameter<bool>("ignore_leptons")),

35 max_n_pf_(cfg.getParameter<unsigned int>("max_n_pf")),

36 scale_(1.0 / norm_) {

37 produces<pat::METCollection>();

38}

-~

void DeepMETSonicProducer::acquire(edm::Event const& iEvent, edm::EventSetup const& iSetup, Input& iInput) A

// one event per batch

client_->setBatchSize(1);

px_leptons_ =
py_leptons_ =

auto const& pfs = iEvent.get(pf_token_);

auto& input =
auto pfdata =
auto& vpfdata

0.;
0.;

iInput.at("input");
input.allocate<float>();
= (xpfdata) [0];

100
101
102
103
104
105
106
107
108
109
110
111

171

// fill the remaining with zeros

// resize the vector to 4500 for zero-padding
vpfdata.resize(8 * max_n_pf_);
vpfchg.resize(max_n_pf_);

vpfpdgId. resize(max_n_pf_);
vpffromPV.resize(max_n_pf_);

input.toServer(pfdata);
input_cat@.toServer(pfchg);
input_catl.toServer(pfpdgld);
input_cat2.togerver(pffromPV);

https://github.com/cms-sw/cmssw/blob/master/RecoMET/METPUSubtraction/plugins/DeepMETSonicProducer.cc
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test

One SONIC producer example can be found here. More examples here

The producer inherits from the TritonEDProducer:

® Core Parts:

2 Acquire function sending inputs

2> Produce function receiving outputs

113
114
115
116
117
118
119
120

void DeepMETSonicProducer::produce(edm::Event& iEvent, edm

const auto& outputl = iOQutput.begin()->second;

const auto& outputs

outputl.fromServer<float>();

// outputs are px and py

float px
float py

outputs[@] [0] * norm_;
outputs[0] [1] * norm_;

SONIC Producers in CMSSW

: :EventSetup const& iSetup, Output const& iOutput) {

https://github.com/cms-sw/cmssw/blob/master/RecoMET/METPUSubtraction/plugins/DeepMETSonicProducer.cc
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test

Running Everything

® Besides the regular configurations and -

[J [] 24
loadings, etc, control the inference -
with TritonService 26

) 27
< Point to the “remote” servers: server -8

name, address, and GRPC port number 9

that the server is running on (by default 3o
is 8001) 31
32
33
34

®* Most of the time servers are running in s
containers, through docker/podman/ =¢
apptainer(singularity)

process. load("HeterogeneousCore.SonicTriton.TritonService_cff")

process.TritonService.verbose = False

#process.TritonService.fallback.useDocker = True

process.TritonService.fallback.verbose = False

uncomment this part 1f there 1s one server running at 0.0.0.0 with grpc port 8001

#process.TritonService.servers.append

H OH OB R R

+

cms.PSet (
name = cms.untracked.string("default"),
address = cms.untracked.string("0.0.0.0"),
port = cms.untracked.uint32(8021),

apptainer run --nv -B /path/to/triton/repo:/models
triton_21.10.sif tritonserver --model-repository=/models

C

ocker run -it --gpus=1 --rm -p8000:8000 -p8001:8001

n8002:8002 -v/path/to/triton/models/:/models nvcr.io/

nvidia/tritonserver:23.10-py3 tritonserver --model-
repository=/models/

10

Useful Links (Mostly for CMS)

Document on the NVIDIA Triton inference server:

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton inference server 230/user-guide/docs/

SONIC Core:

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore

SONIC Triton:

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton

cmsTrion script to launch the triton server:

https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton

SONIC + Triton examples:

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test

[

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton_inference_server_230/user-guide/docs/
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton/test

Back Up

SONIC Framework in CMSSW

® SonicCore (repo)

* Modules (EDProducer, EDFilter, EDAnalyzer) and client based classes

» Synchronous and Asynchronous modes for clients

® SonicTriton (repo)

 Modules, clients, data types, and services for Triton inference server

¢ cmsTriton script to launch and manage the Triton server via Docker or Singularity

® Requirements for running inferences, very similar to the direct inferences:
» One model directory with the models and configs

» One SONIC producer to handle the pre/post processings and the 10s

» One python config file

® Most of the materials in the slides can be found here.

13

https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/SonicTriton/scripts/cmsTriton
https://yongbinfeng.gitbook.io/sonictutorial/

