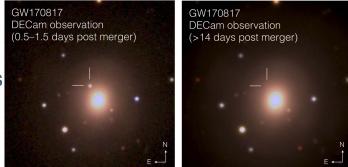
A Word on DUNE Computing

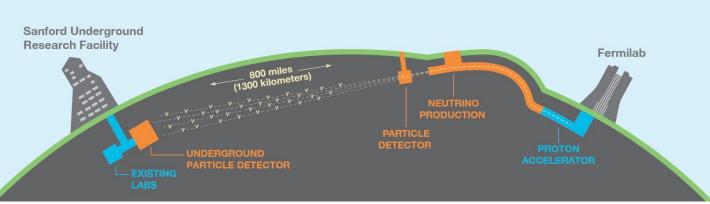
Ken Herner, Fermilab Computational HEP Traineeship Summer School 24 May 2024


Outline

- Brief Introduction to DUNE and its science goals
- Set the scale
- DUNE's uniqueness (and unique challenges)
- A Big and Unique problem: supernova burst processing

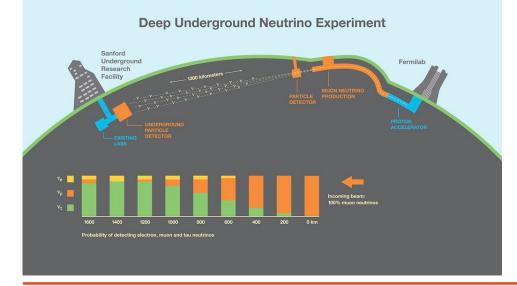
Introduction to Ken

- Ph.D. on the D0 (Tevatron) experiment; most of postdoc as well (centered on Higgs boson searches)
- At Fermilab in Scientific Computing Division (now Computational Science and AI Directorate) since late 2012
 - Started with long-term preservation of D0 dataset
 - Distributed computing support for nearly all lab experiments
 - Fabrlc for Frontier Experiments Project lead 2018-2021 (modular SW toolkit for non-CMS experiments)
- DUNE
 - Production Group coordinator 2018-2022: ProtoDUNE data processing, MC generation, new compute site integration, infrastructure R&D (e.g. GPUaaS); Since October 2023: Host Lab Technical Lead and DUNE-US software and computing lead
- Some other projects (not exhaustive list)
 - Various projects on Dark Energy Survey, including optical followup of GW events
 - Currently co-convener of Transient and Moving Objects Science Working Group
 - Vera Rubin Observatory
 - Work in Data management on alert production systems and campaign management

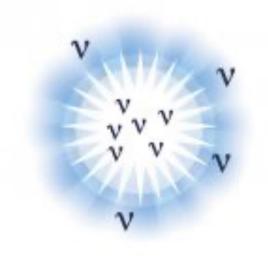

Soares-Santos et al., ApJL 848:L16 (2017)

The Deep Underground Neutrino Experiment

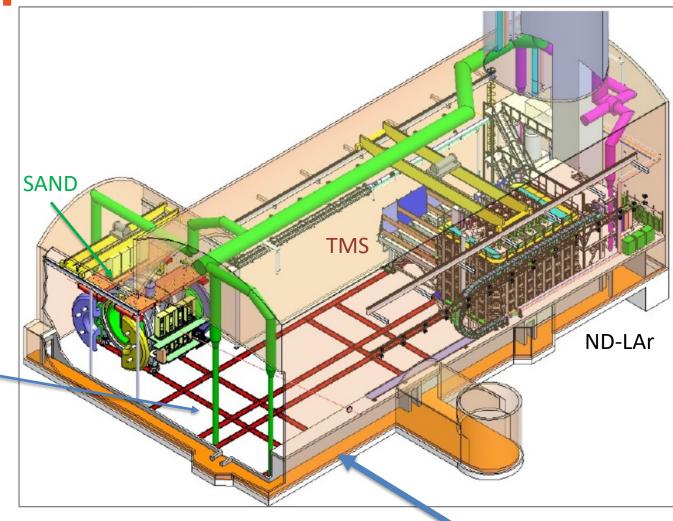
- Future flagship experiment of Fermilab; primary focus is extending our understanding of the neutrino sector
- Consists of a Near Detector Complex (FNAL) and a Far Detector Complex (SURF in SD)



‡ Fermilab DUNE


Science Goals

- Three main physics goals:
 - Origin of matter (neutrino oscillation parameters, mass ordering, ...)
 - Unification of forces (BSM physics, e.g. proton decay)
 - Black Hole Formation (neutrinos from core-collapse SN)
- Learn more at <u>https://www.dunescience.org</u>

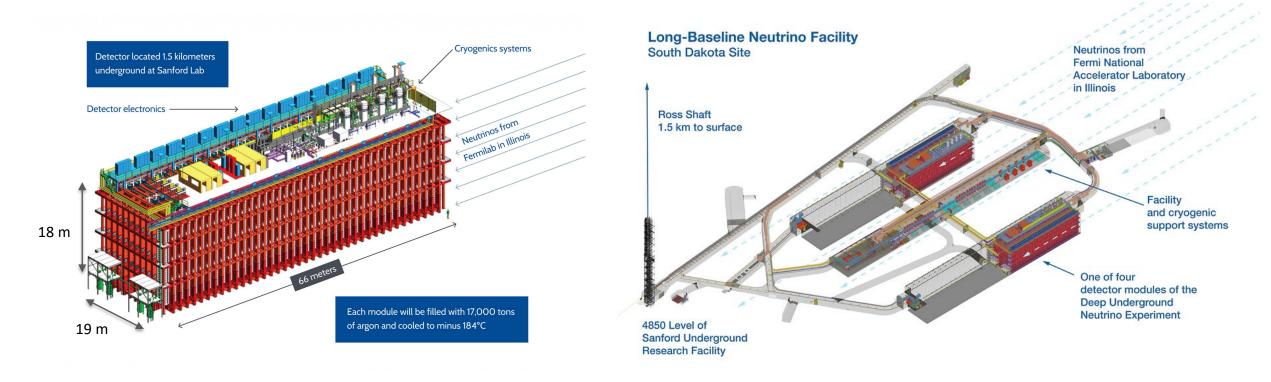


🗱 Fermilab 🕬

Near Detector Complex

- Really, three detectors:
 - ND-LAr: Liquid argon TPC
 - TMS: Temporary Muon Spectrometer
 - SAND: System for on-Axis Neutrino Detection
- PRISM system allows ND-LAr and TMS to move off-axis to perform measurements at different angles to beam (SAND fixed).
- TMS to be replaced

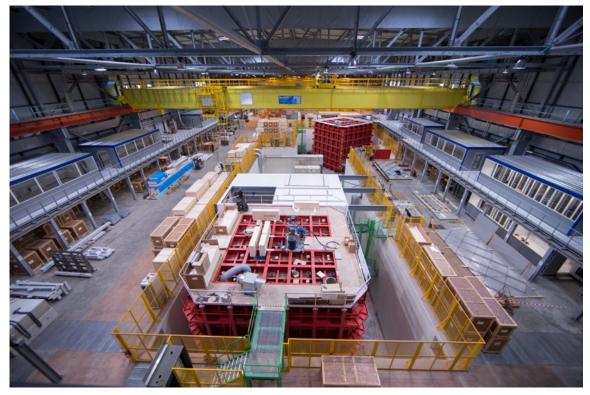
Beam



Far Detectors

- Far Detector will eventually consist of four LAr-based* TPC modules
- Installed in two stages (FD1 and FD2 for DUNE Phase 1)

* fourth module is still officially the "module of opportunity"


Fermilab DUNE

7 2024-05-24 K. Herner I DUNE Computing

Prototype Detectors

 ProtoDUNE horizontal and vertical drift detectors (Far detector technology; CERN-Prevessin)

NDLAr 2x2 prototype (Near detector technology; FNAL)

<u>Link to image</u>

🗱 Fermilab 🖧 🕹

Rough DUNE Timeline and Goals

- 2024
 - ProtoDUNE II beam run @ CERN; ND 2x2 prototype run @ FNAL
 - Aside: DAQ outputs HDF5 files (new to neutrino experiments)
- ca. 2025-2028
 - Phase 1 far detector installation
- ca. 2029-2031
 - ND installation, FD commissioning, first science runs with all Phase 1 detectors (ND and FD1/2)
- Late 2030s
 - Phase 2: full far detector, upgraded near detector, upgraded neutrino beam (all together: 4x Phase 1 event rate)

Experiment Stage	Physics Milestone	Exposure	Years	
		(kt-MW-years)	(Staged)	
Phase I	5σ MO ($\delta_{ m CP}=-\pi/2$)	16	1-2	
	5 σ MO (100% of $\delta_{ m CP}$ values)	66	3-5	
	3σ CPV ($\delta_{ m CP}=-\pi/2$)	100	4-6	
Phase II	5σ CPV ($\delta_{ m CP}=-\pi/2$)	334	7-8	
	$\delta_{ m CP}$ resolution of 10 degrees ($\delta_{ m CP}=0$)	400	8-9	
1	5σ CPV (50% of $\delta_{ m CP}$ values)	646	11	
	3σ CPV (75% of $\delta_{ m CP}$ values)	936	14	
	$\sin^2 2 heta_{13}$ resolution of 0.004	1079	16	
	Snowmass 2021			

5 sigma needs a LOT of pseudoexperiments....

Solving the Computing Problem

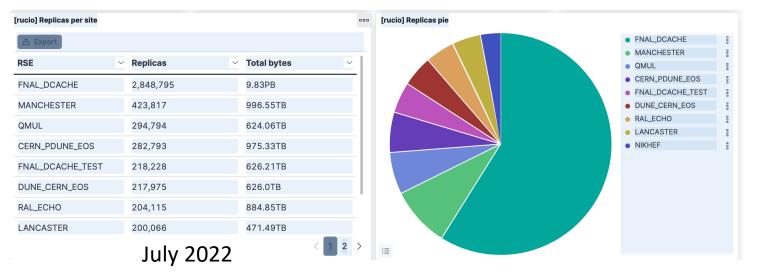
- Computing CDR written in 2022
- https://arxiv.org/abs/2210.15665
- Covers offline model, use cases, resource estimates
- Must eventually integrate information from seven distinct detectors
- Of course, things evolve even on the timescale of two years
- Every single item you've discussed this week is relevant to DUNE in some way, shape, or form (many are absolutely critical to its success)

DUNE Offline Computing

Conceptual Design Report

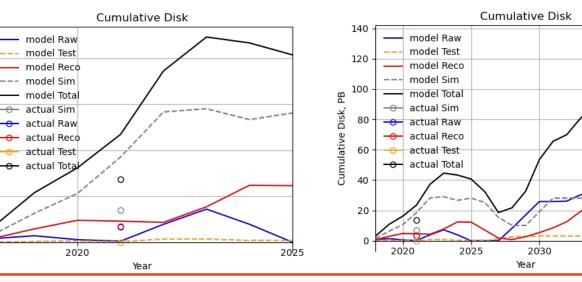
Storage Status and Requirements

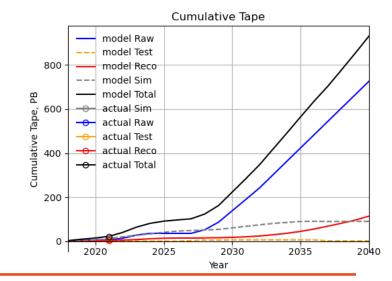
- Combination of disk cache
 and tape for archiving
- Roughly 10% of LHC experiments in 2030s (also true of CPU needs)
- 2 geographically separate copies of raw detector data


40

8 30

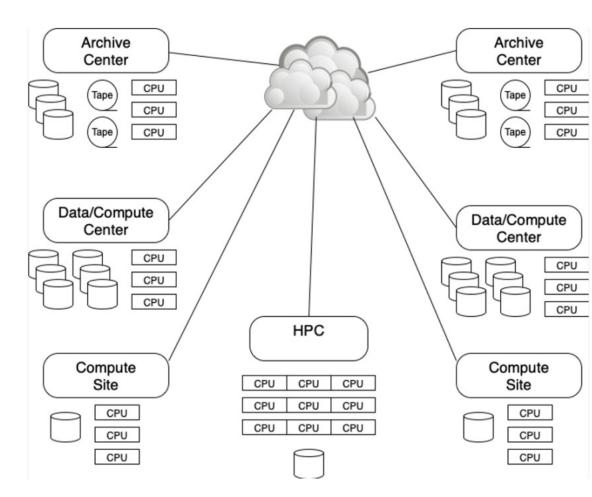
Cumulative Disk,


10


0

2035

2040

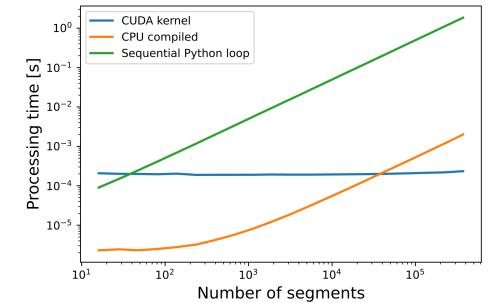


🗱 Fermilab 🕬

Distributed Computing Tools in DUNE

- Mostly High Throughput Computing-style (many single-core) jobs so far, similar to Large Hadron Collider experiments
 - However, more of a service-based model than a tiered model. Sites provide one of more services (standard compute, High Performance Computing, storage/compute, archiving, user analysis, etc.)
- Use variety of sites; mix of dedicated/pledged resources and opportunistic access through <u>OSG</u>
- Mostly stream input data over network with <u>XRootD</u>
- Rucio for dataset transfer and replication
- <u>CVMFS</u> for core software distribution; jobs run in containers (image also distributed via CVMFS)
- New software developed for bookkeeping and workflow management, known as justIN
- Good network design and performance are critical to success, especially in a "flatter" architecture

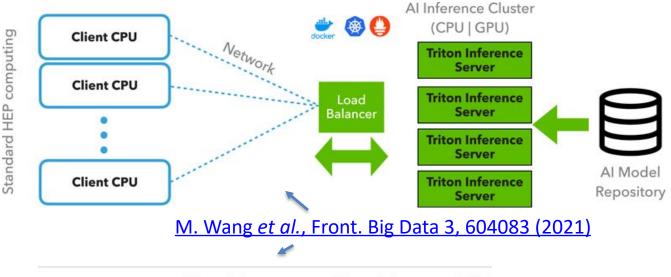
Fermilab


Some DUNE-ique items

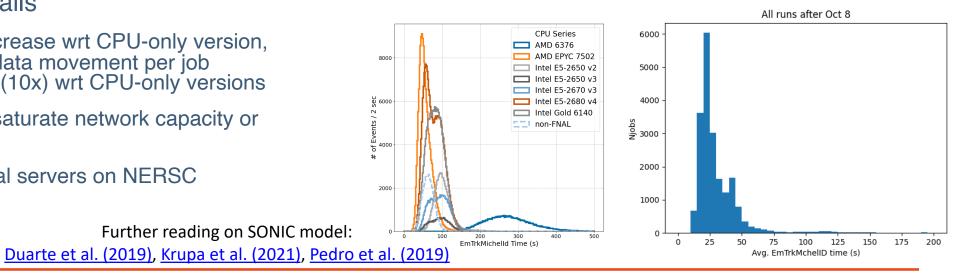
- There are some differences wrt LHC experiments
 - "Events" don't really mean the same thing ("Trigger records")
 - Trigger records are *much* bigger than LHC events: O(100 MB) vs. O(1 MB)
 - Current and future DAQs creating HDF5 files (before, essentially root files).
- Earlier: "Mostly High Throughput Computing-style (many single-core) jobs so far..."
- HPC becoming increasingly important, especially with GPU availability
 - Also critical for performing final oscillation parameter fits and systematic variations (mentioned a bit earlier); phase space is large and requires MPI processing; exception to above rule of thumb (but a vital one!)
- Speaking of GPUs...

GPU needs example: ND-LAr

- ND needs to be able to make measurements close to the neutrino production point and contain a large fraction of the (hadronic side) of the
- events to fulfill basic requirements like constraining the flux*cross
- section model in a way that can be transferred to the FD.
- Design (~5x5mm pixels, segmentation) driven by energy resolution requirements (see <u>ND</u> <u>conceptual design report</u>) and need to disentangle the ~50 events per beam spill.
 - Leads to roughly 12 million channels.
- Large number of independent channels lends itself very well to parallelization, which is why GPUs were adopted pretty early on (see larndsim paper; shown on this slide)
- Also significant use of ML in reconstruction

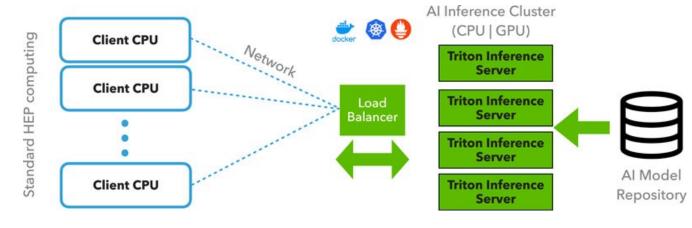

Calculation	Loop over	Quantity	GPU speed-up factor	
Recombination factor	Segments	10 ⁵	shown in plot ×3	
Induced current	Pixels	10 ³	most expensive task ×7314	
Charge electronics response	Pixels	10 ³	×985	
Light time profile	Time ticks	10 ⁵	×228	
Scintillation profile	Time ticks	10 ³	×568	
Light electronics response	Time ticks	10 ³	×1883	

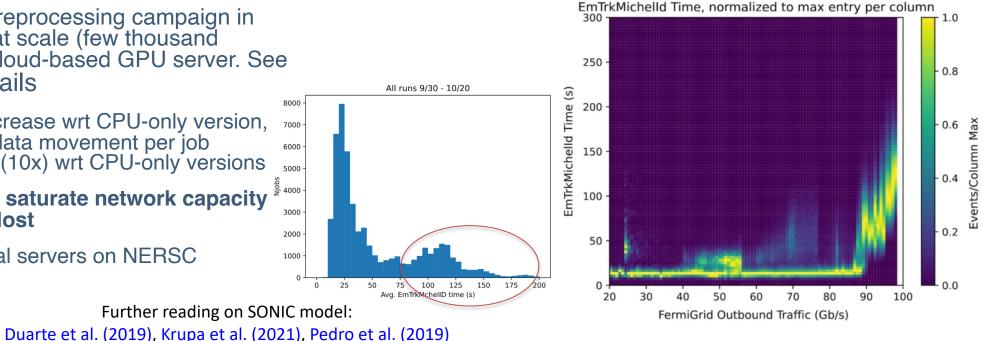
DUNE Collaboration, JINST 18 P04034 (2023)


CHARTER Fermilab

GPUaaS Studies

- Tests with MC show large decrease in processing • time for part of track reconstruction if run on a GPU
 - Use Triton inference server and gRPC in job for communication, allows many-to-1 model of CPU jobs to single GPU (the SONIC Model)
 - Rest of stack uses standard CPU, can thus run on any site with ext. network without needing local GPU
- ProtoDUNE beam data reprocessing campaign in 2021 utilized approach at scale (few thousand concurrent jobs), used cloud-based GPU server. See • Cai et al. 2023 for details
 - Clear overall speed increase wrt CPU-only version, but overall amount of data movement per job increased *significantly* (10x) wrt CPU-only versions
 - Must take care not to saturate network capacity or time gains will be lost
 - Have also run with local servers on NERSC Perlmutter nodes


	ML module	non-ML modules	Tota			
Wall time (s)						
CPU only	220	110	330			
CPU + GPUaaS	13	110	123			



🛟 Fermilab 🖂

GPUaaS Studies

- Tests with MC show large decrease in processing • time for part of track reconstruction if run on a GPU
 - Use Triton inference server and gRPC in job for communication, allows many-to-1 model of CPU jobs to single GPU (the SONIC Model)
 - Rest of stack uses standard CPU, can thus run on any site with ext. network without needing local GPU
- ProtoDUNE beam data reprocessing campaign in 2021 utilized approach at scale (few thousand concurrent jobs), used cloud-based GPU server. See • Cai et al. 2023 for details
 - Clear overall speed increase wrt CPU-only version, but overall amount of data movement per job increased significantly (10x) wrt CPU-only versions
 - Must take care not to saturate network capacity or time gains will be lost
 - Have also run with local servers on NERSC Perlmutter nodes

🛟 Fermilab 🖂

K. Herner I DUNE Computing 16 2024-05-24

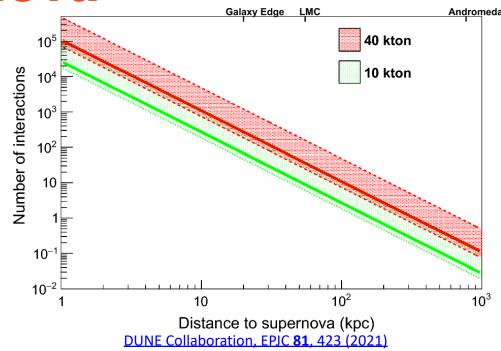
Core Software Framework

- ProtoDUNE and FD software based on the Art framework (descendant of CMSSW). Remember, however, that
 - DUNE and collider detector events differ in size and structure; readout not always synced to a beam timing
 - DUNE needs easy access to heterogenous computing resources
 - Some external tools and packages lend themselves more easily to Python than C++
- Therefore, DUNE has commissioned the design of a new core software framework to support both ND and FD workflows. Key features include:
 - Support for algorithms/modules in multiple languages (C++ and Python for sure)
 - Flexible, user-defined, data groupings (must sync up different detector data in differing ways)
 - More "eager writing" (don't wait until the end to write entire event to disk)
 - Configurable, composable, framework-agnostic algorithms will "plug in" to the core framework which will schedule data/workflow/hardware access (e.g. GPU) and handle data provenance tracking and other metadata, and data persistency and I/O.

🛟 Fermilab 🔀

• Planning to deliver during FY27 (FY starts October 1, 2026)




17

The Big Challenge: a supernova

- Sensitive to neutrinos from a (relatively) nearby supernova
- Would read detector out in a continuous mode for ~ 100s
- Expect approximately 400 TB (uncompressed) for four-module readout; still 184 TB at current compression levels
- Prelim studies of event reconstruction could lead to a source location accurate to < 5 degrees
 – important for follow-up by other instruments (optical/near IR telescopes, etc.)
 - But time is everything in this game. 4+ hours to transfer data on a dedicated 100 Gb network, plus processing time...

🛟 Fermilab 🖂

18 2024-05-24 K. Herner I Computational Landscape in DUNE

Processing supernova data

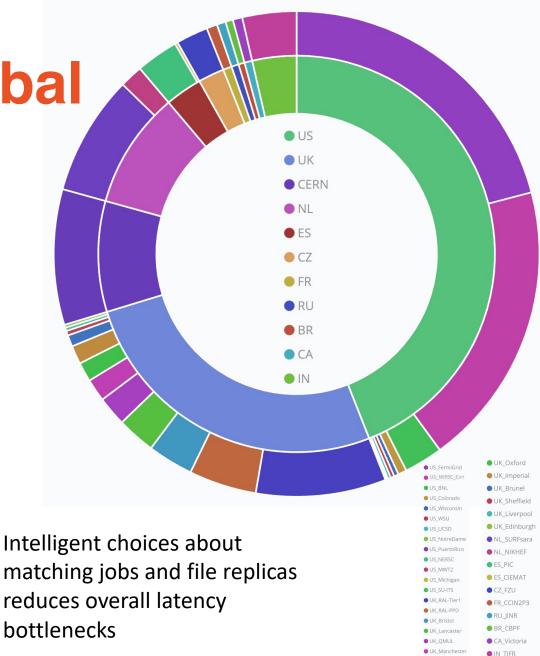
- Limited space and infrastructure (i.e. cooling) at the far site means bulk processing on a local farm is
 impractical to impossible
- Don't have to transfer full dataset before processing starts
 - Workflow mgmt systems must deal with dynamic datasets and shifting resource availability
- 10,000 40,000 present-day CPUs needed for reconstruction (30k likely) to finish within a few hours of event (goal: preliminary direction before event rises in optical bands)
 - HPC centers can probably fit the bill, but data transfer in and out is the major problem to solve
 - Must consider redundancy as well
- Must be able to handle large input stream as well as output at a similar rate
 - Run standard data reco or make a slimmed-down, faster version? Speed vs. accuracy tradeoff?
- Implications for additional network paths? What are those requirements? Costs?

Summary

- DUNE will significantly advance our understanding of one of the least understood elementary particle types
- Potential for significant paradigm-shifting discoveries (e.g. proton decay)
- A supernova in our galaxy will lead to a wealth of information, but processing detector data in a timely fashion will be one of DUNE's biggest challenges
- DUNE will not succeed without efficient, robust computing! Affects all aspects of the experiment
- General strategy: use common tools wherever possible, share information with other experiments, but don't be afraid to break new ground where needed.
- Plenty of room to get involved and work on interesting projects!

Thank You!

🛟 Fermilab 🔀

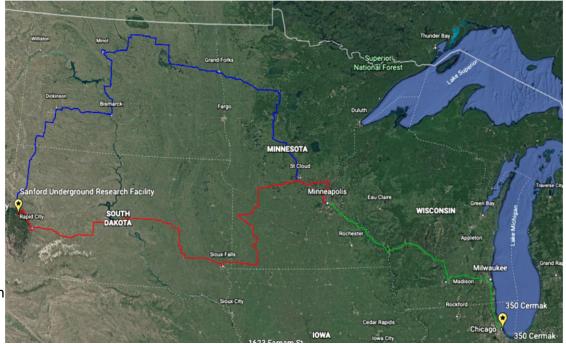


Some further reading

- dunescience.org
- <u>https://arxiv.org/abs/2210.15665</u>
- <u>ML reconstruction for LAr TPCs</u>
- DUNE Physics Snowmass Whitepaper
- ProtoDUNE performance paper (Figure 47 is a good example of how to distinguish between the different types of events)

DUNE Computing is global

- Significant efforts to add international presence began in 2018
- Compute sites in 12 countries + CERN on four continents
- Record time for adding DUNE support to a grid site (start to successful batch jobs) is 2h.
- For October 2021-October 2022, > 50% of production wall hours outside USA; < 25% at Fermilab
- Numerous sites have also pledged storage support (19 PB in 2022)



🗱 Fermilab 🕬

Networking Setup and Timeline

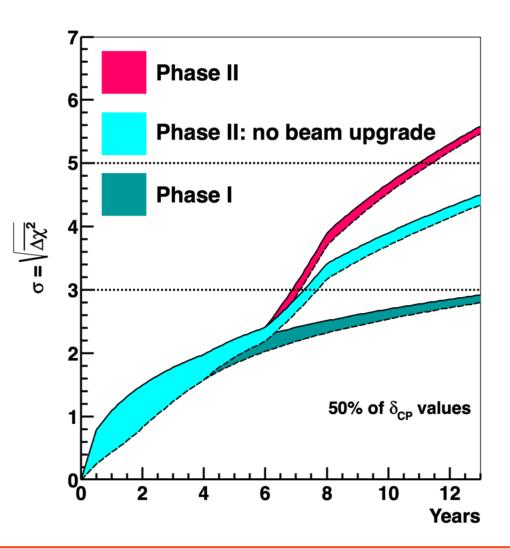
Primary Path Secondary Path

- Planning 100 Gb/s primary link between SURF and FNAL
 - Enables 1 wk DAQ backlog to clear in 1 day in case of connection outage. DAQ has 99% uptime _
 - Primary path currently 10 Gb —
 - Secondary path now 1 Gb; will go to 100 Gb _ when commissioning starts
 - Tertiary path capable of meeting DAQ _ Not shown: requirements during normal physics operations 10 Gb Tertiary path
- through Denver Networking between compute sites varies; leveraging existing setups at LHC compute sites where possible (e.g. <u>LHCONE</u>), other large-scale infrastructure (e.g. <u>ESnet</u>, <u>GÉANT</u>, NRENs, etc.)
 - Expect larger sites w/storage to have 40+ Gb/s ext. connectivity; medium sites 20+ Gb/s _
- Monitoring tools include perfSONAR lacksquare

DUNE FD WAN Bandwidth Timeline Projections:

Date	Stage of the experiment	Primary Path	Secondary Path	Tertiary Path
Now	Cavern excavation	10GE	< 1GE via SURF	none
2025	Detector construction	10GE	< 1GE via SURF	none
2027	Computing/DAQ deployment	100GE	10GE	< 1GE via SURF
2028	Cryo deployment completed	100GE	100Gb/s	10GE
2029	Start of science	100GE	100Gb/s	10GE

REED: South Dakota Higher Education Network


and KC

vLAN service provided by REED/GPN (shared) Dedicated circuit Ross Dry Bldg. to Chicago Dedicated circuit Yates Complex to Denver

Physics sensitivities

- Sensitivity to CP violation for 50% of deltacp values, as a function of time in calendar years. The width of the bands shows the impact of potential beam power ramp up; the solid upper curve is the sensitivity if data collection begins with 1.2 MW beam power and the lower dashed curve shows a conservative beam ramp scenario where the full power is achieved after 4 years. The green band shows the Phase I sensitivity and the red band shows the Phase II sensitivity. The cyan band shows the Phase II sensitivity if the beam upgrade does not occur.
- From DUNE Snowmass physics whitepaper

🗱 Fermilab 🕬