
Managing Scientific Data on High 
Performance Computing (HPC) Systems
Shane Snyder
Argonne National Laboratory

Computational HEP Traineeship Summer School 2024
May 23, 2024



2

Managing scientific data

HPC applications span various scientific disciplines and 
have a range of diverse data management needs.
○ An explosion of scientific data (both in terms of volume 

and in diversity of access patterns) is compounding the 
I/O bottleneck, a longstanding performance impediment 
on HPC systems.

Meanwhile, hardware trends have enabled novel, 
high-performance storage system designs that promise 
increased productivity to HPC apps.

HPC facilities deploy vast amounts of storage 
resources to help meet the I/O needs of scientific 
applications.
○ Today, I’ll introduce the basics of the HPC I/O stack and 

how it can be used to efficiently manage/access data.

Visualization of entropy in Terascale 
Supernova Initiative application. 

Image from Kwan-Liu Ma’s 
visualization team at UC Davis.

HPE/Cray Aurora system at the ALCF



3

An example HPC system: ALCF Aurora

Aurora is the new exascale HPC system at 
the ALCF:
○ 10,624 compute nodes (CPU+GPU)
○ HPE Slingshot high speed interconnect
○ On-fabric DAOS storage

○ 220 PB @ ≥ 25 TB/s
○ Connectivity to shared Lustre file storage

○ 100 PB @ 650 GB/s

Typically, HPC systems like Aurora are 
used by large jobs (i.e., spanning many 
nodes) attempting to solve complex 
science problems by aggregating lots of 
computational power.
○ The MPI message passing library has 

traditionally been used to enable 
communication/coordination across the 
processes comprising these large jobs.

Slingshot
Fabric

Existing storage systems
Gateway nodes

System & Access
Nodes



4

An example HPC system: ALCF Aurora

Aurora is the new exascale HPC system at 
the ALCF:
○ 10,624 compute nodes (CPU+GPU)
○ HPE Slingshot high speed interconnect
○ On-fabric DAOS storage

○ 220 PB @ ≥ 25 TB/s
○ Connectivity to shared Lustre file storage

○ 100 PB @ 650 GB/s

Typically, HPC systems like Aurora are 
used by large jobs (i.e., spanning many 
nodes) attempting to solve complex 
science problems by aggregating lots of 
computational power.
○ The MPI message passing library has 

traditionally been used to enable 
communication/coordination across the 
processes comprising these large jobs.

Slingshot
Fabric

Existing storage systems
Gateway nodes

System & Access
Nodes

This historical generality is becoming less true as HPC 
takes on more diverse computational workloads, e.g.:

● AI/ML
● Workflow systems (e.g., HEP)



5

The HPC I/O stack

Storage Hardware

Application

Parallel File System

Data Model Support

I/O Middleware



6

The HPC I/O stack

Storage Hardware

Application

Parallel File System

Data Model Support

I/O Middleware

Storage Hardware stores raw 
bytes on different storage devices.

HDDs, SSDs



7

HPC storage hardware
Traditionally, HPC storage systems were exclusively based on large 
arrays of hard disk drives (HDDs).
○ Still commonly used in higher capacity storage tiers

Higher performance flash-based storage (i.e., SSDs) has become 
increasingly prevalent in HPC storage systems in recent years.
○ Originally, deployed as a smaller performance storage tier, but 

decreasing costs have recently enabled all-flash storage systems

Storage class memory (SCM) is now being integrated into the HPC 
storage hierarchy.
○ Performance somewhere in between that of SSDs and of DRAM
○ Used as an accelerated storage component in a hybrid storage system 

Tape storage is often offered as a cost-effective storage option for 
archival data.

HDDsSSDsSCM Tape

Performance Capacity



8

HPC storage hardware
HPC storage systems are usually deployed as massive 
appliances that provide all necessary storage 
hardware/software and that can be scaled out to meet 
I/O demands of the system:
○ All-disk, all-flash, hybrid, and tiered storage hardware
○ Networking infrastructure for internal 

storage/management and for external connection to the 
HPC system

○ Parallel file system software (e.g., Lustre)
○ Storage system management and profiling software

HPE/Cray ClusterStor storage appliance



9

The HPC I/O stack

Storage Hardware

Application

Parallel File System

Data Model Support

I/O Middleware

Parallel file system maintains 
logical file model and provides 
efficient access to data using a 

POSIX-like interface.

Lustre, GPFS

Storage Hardware stores raw 
bytes on different storage devices.

HDDs, SSDs



10

Parallel file systems (PFSes) have been traditionally 
offered by HPC facilities as a one-size-fits-all solution 
for storing users data.
○ Users interact with a familiar file/directory storage 

hierarchy, but with much more aggregate capacity and 
performance relative to a local file system.

PFSes offer a number of attractive characteristics that 
have led to their widespread usage in HPC:
○ High performance - parallel I/O paths enable 

aggregate performance of many storage resources 
using high speed interconnects

○ Scalability - storage resources can be scaled to meet 
demands of current and future applications

○ Reliability - failover mechanisms to ensure availability 
of data in face of failures

open()
write()
close()

Scientific application processes

Persistent
data sets

Parallel file systems



11

Parallel file systems: Lustre
Lustre is a high-performance, scalable PFS that is 
commonly deployed on HPC systems.
Lustre’s design is centered around a metadata 
storage service and an object storage service:
○ Metadata servers (MDSes) manage metadata 

targets (MDTs).
– Maintain filesystem namespace and key file 

metadata
○ Object storage servers (OSSes) manage object 

storage targets (OSTs).
– Provide bulk storage for file data 

Lustre clients coordinate with metadata servers to 
set/query file layout, but then interact strictly with 
storage servers for reading/writing data.
Lustre files are broken into stripes, with file stripes 
round-robin distributed over 1 or more OSTs.

OSS 1 OSS 2

OST 1 OST 2 OST 3 OST 4

1 2 3 4 5 6 7 8 9

1
2 3 4

5
6 7 8

9

Example file:



12

Parallel file systems: Lustre

OSS 1 OSS 2

OST 1 OST 2 OST 3 OST 4

1 2 3 4 5 6 7 8 9

1
2 3 4

5
6 7 8

9

Example file:

Lustre file striping is something that users 
can often tune directly for each file to 

achieve better I/O performance:

○ Larger files typically benefit from being 
stored across many stripes (i.e., more 
storage resources).

○ Smaller files typically benefit from being 
stored on a single stripe (i.e., less 
overhead from accessing multiple 
servers).



13

Parallel file systems: the POSIX interface
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a familiar POSIX-like interface.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations for raw file access
– fopen(), fread(), fseek(), fclose() operations for buffered file access (often used for text)

○ Semantics guaranteed by each operation, e.g.:
– successful writes to a file must be immediately visible to subsequent reads



14

Parallel file systems: the POSIX interface
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a familiar POSIX-like interface.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations for raw file access
– fopen(), fread(), fseek(), fclose() operations for buffered file access (often used for text)

○ Semantics guaranteed by each operation, e.g.:
– successful writes to a file must be immediately visible to subsequent reads

This semantic is tricky to enforce for PFSes where potentially hundred 
of thousands of clients collectively access and cache file contents.



15

Parallel file systems: the POSIX interface
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a familiar POSIX-like interface.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations for raw file access
– fopen(), fread(), fseek(), fclose() operations for buffered file access (often used for text)

○ Semantics guaranteed by each operation, e.g.:
– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for parallel file access.
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking 

protocols or to eschew strong consistency entirely.



16

Parallel file systems: the POSIX interface
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a familiar POSIX-like interface.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations for raw file access
– fopen(), fread(), fseek(), fclose() operations for buffered file access (often used for text)

○ Semantics guaranteed by each operation, e.g.:
– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for parallel file access.
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking 

protocols or to eschew strong consistency entirely.

To avoid performance or consistency issues, best practice in the HPC community 
typically involves avoiding concurrent access of overlapping regions of a file. 

However, “false sharing” can still lead to performance inefficiencies.



17

The HPC I/O stack

Storage Hardware

Application

Parallel File System

Data Model Support

I/O Middleware

I/O Middleware organizes and 
transforms accesses from many 
processes, especially those using 
collective I/O.

MPI-IO 
Parallel file system maintains 

logical file model and provides 
efficient access to data using a 

POSIX-like interface.

Lustre, GPFS

Storage Hardware stores raw 
bytes on different storage devices.

HDDs, SSDs



18

I/O middleware: parallel I/O capabilities
I/O middleware bridges the gap between application data abstractions and the storage system, 
typically transforming application accesses into optimized storage system requests.

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC 
applications.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO enables flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific



19

I/O middleware: parallel I/O capabilities
I/O middleware bridges the gap between application data abstractions and the storage system, 
typically transforming application accesses into optimized storage system requests.

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC 
applications.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO enables flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific



20

I/O middleware: parallel I/O capabilities
I/O middleware bridges the gap between application data abstractions and the storage system, 
typically transforming application accesses into optimized storage system requests.

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC 
applications.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO enables flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific



21

I/O middleware: parallel I/O capabilities
I/O middleware bridges the gap between application data abstractions and the storage system, 
typically transforming application accesses into optimized storage system requests.

The MPI-IO interface was designed to help address needs for parallel I/O support by HPC 
applications.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO enables flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific Initial state Phase 1: I/O Phase 2: Redistribution

Two-phase collective I/O algorithm



22

The HPC I/O stack

Storage Hardware

Application

Parallel File System

Data Model Support

I/O Middleware

Data Model maps application 
abstractions onto storage 

abstractions and provides data 
portability.

HDF5, Parallel netCDF I/O Middleware organizes and 
transforms accesses from many 
processes, especially those using 
collective I/O.

MPI-IO 
Parallel file system maintains 

logical file model and provides 
efficient access to data using a 

POSIX-like interface.

Lustre, GPFS

Storage Hardware stores raw 
bytes on different storage devices.

HDDs, SSDs



23

Data models: scientific data abstractions
MPI-IO is a step in the right direction, but application 
scientists often prefer richer data management 
abstractions than simple files.
○ Storing independent data products in unique files or 

manually serializing collections of data products into a 
single file is often untenable.

HDF5 is a popular data management library and file 
format that specializes in storing large volumes of 
scientific data.
○ Enable storage of multi-dimensional datasets, attributes, 

etc. in an HDF5 file (more like a “container”)
○ Interfaces allow for access of individual dataset elements, 

subarrays, or entire datasets
○ Support for collective I/O (using MPI-IO) or independent 

I/O (using MPI-IO or POSIX)
○ VOL layer allows abstract implementation of storage for 

HDF5 objects
‒ e.g., using async operations, using an object store 

rather than file system

HDF5 file: chkpt001.h5

Dataset: pressure
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 30)

Attributes: …

10

30

Dataset: temperature
datatype = H5T_NATIVE_DOUBLE
dataspace = (20, 60)

Attributes: …
60

20



24

Emerging storage technologies: DAOS

Storage Hardware

Application

Parallel File System
Storage system

Data Model Support

I/O Middleware

HPC storage technology is changing to meet the 
needs of diverse application workloads and to 
embrace emerging storage trends.

ALCF Aurora features Intel DAOS, a first-of-a-kind 
object-based storage system for large-scale HPC 
platforms.
○ Leverages both SCM and SSDs for high-performance 

storage



25

Emerging storage technologies: DAOS

Various DAOS access methods.
Figure courtesy of Intel

HPC storage technology is changing to meet the 
needs of diverse application workloads and to 
embrace emerging storage trends.

ALCF Aurora features Intel DAOS, a first-of-a-kind 
object-based storage system for large-scale HPC 
platforms.
○ Leverages both SCM and SSDs for high-performance 

storage

DAOS offers multiple I/O interfaces to users:
○ Filesystem emulation API allowing legacy POSIX file 

access to DAOS storage
○ Native object-based APIs (e.g.., key-val, array) 

offering more powerful semantics compared to 
POSIX-like file APIs
‒ Data locality, replication strategy, etc.



26

Sharing data with collaborators: Globus
Globus is a platform for managing research data, enabling the moving, sharing, and archiving 
of large volumes of data among distributed sites.
○ Manages data transfers between endpoints
○ Monitors performance and errors
○ Retries and corrects errors, where possible
○ Reports status back to users

Globus can be easily accessed either using CLI tools or a web-interface.

Storage Hardware

Storage System

Storage Hardware

Storage System

System A, Site X System B, Site Y



27

Tools: understanding and improving I/O behavior
Application performance monitoring and analysis 
tools are critical to better understanding I/O 
behavior and informing potential tuning 
decisions, answering questions like:
○ How much of your run time is spent reading 

and writing files?
○ Does it get better, worse, or is it the same as 

you scale up?
○ Does it get better, worse, or is it the same 

across platforms?
○ How should you prioritize I/O tuning to get 

the most bang for your buck?
As a starting point to better answering these 
sorts of questions, I recommend using a popular 
tool called Darshan1. Storage Hardware

Application

Storage System

Data Model Support

I/O Middleware

[1] https://www.mcs.anl.gov/research/projects/darshan/ 

https://www.mcs.anl.gov/research/projects/darshan/


28

Tools: Darshan application I/O characterization
Darshan is a lightweight I/O characterization tool 
that is commonly deployed at HPC facilities to 
provide important details on I/O behavior of user 
jobs.

It has 2 primary components:

1. Darshan runtime library
○ Transparently and scalably instrument 

multiple layers of the application I/O stack by 
intercepting I/O calls and recording file 
access statistics

○ At application shutdown, generate a 
compressed log containing detailed I/O 
statistics for each file accessed by the 
application

Figure courtesy Jakob Luettgau (Inria)



29

Tools: Darshan application I/O characterization

Figure courtesy Jakob Luettgau (Inria)

Darshan is a lightweight I/O characterization tool 
that is commonly deployed at HPC facilities to 
provide important details on I/O behavior of user 
jobs.

It has 2 primary components:

2. Darshan log analysis tools
○ Tools for inspecting and presenting key 

information about I/O behavior
○ Recent development effort on PyDarshan, a 

framework for extracting and presenting key 
Darshan log data using popular Python 
packages (pandas, matplotlib, etc.)



30

Tools: Darshan job summary

A helpful starting point for Darshan log file 
analysis is the PyDarshan job summary tool.

It generates an HTML report providing key 
details on I/O performance and access 

characteristics that can be used to better 
understand the application’s I/O behavior.



31

Tools: Darshan job summary

Detailed job 
metadata

Heatmaps of 
I/O activity

Comprehensive 
I/O statistics for 
multiple layers 
of the I/O stack



32

HPC I/O best practices
Achieving the best I/O performance on HPC systems can be a challenging task:
○ Deep storage software stack must effectively transform diverse application access patterns into 

performant low-level storage access

Here are some general best practices that should position you to get the best I/O performance:
○ Use high-level I/O libraries (e.g., HDF5) for managing data, rather than low-level POSIX APIs.

‒ Expressive interfaces and portable file formats more suitable for managing scientific data
‒ Transparently implement general and platform-specific optimizations to I/O workloads



33

HPC I/O best practices
Achieving the best I/O performance on HPC systems can be a challenging task:
○ Deep storage software stack must effectively transform diverse application access patterns into 

performant low-level storage access

Here are some general best practices that should position you to get the best I/O performance:
○ Use high-level I/O libraries (e.g., HDF5) for managing data, rather than low-level POSIX APIs.

‒ Expressive interfaces and portable file formats more suitable for managing scientific data
‒ Transparently implement general and platform-specific optimizations to I/O workloads

○ Use larger access sizes and limit the overall number of operations issued to storage systems.
‒ HPC storage resources are typically remote and have high latency costs that can stall applications



34

HPC I/O best practices
Achieving the best I/O performance on HPC systems can be a challenging task:
○ Deep storage software stack must effectively transform diverse application access patterns into 

performant low-level storage access

Here are some general best practices that should position you to get the best I/O performance:
○ Use high-level I/O libraries (e.g., HDF5) for managing data, rather than low-level POSIX APIs.

‒ Expressive interfaces and portable file formats more suitable for managing scientific data
‒ Transparently implement general and platform-specific optimizations to I/O workloads

○ Use larger access sizes and limit the overall number of operations issued to storage systems.
‒ HPC storage resources are typically remote and have high latency costs that can stall applications

○ Be aware of intended usage of storage resources, in terms of performance, data lifetime, etc.
‒ Some file systems are intended for high-performance access (e.g., scratch or project file systems) while 

others are not (e.g., home file systems)
‒ Higher performance tiers of a storage system may purge old data periodically to effectively manage capacity



35

HPC I/O best practices
Achieving the best I/O performance on HPC systems can be a challenging task:
○ Deep storage software stack must effectively transform diverse application access patterns into 

performant low-level storage access

Here are some general best practices that should position you to get the best I/O performance:
○ Use high-level I/O libraries (e.g., HDF5) for managing data, rather than low-level POSIX APIs.

‒ Expressive interfaces and portable file formats more suitable for managing scientific data
‒ Transparently implement general and platform-specific optimizations to I/O workloads

○ Use larger access sizes and limit the overall number of operations issued to storage systems.
‒ HPC storage resources are typically remote and have high latency costs that can stall applications

○ Be aware of intended usage of storage resources, in terms of performance, data lifetime, etc.
‒ Some file systems are intended for high-performance access (e.g., scratch or project file systems) while 

others are not (e.g., home file systems)
‒ Higher performance tiers of a storage system may purge old data periodically to effectively manage capacity

○ Use monitoring/analysis tools like Darshan to better understand I/O access characteristics 
and attained performance for your application.



36

HPC I/O best practices
Achieving the best I/O performance on HPC systems can be a challenging task:
○ Deep storage software stack must effectively transform diverse application access patterns into 

performant low-level storage access

Here are some general best practices that should position you to get the best I/O performance:
○ Use high-level I/O libraries (e.g., HDF5) for managing data, rather than low-level POSIX APIs.

‒ Expressive interfaces and portable file formats more suitable for managing scientific data
‒ Transparently implement general and platform-specific optimizations to I/O workloads

○ Use larger access sizes and limit the overall number of operations issued to storage systems.
‒ HPC storage resources are typically remote and have high latency costs that can stall applications

○ Be aware of intended usage of storage resources, in terms of performance, data lifetime, etc.
‒ Some file systems are intended for high-performance access (e.g., scratch or project file systems) while 

others are not (e.g., home file systems)
‒ Higher performance tiers of a storage system may purge old data periodically to effectively manage capacity

○ Use monitoring/analysis tools like Darshan to better understand I/O access characteristics 
and attained performance for your application.

○ Always check facility documentation for site-specific best practices and don’t be afraid to ask 
for help/clarification using support channels.



37

HPC I/O performance: what’s possible?
The IO500 foundation manages an I/O benchmark suite that is used to test and rank the attained I/O 
performance for HPC storage systems under different access patterns:

Recent IO500 results from ISC’24 conference showing the 
current rankings of fastest production HPC storage systems.

https://io500.org/list/isc24/production



38

HPC I/O performance: what’s possible?
The IO500 foundation manages an I/O benchmark suite that is used to test and rank the attained I/O 
performance for HPC storage systems under different access patterns:

ALCF Aurora 
current #1!



39

HPC I/O performance: what’s possible?
The IO500 foundation manages an I/O benchmark suite that is used to test and rank the attained I/O 
performance for HPC storage systems under different access patterns:

Both DAOS and Lustre 
are well represented in 

the current rankings



40

HPC I/O performance: what’s possible?
The IO500 foundation manages an I/O benchmark suite that is used to test and rank the attained I/O 
performance for HPC storage systems under different access patterns:

Aurora attained 
performance of nearly 
10 TiB/sec bandwidth 

and over 100 million I/O 
ops/sec 



41

HPC I/O performance: what’s possible?
The IO500 foundation manages an I/O benchmark suite that is used to test and rank the attained I/O 
performance for HPC storage systems under different access patterns:

Aurora attained 
performance of nearly 
10 TiB/sec bandwidth 

and over 100 million I/O 
ops/sec 

Achieving these 
massive performance 
numbers requires a 

large number of 
clients/nodes



42

A recap
Today we have covered various technologies that comprise the HPC I/O stack, which is used to 
persist, manage, and share large-scale scientific datasets, a critical aspect of high-performance 
computing.
○ Storage hardware with different performance characteristics aggregated into massive systems that 

store raw data.
○ Parallel file systems offer high-performance, scalable file storage over provided storage hardware
○ I/O libraries provide interfaces for managing data at different abstraction layers
⏤ POSIX provides a portable, performant low-level file system interface
⏤ MPI-IO introduces capabilities for parallel access of files
⏤ HDF5 provides a data management interface more closely aligned with application data 

abstractions
○ File transfer/sharing mechanisms to enable collaboration
○ Tools are available for better understanding and, ideally, improving I/O performance

Additionally, we discussed some common best practices for achieving good I/O performance 
and provided some general performance expectations for production HPC systems.



Thank you!


