
GPU as a Hardware Accelerator

Beomki Yeo
UC Berkeley and LBNL

Computational HEP Traineeship
Summer School 2024

May 20th, 2024

Beomki YeoMay 20th 2024

Outline

2

1. Evolution of Microprocessor Design

2. GPU as a Hardware Accelerator
a. Difference with CPU
b. Basic mechanisms and how-to-optimize

Beomki YeoMay 20th 2024 3

Microprocessor

● Microprocessor: A single Integrated Circuit which can do data processing and logic control

● Integrated Circuit: A chunk of transistors

● Transistor: A minimal building block of electronics

Intel 4004 (1971), one of the first microprocessors Intel 4004 chipset design (2300 transistors)

https://en.wikipedia.org/wiki/Intel_4004
https://4004.com/mcs4-masks-schematics-sim.html

Beomki YeoMay 20th 2024 4

CPU: Traditional Microprocessor

● CPU (Central Processing Unit)
○ Made of Cores, Caches and Control Units

● Core: Algorithm Logical Units (ALUs) and registers
○ ALU: performs mathematical operations
○ Register: small storage which stores data being

processed

● Cache: On-chip memory

● Control Unit: Distribute operations to other units

Intel Core i9-14900K

Image credit

https://en.wikipedia.org/wiki/List_of_Intel_Core_i9_processors
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Beomki YeoMay 20th 2024 5

● Transistor gets smaller (Moore’s law) -> More power-efficient
○ This gives rooms to CPU architects to improve the chipset design

● Advance in core microarchitecture design
○ Branching precision, out-of-order execution, cache memory etc.

● Cache memory hierarchy with multiple levels
○ Solving the memory bottleneck

Evolution of CPU Design in the Past

Image credit

https://dl.acm.org/doi/10.1145/1941487.1941507

Beomki YeoMay 20th 2024 6

Moore’s law
● An observation that the number of transistors in processors doubles every two years

○ The dimension of transistor is reduced by √2

● Smaller transistors used to increase the performance of CPU

Image credit

Tra
nsistor c

ount (M
oore’s law)

Data from

Transistor size (Moore’s law)

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/3_nm_process

Beomki YeoMay 20th 2024 7

Why were Small Transistors Supposed to be Good?

● Dennard Scaling
○ Free scaling of the frequency (f) for the same power consumption (P)
○ P = 𝛼 C V2 f
○ Capacitance (C) and operating voltage (V) are linearly reduced with the size of transistor

● Pollack’s rule
○ Observation of Performance ∝ √N (N = the number of transistors)
○ Moore’s law allows more number of transistors (N) on the same chip size

N.B. These days, Dennard scaling is dead and the actual gains from the Pollack’s
rule is usually less than its expectation

Beomki YeoMay 20th 2024 8

P = 𝛼 N C V2 f

Transistor

P = 𝛼 (4N) (C/2) (V/2)2 (2f)

Four years later
(Half-size)

Ideal Performance Scaling

● Dennard scaling and Pollack’s rule orchestrate to scale the performance with the
Moore’s law

● Ideally, the performance is increased by 4 every four years
○ Factor of 2 from Dennard scaling and Pollack’s rule, respectively

Beomki YeoMay 20th 2024 9

End of Dennard Scaling
● Below the transistor size of 65 nm (since yr. 2005), the current leakage

(Ileakage) is not negligible anymore
○ No free scaling of frequency with the same power cost

● Power matters in the chipset design
○ Industries has stopped increasing the clock rate

Image credit

Tra
nsistor count (M

oore’s law)

Clock rate [MHz]

(Dennard Scaling)

End of Dennard Scaling

P = 𝛼 N C f V2 + V Ileakage

https://www.intel.com/content/dam/develop/external/us/en/documents/vectorization-performance-quantifi-755040.pdf

Beomki YeoMay 20th 2024 10

Image credit Slide after

● Recently Industries has improved the
performance with extra transistors in
different ways

● Increasing the register size
○ Vectorization

● Increasing the number of logical cores
○ Parallelization

New paradigm in CPU: Vectorization and Parallelization

Moore’s law

Dennard Scaling

Parallelization

Vectorization

https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf

Beomki YeoMay 20th 2024 11

Vectorization

● A larger size of registers allow the computation on
multiple data at one time
○ Single Instruction multiple data (SIMD)

● If the data is aligned properly, vectorization can be
done automatically with modern CPUs

Auto-vectorization ON

Auto-vectorization OFF

For (i =0; i < 4; i++){
 C[i] = A[i] + B[i];
}

Auto-vectorization example of four-vector addition

Image credit

https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf

Beomki YeoMay 20th 2024 12

Parallelization

● Ideally, performance will linearly increase with the
number of logical cores running in parallel

● In the programming side, a core can be operated
with multiple threads
○ Thread: A virtual sequence of instructions
○ Single thread per core may not be enough to draw

full performance of the core

Core

Single core with
single thread

Core

multiple cores with
multiple threads

Core

Core Core

Beomki YeoMay 20th 2024 13

Hardware Accelerators beyond CPU

● GPU with extreme parallelization
○ Lots of cores

● FPGA with extreme customizability
○ Chipset design tailored for a specific

algorithm
○ Highest potential but with a high

learning curve
CPU GPU FPGA

Graphics
Processing Unit

Field Programmable
Gate Array

Central
Processing Unit

In the today’s talk, GPUs will be highlighted but FPGA-based acceleration is
also actively investigated in HEP computing

Beomki YeoMay 20th 2024

● Graphical Processing Unit
○ a.k.a graphics card
○ Major Vendors: NVIDIA, AMD, and Intel

● Invented for the visualization on PC screen
○ Now also used as a hardware accelerator

● Two types of GPU
○ CPU-integrated
○ Discrete GPU

14

Introduction to GPU

Discrete GPU Market Share

GPU

Discrete GPU

Graphics card

https://www.jonpeddie.com/news/surprise-steam-says-more-gamers-use-nvidia-than-amd/
https://www.computerbase.de/2020-09/geforce-rtx-3090-gigabyte-msi-test/

Beomki YeoMay 20th 2024 15

General Purpose GPU

GPGPU Coined by M. Harris (2003, PhD thesis)

● Use GPUs also for general purpose computation

● Machine learning in GPUs
○ The 1st generation of AlphaGo
○ Physics analysis of HEP experiments

● Any parallelizable algorithm in HEP computing
○ Online track reconstruction of the ALICE and

LHCb experiments
○ Many ongoing R&D projects for simulation and

analysis

ALICE Event Reconstructed by GPU

http://www.markmark.net/dissertation/index.html
https://doi.org/10.1016/j.cpc.2019.04.011

Beomki YeoMay 20th 2024 16

CPU vs GPU: Performance per USD

GPU

CPU

arXiv:2003.11491

Th
eo

re
tic

al
 P

er
fo

rm
an

ce
 p

er
 U

SD

Theoretically GPU is faster and more economical than CPU.
(Of course, there is a trade-off to achieve this)

https://arxiv.org/abs/2003.11491

Beomki YeoMay 20th 2024 17

CPU vs GPU: Performance per Watt
Single Double

Image credit

Th
eo

re
tic

al
 P

er
fo

rm
an

ce
 p

er
 W

at
t

CPU

GPU

CPU

GPU

Theoretically GPU is faster and more economical than CPU.
(Of course, there is a trade-off to achieve this)

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

18Beomki YeoMay 18th 2024

CPU vs GPU: Chip Structure

Image credit

● Small number of powerful cores (~10)
○ Branch prediction, out-of-order execution, etc.

● Large caches
● Single instruction on multiple data (SIMD)

● Many number of cores (≳1000)
○ A lot simpler

● Small caches
● Single instruction on multiple threads (SIMT)

Practically GPU can outperform CPU with parallelizable and relatively simple algorithms

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

19Beomki YeoMay 18th 2024

Example of Hardware Specifications
CPU GPU

Chipset Model AMD Ryzen Threadripper PRO
7995WX NVidia GH100

Launch Date Oct. 2023 Mar. 2022

Transistor Size 5 nm 5 nm

Number of Transistors 78,840 million 80,000 million

Clock Frequency 2.5 GHz 1.095 GHz

Cores 96 14592

Price ~10000 $ ~30000 $ (Graphics card price)

TDP 350 W 350 W

Peak Performance (float) 12.2 TFLOPS 51.22 TFLOPS

20Beomki YeoMay 18th 2024

SIMD and SIMT

For (i =0; i < 4; i++){
 C[i] = A[i] + B[i];
}

CPU SIMD (single thread, auto-vectorization) example of four-vector addition

C[threadIdx.x]
 = A[threadIdx.x] + B[threadIdx.x];

GPU CUDA SIMT (multiple threads) example of four-vector addition

Thread
Thread 0 Thread 1 Thread 2 Thread 3

A[0] A[1] A[2] A[3]
+ + + +

B[0] B[1] B[2] B[3]
C[0] C[1] C[2] C[3]

Register
Data Slot 0 Data Slot 1 Data Slot 2 Data Slot 3

A[0] A[1] A[2] A[3]
+ + + +

B[0] B[1] B[2] B[3]
C[0] C[1] C[2] C[3]

Beomki YeoMay 20th 2024 21

CPU (HOST)

GPU (DEVICE) Kernel 1 Kernel 2

Data in Data out

The code is always executed from the CPU (HOST) side

1. Transfer data from CPU to GPU

2. Launch a GPU kernel function with a dimension of
thread block

3. Transfer data from GPU to CPU

N.B. The kernel launches are not free
and can take 5 to 100 𝜇s depending
on hardware, driver, etc.

GPU Programming Workflow

Beomki YeoMay 20th 2024 22

GPU Parallelization Structure

● Thread: A virtual sequence of instructions, similar to the CPU thread

Threads block

● Thread block: A cooperative set of threads

GPU

Global
Memory
(DRAM)

Threads block Threads block

Threads block Threads block

CPU

Data transfer

GPU

Beomki YeoMay 20th 2024 23

GPU Optimization – Minimization of Data Transfer

CPU (HOST)

GPU (DEVICE) Kernel 1 Kernel 2

Data in Data out

CPU (HOST)

GPU (DEVICE) Kernel 1 Kernel 2

Data in Data outData inData out

Beomki YeoMay 20th 2024 24

GPU Optimization – Avoid Thread Divergence
● In GPUs, threads in a set can only do the same thing at one time.

○ An important feature of Single instruction Multiple Thread (SIMT)
○ NVIDIA Warp: 32 synchronized threads
○ AMD Wavefront: 64 synchronized threads

if (threadIdx.x < 16){
A;

}
else {

B;
}

● Following diagram shows the half threads in a warp trying to do a different task
resulting into loss of 50% efficiency
○ The efficiency loss is minimized by avoiding the thread divergence

Beomki YeoMay 20th 2024 25

GPU Optimization – Vectorized Memory Access

x0 x1 x2 x3 x4 x5 x6 x7 y0 y1 y2 y3 y4 y5 y6 y7 z0 z1 z2 z3 z4 z5 z6 z7

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7

struct float3{
 float x,y,z;
};

float3 r[8];

float x[8];
float y[8];
float z[8];

8 threads in a warp trying to access x dataArray-of-Struct (AoS)

Struct-of-Array (SoA)

● Threads in a warp can access global memory with the least amount of transactions
when the data is vectorized (coalesced, precisely speaking)

○ Struct-of-Array (SoA) memory layout is more GPU-friendly in many cases

Memory request

Memory request

Memory request Memory request

Beomki YeoMay 20th 2024 26

GPU Optimization – Multiple (Asynchronous) Kernels

Stream 1 H2D K1 K2 D2H H2D K1 K2 D2H H2D K1 K2 D2H H2D K1 K2 D2H

Stream 1 H2D K1 K2 D2H

Stream 2 H2D K1 K2 D2H

Stream 3 H2D K1 K2 D2H

Stream 4 H2D K1 K2 D2H

Single stream (single CPU thread)

Time

Four streams (four CPU threads)

● A single GPU kernel may not utilize the entire resource of GPUs
○ Running multiple GPU kernels with streams (multiple CPU threads) can be beneficial
○ Kernels and memory transfers can be overlapped

H2D Host to Device transfer

K1 Kernel 1

K2 Kernel 2

D2H Device to Host transfer

Definitions

Beomki YeoMay 20th 2024 27

(Non-Exhaustive) List of Optimization Strategies

● Do everything in GPU and never come back to CPU
○ To minimize the data transfer between CPU and GPU

● Keep all threads of a warp busy (high warp efficiency)
○ Balancing the workloads for each thread is important

● Make threads of a warp access global memory in a coalesced manner
○ Memory layout of Struct-of-Array (SoA) can be beneficial

● Keep entire device busy
○ Launching multiple kernels concurrently can be helpful

● Put large data into a kernel to reduce the number of kernel launches

● No dynamic allocations (e.g. malloc or new) in kernels

Beomki YeoMay 20th 2024 28

GPU Programming Models

● C++
○ CUDA: Low-level language for GPU, exclusive to NVIDIA
○ SYCL: Stemmed from OpenCL, compatible with all vendors
○ HIP

● Python
○ Numba: CUDA Implementation in Python

Support

No Support

C++ Python

CUDA SYCL HIP Numba

NVIDIA

AMD Deprecated

Intel Prototype ?

Beomki YeoMay 20th 2024 29

Portability Layers for GPU

1. Alpaka and Kokkos: Abstraction layers on (Native) languages

2. std::par: c++ standard library for parallel execution

3. OpenMP: directive (e.g., c++ macro) based GPU execution

Programming Models for single source-code for both CPU and GPU

C. Leggett (ACAT 2024)

https://indico.cern.ch/event/1330797/contributions/5796506/

Beomki YeoMay 20th 2024 30

How to Get Started with GPU Programming

● C++ programming models are recommended

● If you are a beginner, start with CUDA
○ Most standard GPU language
○ Useful libraries (e.g. Thrust)
○ Many tutorials in the web
○ Best profiling and debugging tools

● The optimization strategies are universal so the
transition to different languages will be relatively
easy if the CUDA version is available

image credit

Sorting a vector in the device using CUDA Thrust

https://github.com/NVIDIA/thrust
https://developer.nvidia.com/thrust

Beomki YeoMay 20th 2024 31

Summary

● Microprocessor has evolved to improve the performance with the limited power budget
○ In the past, Moore’s law guaranteed the free scaling of performance
○ The free lunch is over
○ The chipset architects need to reconsider the chipset design to maximize the throughput

● The GPU is the result of the maximization of the parallelization in the microprocessor design
○ The mechanism of GPU SIMT is very different from the CPU SIMD
○ Hence quite different optimization strategy

● There are many programming models or APIs (e.g. CUDA, SYCL, etc) for different purposes
and motivations
○ In general, CUDA is recommended for beginners

Beomki YeoMay 20th 2024 32

Further Reads

● NVIDIA CUDA Guide: CUDA Tutorial

● C. K. Koraka, Introduction to GPU programming, HSF-India HEP Software Workshop (2023)

● H. Gray, Novel Computing Hardware in HEP, CHACAL (2024)

● J. Lebar, Bringing Clang and C++ to GPUs, CppCon (2016)

● S. Borkar and A. A. Chien, The future of microprocessors (2011)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://indico.cern.ch/event/1328624/contributions/5610337/
https://indico.cern.ch/event/1306120/contributions/5710115/attachments/2788037/4861370/hgray_chacal_v2.pdf/contributions/5710115/
https://youtu.be/KHa-OSrZPGo?si=0RxWXCW3NGjhWlzg
https://dl.acm.org/doi/10.1145/1941487.1941507

