

Study of a Cryogenic Current Comparator for the SPS slow extraction line

Jocelyn TAN

CERN Beam Instrumentation Group

Outline

- NORTH EXPERIMENTAL AREAS
- MOTIVATIONS
- SPECIFICATIONS & PROJECT
- SUMMARY

NORTH EXPERIMENTAL AREAS

North Area (NA)

19th June 2024

NA : Three Experimental Halls

Itinerary, permanent experiments and many test-beam

19th June 2024

CHIN'S

North Area Complex

- Built in the 1970s as part of the SPS Program
- Three experimental halls, service buildings and underground tunnels
- Total surface area : 60,000 m²
- Four targets fired by protons/ions spills from SPS

PHYSICS PROGRAM : a few examples

- **GIF++** : Performs test beam exp. of gas detectors in an intense γ background field (14 TBq 137Cesium source)
- NA66-AMBER : Proposes measurements of the proton charge radius, Drell-Yan, and pbar production cross-sections...
- NA62 (K) : Kaon factory, looking for New Physics through kaon decays
- After LS3 BDF w/SHiP : Focus in the search for feebly interacting particles beyond the Standard Model

EHN1 Experimental Hall

SPS slows extracted beams to NA

Droton	hoom d	haractaristics
PIULUII	beam C	naracteristics

Primary beam momentum	400 GeV/c
Spill intensity range	2 x10 ¹² – 4.2 x10 ¹³ ppp
Spill duration	typ 4.8 s (1 to 10 s)
Extracted intensity /year	~1 x10 ¹⁹
Typ ave. beam current	0.1 – 1.4 μΑ

Ion beam characteristics							
Particle	Pb ⁸²⁺						
Spill intensity range	>1 x10 ⁷						
Spill duration	<10 s						

Secondary beams characteristics								
EHN1	205 – 360 GeV/c	p, e ⁻ , e ⁺ , μ, π						
EHN2	250 – 280 GeV/c	h, μ						
ECN3	75 GeV/c	К						
Spill intensity range	10 ⁵ – 3 x10 ⁸ ppp							

The COMPASS experiment (2022)

Courtesy of Laura Molina Bueno (JAPW22)

19th June 2024

MOTIVATIONS

Instrumentations in the primary transfer lines

Present situation with DC beams: Diagnostics relies only on beam intercepting devices

19th June 2024

BSI calibration campaign since 2021

- Last calibration of BSI > 20 years ago (?)
- 2021 : a request for calibration from NA62
- Most upstream monitor in TT20 (210279) Measure 2foils signal vs SPS intensity (FBCT)
- Foil A and B have different slopes
- Unclear wheather differences are induced by losses or BSI

T10 target scan

- But 12cm gap between BSI and BSP
- Spot size effect on the foil
- All in all intensity error could be > 20%

Activation method

- Put Alumimun , and Copper foil
- Measure activation after 100-200 shots
- Measured fewer POT in activation foil than on BSI
- But with T10 target : calibration factor ~ 1

Courtesy of M. Van Dijk (JAPW23)

19th June 2024

Calibration : the quest for Grail

Difficult with SEM

- Many uncertainties : foil material, vacuum level, beam-induced damage
- Should be done annually during commissioning : ~ 12 hours beam time each
- Foil calibration is unstable over year and from year to year

Fast BCT rulled out

- Bandwidth limitation : fast-pulsed slow extraction of 10-20 ms is too large \Rightarrow baseline droop
- Fast kicker intensity limit

CCC

- "Cryogenic Current Comparator is an excellent candidate" JAPW 2023
- Non-intercepting current monitor
- Absolute measurement
- High resolution < 10 nA

SPECIFICATIONS & PROJECT

Current monitor specifications

Let's assume proton beams in TT20

Beam structure: Debunched 4.8 s/spill In the future 1 to 10 s
 Spill intensity range: 2 x10¹² - 4.2 x10¹³ ppp
 Current range: 0.1 - 1.4 μA average Spikes: up to x3

Monitor specifications

- Measurable: Beam current
- Method: Non-invasive
- Absolute monitor: Calibrated device Acuracy 1%

1%

- Current resolution:
- Signal Bandwidth: Sufficient to resolve spill fluctuations SPS F_{rev} = 43 kHz

19th June 2024

CCC mini-Workshop

Comments

During physics run

Cryostat specifications

Operation mode

- Stand-alone long term availability (cryo-cooler and pulsed tube)
- "Dry cooling" scheme preferable (from CRG)
- Temperature fluctuation: < 5mK ۰
- Low mechanical vibrations
- Practical ports to ease intervention •
- Not a copy/paste of the AD design

Dimensions/integration

- Low loss area : < 1 kGy/year
- Beam aperture : 80 mm typ.
- Longitudinal space :
- Accessibility:

- integrate ~1m-long element
 - Should ease tunnel access

19th June 2024

Cost estimate

Materials	Price [kCHF]	Comments
Cryocooler + cryo-Fan	100	Early stage of the project
Acquisition chain	25	Cabling, network, aqn chain, current source
Material procurement	110	Cryostat, vacuum
Pb CCC Shielding + SQUID/ FLL	80	Not an official quotation : To be confirmed w/ FSU-Jena
total materials	315	
Services + Student	Price [kCHF]	Comments
ORIGIN for CRG R&D: 2 FTE.Y	160	Early stage of the project
Infrastructure	15	Chilled water, power supply, etc
Vac. Test, PLC cryo controls, He recovery line	20	
CERN Design office + production/assembly	150	With simpler cryostat (~600 h)
total services	345	
GRAND TOTAL M+P	660	

CERN Manpower	FTE.Y	Comments
CRG Project follow-up over 2024-2029	1	Cryostat R&D supervision + tests, commissioning
BI Project follow-up over 2024-2029	1	Simulations, tests, commissioning,
Software Engineer	0.3	FESA integration 0.2 FTE.Y Commissioning 0.1 FTE.Y

19 ^m June 2024	19 th	June	2024
---------------------------	------------------	------	------

Timeline

	Y1			Y2			Y3				Y4				Y5					
Collaboration																				
Agreement CERN/GSI/FSU Jena for a CCC																				
ccc																				
Specifications																				
CCC production + SQUID																				
CCC cryogenic test																				
Drawing office and services																				
drawing office (manufacturing & integration)																				
Infrastructure (cabling, power, cooling,)																				
Cryostat production																				
Cryo R&D																				
Material procurement																				
Manufacturing and assembling								,												
Cryostat tests																				
																ļ				
Software application																				
FESA class + OP software															î	-				
Installation/Beam commissioning																				
machine installation																				
Beam commissioning																				
								ļ												
Spending profile [kCHF]		12	5			23	30			22	25			6	0			2	0	

Summary

Are stars aligned for a second CCC?

- Fixed target physics now require **1x10¹⁹** POT. Future physics programme : **5x10¹⁹** POT
- Experiments/users : there is a request for absolute intensity calibration
- A CCC might serve to benchmark the existing SEMs and for monitor R&D
- 2023: Official request for a feasibility study for a CCC in the SPS transfer line
- Functional specifications being finalised : 90% written

It is technically feasible

- A 5-year-project from green light till commissioning with beam
- Includes R&D on remote cooling scheme

Like any project, money is the nerve of the war

- Estimate : 660 kCHF + 2 M.Y physicists + 0.3 M.Y SW engineer
- In Spring 2024, the CCC was ruled out for budget constraints
- A new funding request to be made in 2025...

Thank you for your attention

19th June 2024

CCC mini-Workshop

19

SPARE SLIDES

SPS : Proton and Ion cycles

19th June 2024

CCC for beam current meas.

2011 [3]: DESY, HoBiCaT, Berlin

Dark current (e-) from SC Tesla cavities

2016 [4, 5]: RIKEN, Saitama

Radioactive Isotope Beam Factory
2 Flame Helmholtz Coils Pulse Tube Refri

LabVIEW

(c) 1day

Fig. 2. The 11 μA $^{78}{\rm Kr}^{36+}$ intensity of the beam (50 MeV/u) was successfully measured with a 500 nA resolution.

19th June 2024

CCC for spill monitoring

A. Peters [1]: GSI, SIS target area, 1996

19th June 2024

SQUID radiation hardness

Motivation

Several hundreds of Gy expected along the SQUID lifetime Irradiation tests undertaken in 2018 [6] - CERN/FAIR collaboration

Four SQUIDs from 2 manufacturers (Magnicon GmbH & Supracon AG)

- Characterization by the manufacturer
- Test at CHARM East Area primary line:
 - SQUID on a fiber glass carrier
 - Irradiation of passive samples for 3 weeks
 - Accumulated dose: 1.37 kGy
- Characterization by the manufacturer

Results [7]

- Magnicon: no performance deterioration for boths
- Supracon: sample1: no performance deterioration sample2: reached 42% of the V-F curve (transfer function) large bias current: more of an effect of electrostatic damage

SQUIDs are not affected by moderate irradiation dose

Similar results for Josephson junctions from different materials are reported in literature [8]

Yes, but...

- SQUIDs were not cold and not powered during the tests in CHARM
- Local electronics (FLL, standard SC) are not rad hard
- Distance SQUID-FLL must be short (~1m) for BW limitation

CCC mini-Workshop

SQUID on a fiber glass carrier Magnicon (left) and Supracon (right)

Area for flux: a few μm^2