

Remote Cooling System Options for a BCCCB Cryostat

T. Koettig, A. Onufrena, B. Naydenov, L. Bossink, J. Liberadzka

19/06/2024

Outline

۲

•

.

- Remote cooling options
- Cryolab remote cooling setup & CFHEXs
- PIDs and options
- Experience from a 1.3 GHz SRF dry cavity cooling setup
- Summary

LHe zero boil off cryostat: summary

Outcome summary

Stand-alone" cryo system requires refills & several associated challenges

- Impurities in the He system \rightarrow SVs leak
- \Box Q < 1.2 W (0.9 + 0.3) available cooling power

□ 12 weeks independent operation (LHe =const.)

System requirements (crucial!)

- Low values of:
 - Mechanical vibrations
 - Temperature and magnetic field variations

All this paved the way to remote cooling circuit R&D

Examples of remote cooling solutions

- Proposed solution: cryocooler-based system with a convective cooling loop
- □ Principle was used before in **space, micro-cooling, gas liquefier** applications

Detector

Remote cooling options

- Thermodynamic design of a remote cooling loop with a 2.5 W PTR
- Remote He cooling loop at high pressure >5 (25) bara
- Possible use of a cold circulator => CryoFan
- Dry cooling interface to the detector via its support shell

Open points:

- Magnetic core?
- Test with a system like that in a non-shielded environment

PIDs for JT based circuits

SQUID cable with intercept

9

PIDs for circulator based circuits

Dry cooling test stations for SRF cavities

Applications: dry SRF cavity cooling

Dry cooling principle

Test setup to study dry colling (system performance, flow in the capillary)

Cavity wall temperature distribution

Numerical simulation! to be validated by the experiments

He two-phase flow (TPF)

Cavity wall temperature distribution

Numerical simulation! to be validated by the experiments

He two-phase flow (TPF)

Flow options – a comparison

Optimum cooling tube diameter/length/fluid pressure

Numerical simulation of friction and heat transfer, a comparison of flow conditions

Pressure drop comparison

Temperature difference tube wall to fluid core

Dry SRF cavity cooling with booster HEX

1.3 GHz SRF cavity test results with booster HEX

(TVO) TT826 located on the capillary (outlet)
(TVO) TT836 located on the cavity equator, measuring the average centured temperature
(TVO) TT827 located on the capillary (inlet)

(Allen Bradley) **T1,T2,T4,T6,T8** located on the capillary
(Allen Bradley) **T3,T5,T7** located on the Cu cavity surface

1.3 GHz SRF cavity test results, PTR alone

1.3 GHz SRF cavity test results, PTR alone

CERN

Summary

- Suggestion of a dry cooling option for the BCCCB with capillary circuit
- Conduction cooling interface to the detector
- Advantages of saving a LHe vessel and ceramic break
- Experimental study of cavity cooling demonstrated 1.7 W cooling power below 6.5 K
- Low mechanical disturbance version with CryoFan and p>5 bar He

Application for BCCCB would need:

- an experimental campaign to demonstrate the feasibility and low disturbance cooling option of a real detector in unshielded environment
- requires a two-stage cryocooler, CFHEX (inhouse), stage HEXs (inhouse), CryoFan, setup
- check for cooldown time as well => 3 days
- 2 years effort with a graduate at CERN Cryolab
- sufficient time for translating this results into an operational cryostat for TT20

Thank you for your attention

