HELMHOLTZ Helmholtz-Institut Jena

RESEARCH FOR GRAND CHALLENGES

Summary BMBF Project 2021-24 Cryogenic Current Comparator (CCC)

Volker Tympel, HI-Jena

June 19th, 2024 CCC Meeting @CERN Helmholtz Institute Jena

HITO

Content of the working points

Beam line Ø

WP1 Stabilization CCC with FAIR dimensions (-xD version) 150 mm in the particle beam

- GSI Darmstadt talks: Thomas and Lorenzo
- Later: Sensor development in Jena

WP2 Small and powerful CCC (-Sm Version: small & smart) 63 mm

- ➢ Why?
 - · Faster and more flexible in sensor construction and sensor testing
 - Then knowledge transfer to larger dimensions (-xD or 100 mm)
 - Tests in a GRP beam cryostat (non-conductive glass fiber reinforced plastic)

V. Tympel Helmholtz Institute Jena

CCCs with core => core is main noise source

Pickup coil #1 of Pb-DCCC-Sm-200 (Lead DualCore-CCC)

Measured at 4.2 K

V. Tympel Helmholtz Institute Jena

Pickup coil #1 of Pb-DCCC-Sm-200 (Lead DualCore-CCC)

V. Tympel Helmholtz Institute Jena

Pb-DCCC-Sm-200

Pickup coils #1 and #2 with inner loop of the shielding.

DCCC completed by the outer meander shielding.

2 coils with each 3 commercial cores M-616

2 coils with each 4 special deep-temp. cores

V. Tympel Helmholtz Institute Jena

Summary BMBF Project 2021-24

CERN 19.06.2024

V. Tympel

Helmholtz Institute Jena

7p White noise CERN-Nb-CCC (2015) GSI-Nb-CCC-xD (2017) Current noise density (A_{rms}/√Hz) 6p IFK-Pb-DCCC-xD (2020) IFK-Pb-DCCC-Sm-300 (2022) 5p IFK-Pb-DCCC-Sm-300 (@2.1K) 4p Special core material 3p + 300 µH 2p – "Weiler weiler + 2.1 K 1p $1 \text{ pA}_{\text{rms}}/\sqrt{\text{Hz}}$ 0 1k 10k 100k Frequency (Hz)

Pulse: 500 pA 200 μs (Sm-200 un-damped)

Ramp: 500 pA 10 ms (Sm-300 un-damped)

Pb-DCCC-Sm-300 un-damped

Low Frequency Noise

Helmholtz Institute Jena

Summary BMBF Project 2021-24

DC (definition!)

High-pass: RL-filter with time constant: 15 min

Low-pass & damping

Low-pass & damping

Slew rate increase

Pb-DCCC-Sm-300 final damped version

V. Tympel Helmholtz Institute Jena

Summary BMBF Project 2021-24

Magnetic shielding increase

Pb-DCCC-Sm-300

Not real, tubes is shortened by meanders!

Proposal IPHT:

Lead foil and wrapping inside or outside \Rightarrow longer effective tube lengths

Magnetic shielding increase

Pb-DCCC-Sm-300

Magnetic shielding increase

Common mode rejection

Helmholtz Institute Jena

Summary BMBF Project 2021-24

Tests with GFK beam cryostat

First results:

1. Grounded electrical shielding is necessary !

2. Be careful with high frequency on the metallic beam tube !

In progress. (End of project Dec. 2024)

V. Tympel Helmholtz Institute Jena

Summary BMBF Project 2021-24

CERN 19.06.2024 26

Pb-Coreless CCC-xD

- Excellent magnetic shielding
- High frequency
 problems

Pb-DualCore CCC-xD

- Excellent magnetic shielding
- Better lab parameter

Kryosystem

=> GS/

Pb-Coreless CCC-xD

- Excellent magnetic shielding
- High frequency
 problems

Pb-DualCore CCC-xD

- Excellent magnetic shielding
- Better lab parameter

Kryosystem

=> GS/

CERN-CCC #2

DualCore Sm version – direct

DualCore Sm version – direct

DualCore Sm version – MT

DualCore Sm version – MT

Coreless Sm version (IPHT-CCC)

Ph.D. in 2023

• David Haider, Uni-Frankfurt,

3. July, Suma cum laude

"Precise intensity monitoring at CRYRING@ESR: On designing a Cryogenic Current Comparator for FAIR"

- Creation of a coreless Pb-CCC-xD
- Creation of the cryogenic support system
- Measuring with FAIR-Nb-CCC-xD @ CRYRING@ESR

dio: 10.21248/gups.74487

CHALLENGE: LOW TEST CURRENT

Pb-DCC-Sm-300

Final damped version $(2x 4.7 \Omega)$

Longer ramp (10 ms)

V. Tympel Helmholtz Institute Jena

Summary BMBF Project 2021-24

CERN 19.06.2024

Current BMBF Project

Some physics @ Pb-DCCC-Sm-300

V. Tympel Helmholtz Institute Jena

Summary BMBF Project 2021-24

CERN 19.06.2024

NEXT STEPS

2. High-pass: 50 nΩ

Current BMBF Project

Some physics @ Pb-DCCC-Sm-300

Core material

Temperature-dependent inductance measurements of single cores used for CCC

Frequency-dependent $\rm L_{s}R_{s}$ measurements of the two pickup coils of the Sm-300