

Measurement of 92,97,98,100 Mo(n, γ) relevant to Astrophysics and Nuclear Technology

M. Busso, D.M. Castelluccio, P. Console Camprini, N. Colonna, S. Cristallo, C. Domingo-Pardo, A. Guglielmelli, J. Heyse, S. Kopecky, C. Lederer-Woods, A. Manna, C. Massimi*, P. Mastinu, A. Mengoni, P.M. Milazzo, <u>**R. Mucciola**</u>, C. Paradela-Dobarro, I. Porras, T. Rauscher, F. Rocchi, P. Schillebeeckx, N.V. Sosnin, N. Terranova, G. Vannini, and the n_TOF Collaboration

76th meeting of the INTC

Importance of molybdenum

- Stellar nucleosynthesis;
- Fission product in nuclear power plants;
- Transport casks, irradiated fuel storage;
- Research reactors and Accident Tolerant Fuels;
- Future fusion reactors;
- Production of ^{99m}Tc for nuclear medicine.

Stellar nucleosynthesis

- Four main nucleosynthesis processes for elements heavier than iron: s-process, r-process, i-process, and p-process;
- Some isotopes can be synthetized only by one process (e.g., ⁹²Mo p-only, ¹⁰⁰Mo r-only);
- Possible to set constraints on intensity of the processes.

s-process path around molybdenum

5	⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	97 _{Ru}	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru
	1.80 m	1.64 h	5.54	2.79 d	1.87	12.76	12.6	17.06	31.55
	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Тс	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc
	2.75 h	4.88 h	20.00 h	4.28 d	4.21 Ma	4.20 Ma	211.11 ka	15.80 s	14.22 m
	⁹² Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	98 _{Mo}	⁹⁹ Mo	¹⁰⁰ Mo
	14.84	4.00 ka	9.25	15.92	16.68	9.55	24.13	2.75 d	9.63
6	⁹¹ Nb	⁹² Nb	⁹³ Nb	⁹⁴ Nb	95 _{Nb}	96 _{Nb}	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb
	80.04 a	34.70 Ma	100	20.30 ka	34.99 d	23.35 h	1.20 h	2.86 s	15.00 s
	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr
	51.45	11.22	17.15	1.53 Ma	17.38	64.03 d	2.8	16.74 h	30.70 s

Presolar grain composition

• Comparison of SiC grains composition versus stellar model using delta notation:

$$\delta\left(\frac{{}^{95}Mo}{{}^{96}Mo}\right) = 10^3 \times \left[\frac{\binom{95}{96}Mo}{{}^{96}Mo}}{\binom{95}{96}Mo}_{\odot} - 1\right]$$

- MACS from **KADoNiS v0.3** database,
- Slight discrepancies between model and isotopic composition, especially for ⁹⁷Mo and ⁹⁸Mo,
- Possible overestimation of MACS in KADoNiS.

N. Liu et al., APJ 881 (2019)

Astrophysical motivations beyond s-process

⁹²Mo

- Produced via p-process;
- Main processes of production are (γ , n), (γ , p), (γ , α);
- For stars with temperature T<3 x 10⁹ K, the (γ,n) process is more relevant for this isotope.

¹⁰⁰Mo

- Produced by r-process and n-process;
- In explosive He burning conditions in CCSN, neutron interactions are relevant for the creation and destruction of ¹⁰⁰Mo.

TOF State Raiseade di Faica Nacharas

Production of ^{99m}Tc

- ^{99m}Tc is one of the most important radioisotope in nuclear medicine;
- Mainly produced in nuclear reactors;
- Production of ^{99m}Tc with in irradiation facilities with epithermal or fast neutrons can be useful for small domestic use;
- ⁹⁸Mo(n,γ) and ¹⁰⁰Mo(n,2n) are the main candidates to produce ^{99m}Tc with irradiation;
- Accurate knowledge of the neutron interaction cross sections is relevant to accurately predict the production rates in new facilities.

Cross section uncertainties in ENDF/B-VIII

• Large uncertainties in the cross section reported in nuclear data libraries;

NTOF

- Uncertainties in the **MACS** @ 30 keV around 10-15% for all isotopes;
- Resolved resonance region of ⁹⁷Mo limited to region below 2 keV.

ENDF/B-VIII: D. Brown et al., Nucl. Data. Sheets 148 (2012)

CÉRN

Samples

- Samples like the ones used in previous campaign;
- Metallic powder samples;
- Enrichment above **95%** in each sample;
- ~2g of material for each isotope in 2cm diameter disks;
- Possible to press powder to create selfsustaining samples;
- Maybe possible to mount samples in standard Al ring with Mylar.

Sample preparation at n_TOF

TOF LISTER & LISTER & CERN

- Metallic powder of ^{nat}Mo with grain size like previous enriched samples;
- Sample prepared using 2g of material in a 2cm diameter disk;
- Preparation performed locally at n_TOF using hydraulic press;
- Minimal amount of material loss during preparation (<0,1%);
- Self sustaining samples, no sign of instability.

Measurements setup

EAR1

EAR2

Setup:

- 9 sTED
- 2 C₆D₆

EAR1 spectra previous measurements

CÉRN

INFN

Istituto Nazionale di Fisica Nuc

76TH MEETING OF THE INTC

Preliminary results previous measurements

- Analysis of EAR1 data performed for all isotopes, resonance fitting currently ongoing;
- Example of preliminary fit for ⁹⁴Mo showed here compared to the calculation performed with **JENDL5** parameters;
- Good agreement between transmission and capture data with enriched samples.

Preliminary results previous measurements

- Preliminary analysis of **EAR2** data with gold samples;
- Capture yield compared with values in ENDF/B-VIII using SAMMY;
- Good agreement of data with calculations in thermal region (0,025 eV) and in the resolved resonances.

Count rates estimated for **EAR1** measurements

- Setup with 4 $C_6 D_6$
- Cross section from ENDF/B-VIII.0
- Resolution of EAR1 included in the estimation using SAMMY
- Empty from previous Mo campaign in EAR1 (2022),
- Total of 20 x 10¹⁷; 10 x 10¹⁷; 17 x 10¹⁷; 17 x 10¹⁷ for ⁹²Mo, ⁹⁷Mo, ⁹⁸Mo, and ¹⁰⁰Mo respectively.

Count rates estimated for **EAR2** measurements

- Setup with 9 sTED
- Cross section from ENDF/B-VIII.0
- Resolution of EAR2 included in the estimation using SAMMY
- Empty from previous Mo campaign in EAR2 (2022),
- Total of 6,0 x 10¹⁷; 4,0 x 10¹⁷; 5,0 x 10¹⁷; 4,0 x 10¹⁷ for ⁹²Mo, ⁹⁷Mo, ⁹⁸Mo, and ¹⁰⁰Mo respectively.

Conclusions

- Molybdenum cross section has strong physical motivations from astrophysics to nuclear technology and nuclear medicine;
- The accurate knowledge of the cross section for all the naturally occurring isotopes is crucial for nuclear reactors;
- High uncertainty in the literature data for these isotopes;
- Combination of measurements in EAR1 with C₆D₆ and in EAR2 with sTED to obtain cross section from thermal up to hundreds of keV;
- Preliminary analysis of previous measurements with other Mo isotopes in both experimental areas shows good performance and promising results;

Sample	EAR1 (C6D6)	EAR2 (sTED)
⁹² Mo	20 x 10 ¹⁷	6 x 10 ¹⁷
⁹⁷ Mo	10 x 10 ¹⁷	4 x 10 ¹⁷
⁹⁸ Mo	17 x 10 ¹⁷	5 x 10 ¹⁷
¹⁰⁰ Mo	17 x 10 ¹⁷	5 x 10 ¹⁷
Au	2,0 x 10 ¹⁷	1 x 10 ¹⁷
Background (Empty/Dummy, C, Pb)	9,0 x 10 ¹⁷	4 x 10 ¹⁷
Total	75 x 10 ¹⁷	25 x 10 ¹⁷

Activation measurement at NEAR with ⁹⁸Mo

- Possibility of perform activation on ⁹⁸Mo and ^{nat}Mo samples at **NEAR** parasitically;
- Half life of ⁹⁹Mo is 66h, ideal candidate for activation;
- With natural sample two production channel available: ⁹⁸Mo(n,γ) and ¹⁰⁰Mo(n,2n);
- Comparison between the two activation can be compared to the contribution of $^{100}Mo(n,2n)$;
- Production of ^{99m}Tc (6h), also measurable in the sample.

⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru
12.76	12.6	17.06	31.55
⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc
4.20 Ma	211.11 ka	15.80 s	14.22 m
⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Mo	¹⁰⁰ Mo
9.55	24.13	2.75 d	9.63
96NI-	07.	00	99

Conclusions

- Molybdenum cross section has strong physical motivations from astrophysics to nuclear technology and nuclear medicine;
- The accurate knowledge of the cross section for all the naturally occurring isotopes is crucial for nuclear reactors;
- High uncertainty in the literature data for these isotopes;
- Combination of measurements in EAR1 with C₆D₆ and in EAR2 with sTED to obtain cross section from thermal up to hundreds of keV;
- Preliminary analysis of previous measurements with other Mo isotopes in both experimental areas shows good performance and promising results;
- Possible parasitic activation measurement to confirm the MACS.

Sample	EAR1 (C6D6)	EAR2 (sTED)
⁹² Mo	20 x 10 ¹⁷	6 x 10 ¹⁷
⁹⁷ Mo	10 x 10 ¹⁷	4 x 10 ¹⁷
⁹⁸ Mo	17 x 10 ¹⁷	5 x 10 ¹⁷
¹⁰⁰ Mo	17 x 10 ¹⁷	5 x 10 ¹⁷
Au	2,0 x 10 ¹⁷	1 x 10 ¹⁷
Background (Empty/Dummy, C, Pb)	9,0 x 10 ¹⁷	4 x 10 ¹⁷
Total	75 x 10 ¹⁷	25 x 10 ¹⁷

Thanks for your attention

Backup

Mo literature study

Transmission			Capture			
Wang	^{nat} Mo	POHANG (<200 eV)	Weigmann	^{nat} Mo	GELINA (<25 keV)	
Pevzner	92,94,95,96,97,98,100 Mo	DUBNA (<10 keV)	Weigmann	^{92,94,95,96,97,98,100} Mo	GELINA (<5 keV)	
Wynchank	^{nat} Mo	Columbia Univ. (<5 keV)	Musgrove	^{92,94,95,96,97,98,100} Mo	ORELA (>3keV)	
Shwe	^{95,97} Mo, ^{nat} Mo	Argonne (<1.5 keV)	Wasson	⁹² Mo	ORELA (<30 keV)	
Chrien	⁹⁸ Mo	ORELA (<50 keV)				
Babich	⁹⁸ Mo	90m chopper (<2.5 keV)				
Leinweber	^{nat} Mo	RPI (<2 keV)				
Wasson	⁹² Mo	ORELA (<30 keV)				
Weigmann	¹⁰⁰ Mo	ORELA (<4keV)				

Libraries sources

lsotope	JENDL-3.3	JENDL-4	ENDF-B/VIII	JEFF-3.3
⁹² Mo	Wasson, Weigmann, Musgrove	Wasson, Weigmann, Musgrove	Mughabghab	JENDL-4
⁹⁴ Mo	Weigmann, Musgrove	Weigmann, Musgrove, Wang	JENDL-3.3	JENDL-4
⁹⁵ Mo	Weigmann, Shwe	Weigmann, Shwe, Wang	Mughabghab	Mughabghab
⁹⁶ Mo	Weigmann, Musgrove	Weigmann, Musgrove, Wang	JENDL-3.3	JENDL-4
⁹⁷ Mo	Weigmann, Shwe	Weigmann, Shwe, Wang	JENDL-3.3	JENDL-4
⁹⁸ Mo	Weigmann, Musgrove, Chrien	Weigmann, Musgrove, Chrien, Babich, Wang	JENDL-3.3	JENDL-4
¹⁰⁰ Mo	Weigmann, Musgrove, Weigmann	Weigmann, Musgrove, Weigmann, Wang	JENDL-3.3	JENDL-4

Molybdenum cross section ENDF

MACS fractions @ 30 keV

⁹²Mo

¹⁰⁰Mo

^{nat}Mo abundances

lsotope	Abundance
⁹² Mo	14.84%
⁹⁴ Mo	9.25%
⁹⁵ Mo	15.92%
⁹⁶ Mo	16.68%
⁹⁷ Mo	9.55%
⁹⁸ Mo	24.13%
¹⁰⁰ Mo	9.63%

