Measurement of the neutron-induced fission cross section of ²³⁹Pu at n_TOF

L. Audouin[®], M.Caamaño, D. Cano-Ott, I. Duran, J. Heyse, C. Le Naour, <u>A. Manna[®]</u>, C. Massimi, M. Mastromarco, A. Mengoni, C. Paradela, P. Schillebeeckx, M. Spelta, D. Tarrio, L. Tassan-Got, G. Vannini, A. Ventura, R. Zarrella and the n_TOF Collaboration

May 22nd, 2024 – 76th INTC

Motivation

Generation IV Fast Neutron Reactors, high-accuracy data of neutron-induced reactions at least up to 20

> Aliberti et al., Annals of Nuclear Energy 33.8 (2006)

Looking for integral references for the fission cross sections in actinides above 1 MeV

Ignacio Durán^{1,3*}, Roberto Capote², and Georg Schnabel²

...integral reference values in the 8 to 10 MeV interval for a set of actinide isotopes of relevance for the study of fast fission reactors: ²³²Th, ^{233–235–238}U, ²³⁷Np, ²³⁹⁻²⁴¹⁻²⁴²Pu, and ^{241-242m}Am, which will be well suited to renormalize the experimental datasets of actinide nuclei of interest...

EPJ Web of Conferences 294, 04001 (2024)

"...Our analysis indicates that the new absolute measurements of the neutron induced fission cross sections on uranium, bismuth, lead and plutonium have the highest priority in establishing neutron induced fission reaction standards above 200 MeV..."

Report INDC(NDS)-0681, 2015

239PU(n,f)	The last da	ta sets in li	terature
Section Lisowski, 1991	Los Alamos - 20 m FP	[0.5 – 260] MeV	fast PPIC + 2 RPTs
Staples, 1998	Los Alamos - 20 m FP	[0.85 – 62] MeV	2 PPIC
Shcherbakov, 2002	GNEIS – 48.5 m FP	[1 – 200] MeV	2 fast PPIC
Tovesson, 2010 l	_os Alamos - 10.5 m + 7.93 m	[0.01 eV – 200 MeV]	PPIC
Snyder, 2021	Los Alamos - 7-15 m	[0.1 – 100] MeV	TPC

The last data sets in literature...

Identify the fission induced by neutrons with an energy of up to 1 GeV.

General Requirements:

- Very good time resolution
- $```` Low sensitivity to the <math display="inline">\gamma-$ flash
- Good discrimination between α particles and FFs (²³⁹Pu activity ~2 MBq/mg).

Identify the fission induced by neutrons with an energy of up to 1 GeV.

General Requirements:

- Wery good time resolution
- $```` Low sensitivity to the <math display="inline">\gamma-{\sf flash}$
- Good discrimination between α particles and FFs (²³⁹Pu activity ~2 MBq/mg).

PPAC ensemble:

9 target slots and 10 PPACs tilted by 45° with respect to

the neutron beam direction.

Identify the fission induced by neutrons with an energy of up to 1 GeV.

General Requirements:

Wery good time resolution 200 ps

- Key Low sensitivity to the $\gamma-{\rm flash}$
- Sood discrimination between α particles and FFs $(^{239}Pu \text{ activity } \sim 2 \text{ MBq/mg}).$

PPAC ensemble

Detector already used in cross section measurement from thermal energy to GeV

Samples

²³⁹Pu Material already @JRC–Geel from the ²³⁹Pu(n,γ) experimental campaign

Purity 99.90 wt.%, May, 2017, 0.10 wt.% Pu-240-241-242

@ SCK CEN:

Purification ²⁴¹Am/²³⁹Pu of the order 1 ppm

proposed for end of this year

sck cen

Samples

²³⁹Pu Material already @JRC-Geel from the ²³⁹Pu(n,γ) experimental campaign

Purity 99.90 wt.%, May, 2017, 0.10 wt.% Pu-240-241-242

@ SCK CEN:

Purification ²⁴¹Am/²³⁹Pu of the order 1 ppm

proposed for end of this year

sck cen

@IJCLab, Orsay

²³⁹Pu will be deposited on ultra-thin aluminum foils (2 µm thick) by electroplating

→ layers of 40 mm diameter and ~160 µg/cm2 density

Samples

²³⁹Pu Material already @JRC-Geel from the ²³⁹Pu(n, γ) experimental campaign

Purity 99.90 wt.%, May, 2017, 0.10 wt.% Pu-240-241-242

@ SCK CEN:

Purification ²⁴¹Am/²³⁹Pu of the order 1 ppm

proposed for end of this year

sck cen

@IJCLab, Orsay

²³⁹Pu will be deposited on ultra-thin aluminum foils (2 µm thick) by electroplating

→ layers of 40 mm diameter and ~160 µg/cm2 density

Fission Collimator

beam profile > samples diameter

Measurement relative to ²³⁵U(n,f)*

→ ²³⁵U samples with the same dimension

*235U(n,f) relative to n-p @n_TOF up to 450 MeV (INTC-P-507 - paper submitted)

Proton request

The ²³⁹Pu(n,f) cross section will be measured as ratio with respect to the ²³⁵U(n,f)

Considering:

EAR1 - fission collimator effective BIF of 0.35 the typical FFs detection efficiency for the PPAC of 55%

the total number of fission reactions with <mark>50 bpd</mark> from 6 ²³⁹Pu and 3 ²³⁵U samples

With

4.5×10¹⁸ protons on target

First measurement from thermal neutron energy to GeV

INTC-P-705 + INTC-P-507-ADD-1

We propose to measure the ²³⁹Pu(n,f) cross section as ratio with respect to the ²³⁵U(n,f) cross section

4.5×10¹⁸ protons on target – EAR1 fission collimator

PPAC

"...Our analysis indicates that the new absolute measurements of the neutron induced fission cross sections on uranium, bismuth, lead and **plutonium** have the highest priority in establishing neutron induced fission reaction standards above 200 MeV..."

Report INDC(NDS)-0681, 2015

11

INTC-P-705 + INTC-P-507-ADD-1

We propose to measure the ²³⁹Pu(n,f) cross section as ratio with respect to the ²³⁵U(n,f) cross section

4.5×10¹⁸ protons on target – EAR1 fission collimator

4.0×10¹⁸ protons on target – EAR1 capture collimator

Conclusion

We propose to measure the ²³⁹Pu(n,f) cross section as ratio with respect to the ²³⁵U(n,f) cross section

The tilted PPAC ensemble is suitable for cross section measurement from thermal energy to GeV

The detector will be loaded with 6 ²³⁹Pu samples and 3 ²³⁵U samples

4.5×10¹⁸ protons on target – EAR1 fission collimator

²³⁹Pu material already available

SCR CEN proposed to perform the purification 239 Pu/ 241 Am by the end of this year \rightarrow if approved, measurement could be performed in 2025

Conclusion

We propose to measure the ²³⁹Pu(n,f) cross section as ratio with respect to the ²³⁵U(n,f) cross section

The tilted PPAC ensemble is suitable for cross section measurement from thermal energy to GeV

The detector will be loaded with 6 ²³⁹Pu samples and 3 ²³⁵U samples

4.5×10¹⁸ protons on target – EAR1 fission collimator

²³⁹Pu material already available

SC: CEN proposed to perform the purification 239 Pu/ 241 Am by the end of this year \rightarrow if approved, measurement could be performed in 2025

Thank you for your attention

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron-induced fission cross section of 239 Pu at n_TOF

L. Audouin¹, M. Caamaño², D. Cano-Ott³, I. Duran², J. Heyse⁴, C. Le Naour¹, A. Manna^{5,6}, C. Massimi^{5,6}, A. Mengoni^{5,7,8}, C. Paradela⁴, P. Schillebeeckx⁴, M. Spelta⁵, D. Tarrio⁹, L. Tassan-Got¹, G. Vannini^{5,6}, A. Ventura⁵, R. Zarrella^{5,6}, and the n₋TOF Collaboration⁸

¹Université Paris-Saclay, CNRS, IJCLab, Orsay, France
²Universidad de Santiago de Compostela, Spain
³Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Spain
⁴European Commission, Joint Research Centre, Geel, Belgium
⁵INFN, Sezioni di Bologna and Trieste, Italy
⁶Dipartimento di Fisica e Astronomia, University of Bologna, Italy
⁷ENEA, Bologna, Italy
⁸CERN, Geneva, Switzerland
⁹Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Sweden

Spokespersons: Alice Manna (alice.manna@bo.infn.it), Laurent Audouin (laurent.audouin@ijclab.in2p3.fr) Technical coordinator: Oliver Aberle (oliver.aberle@cern.ch)

Systematics uncertainties

- ²³⁵U and ²³⁹Pu areal density
- Detector Efficiency
 - ightarrow ~1.5% from thermal energy to ~100 keV
 - ~2% > 100 keV

Systematics uncertainties

