Implantation of ²²⁶Ra for the measurement of its absolute nuclear charge radius

S. Bara¹, T.E. Cocolios¹, M. Deseyn¹, Ch.E. Düllmann^{2,3,4}, A. Doinaki^{5,6}, C. Duchemin⁷, M. Heines¹, A. Herzan⁸, J.D. Johnson¹, A. Knecht⁵, R. Mancheva^{1,7}, E. Maugeri⁵,
A. Ouf², W.W.M.M. Phyo¹, R. Pohl², P. Reiter⁹, D. Renisch^{2,4}, N. Ritjoho¹⁰, J. Schell¹¹, J. Shaw¹, K. von Schoeler⁶, S.M. Vogiatzi¹, W. Wojtaczka¹, A. Zendour⁵ for the muX collaboration

¹KU Leuven, Belgium
²Johannes Gutenberg University Mainz, Germany
³GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany
⁴Helmholtz Institute Mainz, Germany
⁵Paul Scherrer Institut, Villigen, Switzerland
⁶ETH Zürich, Switzerland
⁷CERN, Switzerland
⁸Slovak Academy of Sciences, Bratislava
⁹Universität zu Köln, Germany
¹⁰Suranaree University of Technology, Nakhon Ratchasima, Thailand
¹¹CENIDE, Essen, Germany

76th Meeting of the INTC 22. 5. 2024

muX experiment

- Measurement of missing absolute charge radii for high-Z radioactive targets
- muX is a fully approved experiment at PSI with regular beam times to develop method and perform first measurements of radioactive targets
- Main goal: ²²⁶Ra as a candidate for an APV experiment
- Transfer reactions in high-pressure H2/D2 gas mixture to measure microgram quantities

A. Adamczak et al., Eur. Phys. J. A 59, 15 (2023)

H₂/D₂ gas @ 100 bar

µg target

muon entrance

μ·

detector

 H_2/D_2 gas

How to extract nuclear charge parameters

PAUL SCHERRER INSTITUT

Andreas Knecht

Germanium array

- 2017/2018
 - I1 germanium detectors in an array from French/UK loan pool, Leuven, PSI
 - First time a large array is used for muonic atom spectroscopy

▶ 2019

- Miniball germanium detector array from CERN
- 26 germanium crystals in total
- Since 2020: mixture of various detectors contributed from various collaborating institutions; common array with MIXE

N. Warr et al., Eur. Phys. J. A 49, 40 (2013) L. Gerchow et al., Rev. Sci. Instrum. 94, 045106 (2023)

Radioactive targets

15.5 μ g ²⁴⁸Cm target

4.4 μg ²²⁶Ra target

1.4 μ g ²²⁶Ra target

- Made by a combination of electroplating and printing in the Nuclear Chemistry unit at JGU Mainz
- Difficult to make thin targets that have only very little organic contamination
- We did not observe anything significant from the two radium targets
- For both curium and radium target we suffered from palladium contamination —> only about 1/3 of muons went to target material

Muonic curium spectrum

- Succeeded to measure muonic curium for the first time
- Effectively a 5 µg target
- Excellent statistical accuracy, but final result will be limited by systematics

First hints of muonic radium

- After intense analysis of curium measurements and a lot of work on the target preparation using barium, we were ready again for radium
- We are confident that we see for the first time evidence of muonic radium x rays
- Not quite enough for a high-statistics measurement, hard to unambiguously assign hyperfine transitions

Can we prepare targets differently?

- Started looking at implanted targets using ion beams
- Checked effect of graphite layer on top of gold to characterise attenuation
- Can afford a layer of a few 10 nm
- Performed measurements with implanted gold targets and compared to surface targets
- Looks promising, good efficiencies achievable
- This was also confirmed by the measurement of a first radioactive target: 7.5 µg of ⁴⁰K (1.1x10¹⁷ atoms) implanted at 30 keV

	Target	Mass	2p-1s count
	_	(µg)	$(10^{-6} \text{ muon}^{-1})$
surface	¹⁹⁷ Au 10 nm	34.11	8.8(5)
targets	¹⁹⁷ Au 3 nm	10.23	4.5(4)
implanted	$^{197}\mathrm{Au}~90\mathrm{keV}$	10.38	4.7(3)
targets	$^{197}\mathrm{Au}~27\mathrm{keV}$	9.38	4.3(3)
laigels	$^{197}\mathrm{Au}4.5\mathrm{keV}$	9.45	5.2(5)

Implanting radium

- TRIDYN simulations for the implantation of the maximum allowed ²²⁶Ra quantity in glassy carbon: 1.46x10¹⁶ atoms (5.5 µg, 200 kBq, 100 LA)
- Simulations show that we are well below self-sputtering limits \blacksquare
- Implantation at around 30 nm very acceptable
- Also only small loss after implantation due to recoil-sputtering

Implanting radium

- Propose to prepare two radium targets to have one as a backup for the muon measurements
- Implantation could be performed at GPS separator of ISOLDE offline using commercially obtained radium nitrate dissolved in nitric acid
- Estimates below rely on surface ionisation alone with an efficiency as observed by MEDICIS for ²²⁴Ra
- "Slow" implantation for best quality ion beam and minimal losses
- "Fast" implantation at the ion load limit of around 100 nA for second target to explore capabilities for potential, future implantations
- Monitoring of implantation using the ion current and gamma-ray spectroscopy

initial activity	ionisation efficiency	ion current	implantation duration
500 kBq	40%	20 nA	32.5 h
500 kBq	40%	100 nA	6.5 h

- We are aware of the safety concerns and are happy to follow any required protocols and procedures and to perform dry runs.
- We have started to discuss these issues already with corresponding CERN personnel.
- After implantation the two targets will be stored under vacuum before shipping to PSI and transferring them to the muX target chambers.

Andreas Knecht

Conclusions

- Muonic atom spectroscopy offers the possibility to measure absolute charge radii of radioactive isotopes
- muX has developed a method to work with as little as a few microgram of target material with the explicit goal of measuring the charge radius of ²²⁶Ra
- Ion implantation has been shown to be an excellent tool to prepare targets for muX
- We request 6 shifts of beam time without protons to implant two radium targets

Backup

100 bar hydrogen target

- Target sealed with 0.6 mm carbon fibre window plus carbon fibre/titanium support grid
- Target holds up to 350 bar
- 10 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted onto the back of the cell

Entrance & veto detectors

- Entrance detector to see incoming muon
- Veto scintillators to form anticoincidence with decay electron

Experimental setup

Ion load limit

