Study of the *N* = 28 shell closure in the argon isotopes

Abigail McGlone, Holly Perrett, Jessica Warbinek

and the CRIS collaboration

INTC Meeting 76, May 22, 2024

Introduction

	Sc 43 3.891 h	Sc 44 4.0420 h	Sc 45 ^{100.}	Sc 46 83.80 d	Sc 47 3.3492 d	Sc 48 43.67 h	Sc 49 57.18 m	Sc 50 102.5 s	Sc 51 12.4 s	Sc 52 8.2 s	Sc 53 2.4 s	Sc 54 526 ms	Sc 55 96 ms
20	Ca 42 0.647	Ca 43 0.135	Ca 44 2.09	Ca 45 162.61 d	Ca 46 0.004	Ca 47 4.536 d	Ca 48 0.187	Ca 49 8.718 m	Ca 50 13.9 s	Ca 51 10.0 s	Ca 52 4.6 s	Ca 53 461 ms	Ca 54 90 ms
	K 41 6.7302	K 42 12.355 h	K 43 22.3 h	K 44 22.13 m	K 45 17.8 m	K 46 105 s	K 47 17.50 s	K 48 6.8 s	K 49 1.26 s	K 50 472 ms	K 51 365 ms	K 52 110 ms	K 53 ^{30 ms}
18	Ar 40 99.6035	Ar 41 109.61 m	Ar 42 32.9 y	Ar 43 5.37 m	Ar 44 11.87 m	Ar 45 21.48 s	Ar 46 8.4 s	Ar 47 1.23 s	Ar 48 415 ms	Ar 49 236 ms	Ar 50	Ar 51	Ar 52
	CI 39 56.2 m	CI 40 1.35 m	CI 41 38.4 s	CI 42 6.8 s	CI 43 3.13 s	CI 44 560 ms	CI 45 413 ms	CI 46 232 ms	CI 47 101 ms	CI 48	CI 49	CI 50	CI 51
16	S 38 170.3 m	S 39 11.5 s	S 40 8.8 s	S 41 1.99 s	S 42 1.016 s	S 43 265 ms	S 44 100 ms	S 45 68 ms	S 46 50 ms	S 47	S 48	S 49 < 200n 1.0	34
	P 37 2.31 s	P 38 640 ms	P 39 282 ms	P 40 150 ms	P 41 101 ms	P 42 48.5 ms	P 43 35.8 ms	P 44 18.5 ms	P 45	P 46	P 47		
14	Si 36 450 ms	Si 37 90 ms	Si 38	Si 39 47.5 ms	Si 40 33.0 ms	Si 41 20.0 ms	Si 42 12.5 ms	Si 43	Si 44	Si 45	32		
	22		24		26		28		30				

This proposal Published laser spectroscopy

Persistence of N=28 shell closure below ⁴⁸Ca

- Complete disappearance in ⁴²Si
- Signatures of shape coexistence in ⁴⁴S
- Study onset of collectivity

A. Gade et al., Phys. Rev. Lett. 102, 182502 (2009). M. Mougeot et al., Phys. Rev. C 102, 014301 (2020). D. Mengoni et al., Phys. Rev. C 82, 024308 (2010). O. Sorlin, M.-G. Porquet. Nobel Symposium 2012, Göteborg, Sweden. T152, 014003 (2013).

Introduction

Persistence of N=28 shell closure below ⁴⁸Ca

- Complete disappearance in ⁴²Si
- Signatures of shape coexistence in ⁴⁴S
- Study onset of collectivity

Indications for closed shell in Ar

- High lying E(2+) excitation energy at N=28
- Mass measurements confirmed large shell gap
- Lifetime measurements suggest erosion of shell

gap from Ar on

A. Gade et al., Phys. Rev. Lett. 102, 182502 (2009).
M. Mougeot et al., Phys. Rev. C 102, 014301 (2020).
D. Mengoni et al., Phys. Rev. C 82, 024308 (2010).

O. Sorlin, M.-G. Porquet. Nobel Symposium 2012, Göteborg, Sweden. T152, 014003 (2013).

Nuclear moments and spins of odd-Ar nuclei

Magnetic moments of odd-A nuclei are a sensitive probe to study the interplay between the single particle structure and many-body correlations.

Experimental **g-factors** up to ⁴⁵Ar follow the same trend as the Ca g-factors

Moments of 45,47 Ar will be sensitive to the presence of mixed configurations – investigate strength of the N=28 shell gap in Ar.

K. Blaum et al., Nucl. Phys. A 799, 30–45 (2008). R.A. Radhi et al., Phys. Rev. C 97, 064312 (2018).

Jessica Warbinek - 76th INTC Meeting, May 22 2024

Ar

Ca

Nuclear moments and spins of odd-Ar nuclei

Magnetic moments of odd-A nuclei are a sensitive probe to study the interplay between the single particle structure and many-body correlations.

Experimental **g-factors** up to ⁴⁵Ar follow the same trend as the Ca g-factors

Moments of 45,47 Ar will be sensitive to the presence of mixed configurations – investigate strength of the N=28 shell gap in Ar.

K. Blaum et al., Nucl. Phys. A 799, 30–45 (2008). R.A. Radhi et al., Phys. Rev. C 97, 064312 (2018).

Jessica Warbinek - 76th INTC Meeting, May 22 2024

Ar

Ca

Nuclear moments and spins of odd-Ar nuclei

Magnetic moments of odd-A nuclei are a sensitive probe to study the interplay between the single particle structure and many-body correlations.

Experimental **g-factors** up to ⁴⁵Ar follow the same trend as the Ca g-factors

Moments of ^{45,47} Ar will be sensitive to the presence of mixed configurations – investigate strength of the N=28 shell gap in Ar.

Quadrupole moments of Ar follow trend Ca chain

Continuing measurements beyond shell closure to investigate signs of collectivity arising

 \rightarrow Studying the Ar ground states to have full picture for excited state studies

K. Blaum et al., Nucl. Phys. A 799, 30-45 (2008). R.A. Radhi et al., Phys. Rev. C 97, 064312 (2018).

Ar

Charge radii of neutron-rich Ar

Outlook: further measurements towards N=32

K. Blaum et al., Nucl. Phys. A 799, 30–45 (2008).
I. Angeli, K.P. Marinova. J. Phys. G, 42, 055108 (2015).
H. Heylen et al., Phys. Rev. C, 94, 054321 (2016).
K. Minamisono et al., Phys. Rev. Lett., 117, 252501 (2016).
F. Sommer et al., Phys. Rev. Lett., 129, 132501 (2022).
A. Koszorus, X. Yang, et al., Nature Phys., 17, 1–5 (2021).

Kink in charge radii trends as probe for shell closure

• Observed at N=28 consistently observed for Z=19-28

 \rightarrow Data missing for Ar Z=18

Charge radii of neutron-rich Ar

Outlook: further measurements towards *N*=32

K. Blaum et al., Nucl. Phys. A 799, 30–45 (2008).
I. Angeli, K.P. Marinova. J. Phys. G, 42, 055108 (2015).
H. Heylen et al., Phys. Rev. C, 94, 054321 (2016).
K. Minamisono et al., Phys. Rev. Lett., 117, 252501 (2016).
F. Sommer et al., Phys. Rev. Lett., 129, 132501 (2022).
A. Koszorus, X. Yang, et al., Nature Phys., 17, 1–5 (2021).

Kink in charge radii trends as probe for shell closure

- Observed at N=28 consistently observed for Z=19-28
- \rightarrow Data missing for Ar Z=18

Early spherical Skyrme (SGII) Hartree-Fock calculations predict kink in charge radii → Experimental confirmation needed, triggering new theoretic efforts

A. Klein et al., Nucl. Phys. A 607 , 1-22 (1996).

Jessica Warbinek - 76th INTC Meeting, May 22 2024

CRIS technique

CRIS technique

CRIS technique

Jessica Warbinek - 76th INTC Meeting, May 22 2024

Shift request

- UCx target + FEBIAD plasma ion source
- Yields (extrapolated) sufficient for CRIS
- Contamination known (ISOLTRAP)

Measurements feasible down to ⁴⁸Ar

	Half live	Yields (/µC)	Shifts	New results	
³⁸⁻⁴⁴ Ar	> 8s	10 ⁶ -10 ⁷ *	3	-	
⁴⁶ Ar	8.4 s	$1.11 \times 10^{5*}$	2	-	
⁴⁵ Ar	21.48(15) s	$3.49 \times 10^{5*}$	2	Ι, μ, Q _s , δ(r²)	
⁴⁷ Ar	1.23(3) s	7.72 × 10 ³ *	6	Ι, μ, Q _s , δ(r²)	
⁴⁸ Ar	415(15) ms	$1.58 \times 10^{3*}$	5	$\delta \langle r^2 \rangle$	
	Stable	CRIS setup	3 (no protons)		

360 ions/s

R.P. de Groote et al., Nature Phys. 16, 620–624 (2020). A. Koszorus et al., Nature Phys. 17 439–443 (2021).

Shift request

- UCx target + FEBIAD plasma ion source •
- Yields (extrapolated) sufficient for CRIS .
- Contamination known (ISOLTRAP) ٠

Measurements feasible down to ⁴⁸Ar

	Half live	Yields (/µC)	Shifts	New results	
³⁸⁻⁴⁴ Ar	> 8s	10 ⁶ -10 ⁷ *	3	-	
⁴⁶ Ar	8.4 s	$1.11 \times 10^{5*}$	2	-	
⁴⁵ Ar	21.48(15) s	$3.49 \times 10^{5*}$	2	Ι, μ, Q _s , δ(r²)	
⁴⁷ Ar	1.23(3) s	7.72 × 10 ³ *	6	Ι, μ, Q _s , δ(r²)	
⁴⁸ Ar	415(15) ms	$1.58 \times 10^{3*}$	5	$\delta \langle r^2 \rangle$	
	Stable	CRIS setup	3 (no protons)		

- Stable beamtuning for **CRIS setup**: 3 shifts
- **Reference measurements** throughout experiment, calibration of voltage drifts and systematic effects: 5 shifts
- Laser spectroscopy of ⁴⁵Ar: 2 shifts, Laser spectroscopy of ^{47,48}Ar: 11 shifts
- Shifts requested account for expected contamination and reduction of yields by using a narrow beamgate

TAC comments: The TAC does not foresee any serious issues with this proposal.

Conclusion

We propose to study neutron rich argon isotopes crossing the N=28 shell closure to study its evolution between double magic ⁴⁸Ca and the onset of collectivity in ⁴⁴S

- Assess the charge radii crossing the shell gap to look for an evolving kink signature •
- Determine spins which are only tentatively assigned •
- Investigate g-factor and nuclear moments to investigate impact of shell closure in Ar •

Acknowledgments

MANCHESTER

<u>A.C. McGlone¹, H.A. Perrett¹, J. Warbinek²</u>, O. Ahmad³, S.W. Bai⁴, J. Berbalk³, T.E. Cocolios³, R.P. de Groote³, C.M. Fajardo-Zambrano³, K.T. Flanagan¹, R.F. Garcia Ruiz⁵, Á. Koszorús^{3,6}, L. Lalanne⁷, P. Lassegues³, Y.C. Liu⁴, Y.S. Liu⁴, K.M. Lynch¹, G. Neyens³, F. Pastrana⁵, J.R. Reilly², B. van den Borne³, R. Van Duyse³, J. Wessolek^{2,1}, S.G. Wilkins⁵, X.F. Yang³.

Massachusetts

Institute of

Technology

sck cen

¹Department of Physics and Astronomy, The University of Manchester, United Kingdom
 ²Experimental Physics Department, CERN, Switzerland
 ³KU Leuven, Instituut voor Kern- en Stralingsfysica, Belgium
 ⁴School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, China
 ⁵Department of Physics, Massachusetts Institute of Technology, USA
 ⁶Belgian Nuclear Research Centre (SCK CEN), Belgium

⁷IPHC, Université de Strasbourg, France

KU LEUVEN

北京大学

PEKING UNIVERSITY

Systematic drifts

Voltage calibration necessary over long range of isotopes

Instabilities observed in ISCOOL voltage readout

Agota Koszorus, Dissertation, KU Leuven (2019).

Yields and contaminations

M. Mougeot et al. Phys. Rev. C 102, 014301 (2020).

Contributions for shift estimate:

- Reduction of yield due to narrow beam gate
- CRIS efficiency
- Population of metastable state, hyperfine structure
- Time needed for multiple scans (strongly dependent on signal-to-background ratio)

CERN CRIS,

ISOLTRAP measurements on ⁴⁸Ar

- Expect similar level of contamination
- Mostly ³²S¹⁶O⁺, ⁹⁶Kr⁺
- Narrow beam gate required to reduce contamination
- Shifts estimated from worst case of expected background in CRIS

A. Koszorus et al., Nature Phys. 17 439–443 (2021).