n_TOF Physics Report

76th INTC meeting *May 2024*

Paolo Maria MILAZZO

paolo.milazzo@ts.infn.it
and
Michi BACAK
Zina ELEME
Fran GARCIA INFANTES
Stella GOULA
Alberto MENGONI
Riccardo MUCCIOLA
Michele SPELTA

(Some) preliminary results from 2023 campaign

203 days 2.3E19 poT (+14% than negotiated)

									n	_TOF sch	edule 20	023							Injector N	1D								n_T	OF sch	edule 2	023	
		A				May					lun				lul				Technical	Stop	Διια		Son				Oct					Nov
	14/1-	Apr	45	40	47	мау	40	00	04	00	Jun	04	05	00	Jui	00	- 00	20	Aug		7.uy	24	25	26	27	29	20	40	41	42	42	1100
	VVK Mo	14	15	10	24	16	19	20	21	22 29	23	24	25	20	21	20	29	30	31	32	1	4 21	28	B 4	11	18	25	40	9	42	4 3	30
	Tu																					4 21										
-	We		_ RF inve	st																	_				120/			Ar(n tot)				
Ř	Th		comm	· _	HPGE Lol		181Ta(n.g)		natEr(n.e	z)			20				243	Am(n f)							,cp)		FC. MGAS				-
Ч	Fr				(n,n')		Bicron	/sTED		Bicron/s1	ED			~	SI(n,g)				MGAS	<u> </u>		PPAC	- Sili A	Annular –	(7	ĵ –		LiG, C6D6			LaBr3 tests	
	Sa	Au			(7)		(20)		(20)					(30)				(30)	<u> </u>		particle ID	- ('	n,cp) — (10)	- ···	,		(30)			size/readou	
	Su	activ.					t								((4)	_
N	EL	Imaging				Atlas Pix							lasers	LiG+C	/ LaBr3	TimePIX	GEMPIX	SiC	R	2E	R2E		SiC	Tim	ePix		R	2E				
		Apr				May					Jun				Jul				Aug		Aug		Sep				Oct					Nov
	Wk	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	Мо	///// ³	10	17	24	1	8	15	5	22 29	5	12		26	3	3 10	17	24	31	7	14	4 21	28	8 4	11	18	25	2	9	16	23	30
	Tu																								l							
Ŋ	We												242.4	(- 0		3051/m					<u> </u>			26Al(n,cp)								
Ā	Th			Capt.		D-Stil.			SACS				243Am	(n,t)			1,8) 16	⁵⁴Ni(n,g) 264	Al(n,cp) L cili tolo				EDI sili tele			Sili /	Annular	In beam	n -	X17	
ш	Fr	Dallas		opti. (20)		(7)		i	irrad.	_			(30	AS		(7)	Č	(15)		(60)				(60)			(n,cp)	SILI strip	Lol .		
	Sa	det.		(20)		(7)			(28)					.,				(13)		(00)								5-7) .	(5)			
	Su	1////																														
		A				May					lum.				hal	lasers			A		Aug		Son				Oct					Nov
	14/1-	Apr	45	40	47	мау	40		01		Jun	04	05		Jui	00			Aug		<u>Aug</u>	24	Seh 32	26	27	20	20	40	44	40	42	44
	VVK Ma	14	15 10	16	17	18	19 8	20	21	22 29	23	24	25	26	2/	28 8 10	29 17	30	31	32	7 14	4 21	20	B 4	37	30 18	25	40	41	42	43	44
	Tu						-						-								-											
~	Wo																											DIAN	4			CD
¥	Th				SACS															DIAM				Si	iC			flux	νι		LDs & fast	active
۳	Fr		(7)		irrad.															flux	-			(7	7)			(7)	`		scintillato	rin
	Sa	/////			(28)															(7)									_		shieldir	g
	Su	/////																													(3)	
	M-S																															
22	R																															
	Е																															

CERN-INTC-2022-033 ; INTC-P-208-ADD-1 64Ni(n, γ)

Hockenbury et al., Phys. Rev. 178 (1969) 4

Royalties to Michele Spelta

Request #16 of NEA Nuclear Data High Priority Request List

Royalties to Nikolaos Kyritis

Physics

RESEARCH NEWS

Q Search articles

Heavy Element Quandary in Stars Worsened by New Nuclear Data

ABOUT BROWSE PRESS COLLECTIONS

March 21, 2024 • Physics 17, 47

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation.

New experiments indicate that cerium-140 is significantly more likely to capture an incoming neutron than previously thought.

Measurement of the $^{140}Ce(n, \gamma)$ Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe

S. Amaducci et al. (n_TOF Collaboration)

Phys. Rev. Lett. 132, 122701 (2024) Published March 21, 2024

https://physics.aps.org/articles/v17/47

 $\textbf{News} \rightarrow \textbf{News} \rightarrow \textbf{Topic: Physics}$

Scientists use n_TOF to investigate how cerium is produced in the Universe

The CERN facility allowed scientists to see how this rare Earth metal is synthesised in stars. The results open up new questions about stellar nucleosynthesis and the chemical evolution of galaxies

21 MARCH, 2024

https://home.cern/news/news/physics/scientists-use-ntof-investigate-how-cerium-produced-universe

n_TOF Technical Report at the 76th INTC Meeting

A-P. Bernardes, O. Aberle, n_TOF Facility Technical Coordination, SY-STI-TCD

Upgrade of the Wire Grid System in FTN.BSGF484 to an Enlarged Aperture Version

EDMS 2958701

n_TOF target cooling station

Global confinement of entire cooling station implemented during the YETS.

Safety improvement (extend under pressure confinement to the entire station + additional retention vessels for the moderator skids)

(Some of) Radioprotection issues Implemented during YETS

- Target #2 autopsy and waste packaging in the ISR8
- NEAR activities with open target shielding (R2M)
- Implementation of the ASN-OFSP safety recommendations
- n_TOF facility homologated and safety files up to date

Start of **2024** campaign on March 25th.

58 days of measurement up today 7.24E18 poT (+30% than expected)

EAR-1 28,29,30Si(n, γ)

EAR-2 209Bi(n, γ)

En_Projection_sTED 10¹² protons - Even before than very preliminary ²⁰⁹Bi Thick 209 Bi Thin Counts/8.5 0.003 0.002 0.001 11111 1.1.1111 1 []]] 11111 En[eV] 10⁻² 10² 10³ 10⁵ 10^{-1} 10⁴ 10 1

Royalties to IFIC Valencia group

4 weeks Extension !

2024 Scheduled (up to July)

2024 Tentative (August-November)

111

Injector MD (less beam/no access) Technical Stop (no beam)

	0	v
•	~	

N

	Wk	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	Мо	22	29	5	12	19	26	2	9	16	23		30 7	1	4 21	28	4	11	18
	Tu	Cu(n,g) L6D6/Bicron (25) C. Massimi							24Mg(n,n')				Re-TO	-					
Σ	We				23	8U(n,g)			+ wate	r(n,n')	120(2122)		spectrom	eter	1204	n -	C	u(n,g)	
AF	Th				LEDE/Bicron			LaB (14 ·		Sr3			(parasitic 7)		12C(I	n,nn')	L6D	5/Bicron	
ш	Fr				E N	E Mendoza				+3)	(30)	· _	A. Manna		p-sui	s)		(25) Aassimi	
NE	Sa				2.10	Terraoza			C. Petrone / M.		E Pirovano				M M	.G	C. N	lassiini	
	Su								Bac	ak	2.11101				Pelle	egriti			
	L				LaBr3 te	est bench										0			

Draft 2025 Injectors Schedule ver. 0.1 in numbers

Experimental facility	Beam to	Start physics	End physics	Duration 2025 Physics DRAFT Version 0.1 [days]*			
ISOLDE	17.03.2025	25.03.2025	17.11.2025	23	37		
nTOF	24.03.2025	31.03.2025	17.11.2025	23	31		
PS East Area p⁺	24.03.2025	31.03.2025	17.11.2025	23	31		
PS East Area Pb ions	-	27.10.2025	17.11.2025	2	1		
SDS North Area at	03.04.2025	17.04.2025	07.07.2025	51	440		
SPS North Area p	-	11.07.2025	16.10.2025	97	140		
SPS North Area O ions	07.07.2025	09.07.2025	11.07.2025		2		
SPS North area Pb ions	16.10.2025	20.10.2025	17.11.2025	2	8		
AD-ELENA	26.03.2025	05.05.2025	17.11.2025	19	96		
HiRadMat		28.04.2025	21.09.2025	20	(+8)		

2024 + Draft 2025 Injectors Schedules in numbers

Backlog of 4.4E19 EAR-1 3.0E19 EAR-2

Experimental facility	Duration 2024 v. 2.0 [days]	Duration 2025 v 0.1 [days]	Totals	
ISOLDE	231	237	468	
nTOF	245	231	476	
PS East Area p⁺	251	231	482	*
PS East Area Pb ions	21	21	42	IS a
SPS North Area p ⁺	204	148	352	nd M
SPS North Area O ions	0	2	2	Dtim
SPS North area Pb ions	28	28	56	le etc
AD-ELENA	224	196	420	: not
AWAKE	86	0	86	dedu
HiRadMat	20 (+8)	20 (+8)	40 (+16)	icted

Measurement of ^{92,97,98,100}Mo(n, γ) relevant to Astrophysics and Nuclear Technology Speaker: Riccardo Mucciola (Università e INFN, Bari (IT))

Measurement of the neutron-induced fission cross section of ²³⁶U at n_TOF

Speakers: Andrea Tsinganis (Joint Research Center (JRC) (BE)), Zinovia Eleme (University of Ioannina (GR))

Measurement of the neutron-induced fission cross section of ²³⁹Pu at n_TOF

Speakers: Alice Manna (Università e INFN, Bologna (IT)), Laurent Audouin (Universite ´ Paris-Saclay, CNRS, IJCLab, (FR))

ABOUT US

NUPECC

https://indico.ph.tum.de/event/7629/contributions/8953/attachments/6020/8072/Full_LRP2024_Report_03042024_clean.pdf

Recommendations for Nuclear Physics Infrastructures

Neutron facilities that are producing unique experimental results in nuclear fundamental research and applications, like ILL, and n_TOF at CERN, should be kept in operation.

Recommendations of the Nuclear Astrophysics

The neutron beam facility n_TOF at CERN provides essential nuclear data to unveil the origin of the chemical elements. We strongly recommend full exploitation of the facility in the future and support further upgrades.

Metrology standards

...there is an increasing interest in the measurement of (n,f) and (p,f) reactions at high energy up to 1 GeV, in which the main challenge is to produce absolute results with accuracy suitable for a standard. In Europe, the n_TOF facility at CERN is the only one with such capacity and its uniqueness should be fully exploited.

The n_TOF facility

Detector developments

PUBLICATIONS

DATA DISSEMINATION

https://twiki.cern.ch/NTOFPublic/ListOfPublications https://twiki.cern.ch/twiki/bin/view/NTOFPublic/DataDissemination