DRD7 Collaboration Proposal

Francois Vasey, CERN

on behalf of the DRD7 Steering Committee*

DRDC Plenary meeting, 3 June 2024

*Jerome Baudot, Marcus French, Ruud Kluit, Angelo Rivetti, Frank Simon, Francois Vasey Gratefully acknowledging the very significant contribution of Dave Newbold until Sep 2023

Electronics and On-Detector Processing

Outline

- Motivation & History
- DRD7 Collaboration Structure
 - Implementing the Structure: Transition out of the Proposal Phase
- Scientific and Technical Goals
- Connections to other DRDs and Summary

Motivation and History

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

Motivation

Responding to the ECFA Detector R&D Roadmap of TF7

TF7, electronics and on-detector processing

_	High data rate ASICs and systems	7.1			
Data	New link technologies (fibre, wireless, wireline)	7.1			
aensity	Power and readout efficiency	7.1		Ŏ	Ď
Intelligence	Front-end programmability, modularity and configurability	7.2			
on the	Intelligent power management	7.2			
detector	Advanced data reduction techniques (ML/AI)	7.2			
4D-	High-performance sampling (TDCs, ADCs)	7.3			
	High precision timing distribution	7.3			
tecnniques	Novel on-chip architectures	7.3			
Extromo	Radiation hardness	7.4			
environments	Cryogenic temperatures	7.4			
and longevity	Reliability, fault tolerance, detector control	7.4			
2 2	Cooling	7.4			
	Novel microelectronic technologies, devices, materials	7.5			
Emerging	Silicon photonics	7.5			
technologies	3D-integration and high-density interconnects	7.5			
-	Keeping pace with, adapting and interfacing to COTS	7.5			

Must happen or main physics goals cannot be met

Important to meet several physics goals

DRDT

Desirable to enhance physics reach

* LHCb Velo

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

- Significant R&D needs in many areas already for near - mid-term projects.
- NB: Phase IIb LS4 upgrades have to reach TDR stage by ~2026

R&D needs being met

From Roadmap to DRD7

DRDTs to WPs and Projects

 Seen a rich and interesting R&D program that add Detector R&D Roadmap

		DRDT	<	2030	2030-203	5 20	35- 2040	2045	> 2045
	High data rate ASICs and systems	7.1		•	• •				
ensity	New link technologies (fibre, wireless, wireline)	7.1							D • 1
	Power and readout efficiency	7.1		•	• • • •				
telligence	Front-end programmability, modularity and configurability	7.2					•		
n the	Intelligent power management	7.2		•	• •	•			
tector	Advanced data reduction techniques (ML/AI)	7.2					•		
-	High-performance sampling (TDCs, ADCs)	7.3			•••				
4D- techniques	High precision timing distribution	7.3							
	Novel on-chip architectures	7.3				•			D
drama	Radiation hardness	7.4		•		•			
vironments	Cryogenic temperatures	7.4		•					Ō
nd longevity	Reliability, fault tolerance, detector control	7.4		•					
	Cooling	7.4			• •*				
	Novel microelectronic technologies, devices, materials	7.5		•					
neraina	Silicon photonics	7.5				•			
chnologies	3D-integration and high-density interconnects	7.5		•		•			
	Keeping pace with, adapting and interfacing to COTS	7.5							

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

• Seen a rich and interesting R&D program that addresses all Detector R&D Themes identified in the ECFA

History

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

DRD7 Structure

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

The Collaboration Structure

Adapted to the Community

NB: Nomenclature may still to be adjusted to achieve uniformity across DRDs

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

WG 7.7 conveners	
	I

- R&D in electronics often revolves around major laboratories that can provide a backbone of expertise (in particular engineering) and resources (production, expensive hardware). Reflected in composition of Steering Committee as central executive body.
- Research activities defined bottom-up by institutes coming together in Projects, grouped thematically in Work Packages. WP conveners as coordinators, facilitators of information exchange within WG, within DRD7, and with observing parties from other backgrounds and other DRDs.

The Collaboration Board

Composition of the Collaboration

- One representative per contributing institution
- Chaired by a chairperson, elected from CB member
- Appoints SC members, endorses Spokesperson, C Spokesperson and WP/WG Conveners nominated
- 68 institutions from 19 countries (incl. CERN)

Member institutes are institutes that are active in at least one projection (e.g. with a concrete FTE commitment)

11 institutes from non-CERN-member-states (1-CA, 1-JP, 2-KR,

Several additional institutes have shown interest in projects, but h yet formally joined. These institutes are invited to subscribe to the observers list, and will be informed about events related to the WC subscribed to, and about general DRD7 events.

	Country	Institute	Email address
	ΔΤ	Graz University of Technology, Institute of Electronics	alicia michalowska@tuoraz at
	RE	KII Leuven	levi marien@kuleuven be
	CA	Sherbrooke University	serge charlehois@usherbrooke.cs
	Corn	CEDN	francois vasev@cern.ch
	CH	EDEI	edoardo charbon@enfl.ch
	CII	LITIL University of Ceneva, DDNC	anna sfurla@corn.ch
	DE	Pargiaghe Universitent Wuppertal	anna.siyna@cem.cn
	DE	Dergische Universitäet wuppertai	wagner@uni-wuppertai.de
rc		Deutsches Elektronen-Synchrotron (DEST)	christian.reckleben@desy.de
		Facinochschule Dortmund	Michael.karagounis@in-dorimund
		Forschungszentrum Julich	A.Zambanini@iz-juelicn.de
		Karisrune institute of Technology (KIT)	frank.simon@kit.edu
		MPG HLL	Ica@hll.mpg.de
,()-		RWTH Aachen University, Physics Institute IB	feld@physik.rwth-aachen.de
	EE	Tallinn University of Technology (TalTech)	andrii.chub@taltech.ee
	ES	Centre for Energy, Environmental and Technological Research (CIEMAT)	cristina.fernandez@ciemat.es
		Galician Institute of High Energy Physics (IGFAE)	antonio.fernandez.prieto@cern.ch
hy S(Instituto de Física Corpuscular (IFIC) Valencia	Arantza.Oyanguren@ific.uv.es
		Instituto de Física de Cantabria (IFCA)	ivan.vila@csic.es
J		Instituto de Microelectrónica de Barcelona (IMB-CNM)	miguel.ullan@imb-cnm.csic.es
		Instituto Tecnológico de Aragón (ITAINNOVA)	farteche@itainnova.es
		Universidad de Oviedo	santiago.folgueras@cern.ch
		University of Barcelona-ICCUB	dgascon@fga.ub.edu
	FR	CFA-I FTI	cedric dehos@cea fr
		Institut Polytechnique de Paris, CNRS-IN2P3, OMEGA	taille@in2n3 fr
		I aboratoire d'Annecy de Physique des Particules (LAPP)	Pierre Delebecque@lann in2n3 fr
		Laboratoire de Dhusique de Clermont I DC	Ideramo@cern.ch
		Laboratoire de Physique de Clemioni - LPC	derano@cent.cn
		Laboratorie de physique nucleaire et de nadies energies (LPNRE)	domion colombot@upin gropoble
		University Grenoble Alpes, CNRS, LEGI	damien.colombel@univ-grenoble-
		Université Alx-marseille, CNRS-IN2P3, CPPM	legac@cppm.in2p3.fr
		Universite Claude Bernard Lyon 1, CNRS-IN2P3, IP2I	d.contardo@ipni.in2p3.fr
		Universite de Strasbourg, CNRS-IN2P3, IPHC	jerome.baudot@iphc.cnrs.tr
		Université Grenoble Alpes, CNRS-IN2P3, LPSC	fmalek@lpsc.in2p3.fr
• •		Université Paris-Saclay, CEA, IRFU	florent.bouyjou@cea.fr
lect		Université Paris-Saclay, CNRS-IN2P3, IJClab	daniel.charlet@ijclab.in2p3.fr
	IL	Tel-Aviv University	Yan.Benhammou@cern.ch
	п	INFN Pisa	Fabrizio.Palla@cern.ch
		INFN Torino	darochar@to.infn.it
		INFN-Arcadia project, represented by INFN Torino	darochar@to.infn.it
		Scuola Superiore Sant'Anna Pisa	claudio.oton@santannapisa.it
		Università degli Studi di Milano and INFN Sezione di Milano	attilio.andreazza@mi.infn.it
		Università di Padova	piero.giubilato@unipd.it
		University of Bergamo / INFN Pavia / University of Pavia	luigi.gaioni@unibg.it
		University of Trento	philippe.velha@unitn.it
		University of Udine	stefano.saggini@uniud.it
7-05)	JP	KEK. High Energy Accelerator Research Organization	kisisita@post_kek.ip
	KR	Daegu Gyeongbuk Institute of Science and Technology (DGIST)	gain kim@dgist ac.kr
		Gangneung-Woniu National University (GWNU)	elizabeth locci@cern ch
	NI	NIKHEE	r kluit@nikbef nl
	NO	Norwegian Institutes (IIIB IIIO IISN) represented by University of Bergen (III	iohan alme@uih no
	DI	University of Krskow ACH	Marek Idzik@cern.ch
	CE	University of Unpeale	richard bropper@physics.uu.co
novo not	SE IIV	Umperial Callage	nchard.brenner@physics.uu.se
Iave IIUl	UK	Imperial College	g.lies@imperial.ac.uk
		Queen Mary University of London (QMUL)	m.bona@qmui.ac.uk
		UKRI-STFC Rutherford Appleton Laboratory (RAL)	mark.prydderch@stfc.ac.uk
,		University College London (UCL)	a.korn@ucl.ac.uk
		University of Birmingham	S.J.Hillier@bham.ac.uk
		University of Bristol	David.Cussans@Bristol.ac.uk
		University of London Royal Holloway	veronique.boisvert@rhul.ac.uk
		University of Manchester	conor.fitzpatrick@cern.ch
		University of Oxford; Rutherford Appleton Laboratory	prof.jocelyn.monroe@gmail.com
		University of Warwick	karolos.potamianos@cern.ch
	US	Argonne National Laboratory (ANL)	jinlong.zhang@cern.ch
		Brookhaven National Laboratory (BNL)	chc@bnl.gov
		Fermilab National Laboratory (FNAL)	dbraga@fnal.gov
		Ohio State University	gan 1@osu edu
		SLAC National Accelerator Laboratory	lorenzor@slac.stanford.edu
		University of Boston	angelo giacomo zecchinelli@cern
		University of Minnesota	rusack@umn.edu
			and a second second

The Steering Committee

The Central Executive Body of DRD7

- Current structure: 6 members. Chaired by two co-chairs elected from within the committee.
- Has evolved out of R&D roadmap TF7 membership by ad-hoc appointments. Primary motivation for current composition: Representation of major national communities / centers, diversity of expertise, ensuring continuity with roadmap recommendations.
- After proposal phase: Chaired by Spokesperson and Deputy Spokesperson nominated from within the committee, endorsed by Collaboration Board. Expect 4 - 8 members of SC.

Current composition:

- Frank Simon [KIT] (co-chair)
- Francois Vasey [CERN] (co-chair)
- Jerome Baudot [IPHC Strasbourg]
- Marcus French [STFC RAL]
- Ruud Kluit [NIKHEF]
- Angelo Rivetti [INFN TO]

- Oversees activities and progress of WPs
- Prepares annual report and workshop
- Nominates Spokesperson, Deputy Spokesperson, WP Conveners
- Together with WP Conveners: *Technical Committee*
- Progress tracking and reviewing of projects
- Proposal of new Projects to Collaboration Board
- Oversight of DRD7 presentations and publications

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

(detailed procedures to be worked out)

10

The Work Packages

Addressing Roadmap DRDTs, hosting Projects

		DRDT
Data	High data rate ASICs and systems	7.1
density	New link technologies (fibre, wireless, wireline)	7.1 <
ucinsity	Power and readout efficiency	7.1
Intelligence	Front-end programmability, modularity and configurability	7.2
on the	Intelligent power management	7.2 🕥
detector	Advanced data reduction techniques (ML/AI)	7.2 🕥
	High-performance sampling (TDCs, ADCs)	7.3
4D-	High precision timing distribution	7.3
tecnniques	Novel on-chip architectures	7.3 🕥
F uturo no o	Radiation hardness	7.4
environments	Cryogenic temperatures	7.4
and longevity	Reliability, fault tolerance, detector control	7.4 🕥
und tongenty	Cooling	7.4
	Novel microelectronic technologies, devices, materials	7.5
Emeraina	Silicon photonics	7.5
technoloaies	3D-integration and high-density interconnects	7.5
	Keeping pace with, adapting and interfacing to COTS	7.5 💌

- With slight remapping of activities to maximize synergies within working groups
- Complex monolithic sensors / ASICs added in area of emerging technologies (overlap with DRD3 resolved)
- Backend systems & COTS as an independent topic
- Transverse WG on Tools and Technologies (WG7.7)

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

- WP 7.1 Data Density and Power Efficiency
- WP 7.2 Intelligence on the Detector
- WP 7.3 4D and 5D Techniques
 - WP 7.4 Extreme Environments
 - WP 7.5 Backend Systems and commercial off-the-shelf Components
 - WP 7.6 Complex imaging ASICs and Technologies
- copics currently not explicitly addressed by projects

11

The WP/WG Conveners

Coordinating the Execution of the Scientific Program

- WP 7.1 Data Density and Power Efficiency Szymon Kulis [CERN], Jeffrey Prinzie [KU Leuven], Jan Troska [CERN]
- WP 7.2 Intelligence on the Detector Davide Ceresa [CERN], Francesco Crescioli [LPNHE]
- WP 7.3 4D and 5D Techniques Sophie Baron [CERN], Marek Idzik [Krakow]
- WP 7.4 Extreme Environments Giulio Borghello [CERN], Manuel Da Rocha Rolo [INFN TO], Oscar Augusto De Aguiar Francisco [Manchester]
- WP 7.5 Backend Systems and commercial off-the-shelf Components Conor Fitzpatrick [Manchester], Niko Neufeld [CERN]
- WP 7.6 Complex imaging ASICs and Technologies Marlon Barbero [CPPM], Michele Caselle [KIT], Ian Sedgwick [STFC RAL], Walter Snoeys [CERN]
- WG 7.7 Tools and Technologies Kostas Kloukinas [CERN], Xavi Llopart Cudie [CERN], Mark Willoughby [STFC RAL]

Ad-hoc appointments, based on expertise, coverage of community, involvement in relevant R&D projects.

Transition out of Proposal Phase

Next Steps after Approval

- Following approval establish central collaboration bodies:
 - First meeting of the Collaboration Board; election of chair.
 - willing to serve for at least one more year.
 - Election of Steering Committee members by Collaboration Board.
 - Committee will propose Spokesperson and Deputy Spokesperson for endorsement.
- Expected terms of office:
 - 3 years for SC members, renewable once. Desirable to rotate and renew the committee: 2 new members per year.
 - 1 year for Spokesperson and Deputy, renewable.
- and continuity.

• Call for nominations of Steering Committee members - expect majority of current SC members would be

• Steering Committee will propose WG/WP Conveners, to be endorsed by Collaboration Board. Expect that majority of current WG/WP Conveners would be willing to serve for at least one more year. Steering

• Once all collaboration bodies are established and legitimized, the yearly rolling replacement of Steering Committee members (elected by CB) will enter into effect, ensuring both broad community representation

Scientific and Technical Goals

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

WorkPackages & Projects

High-Level Overview

WP7.1	PROJECTS
	7.1a Silicon Phot
Data density and power	7.1b Powering ne
efficiency	7.1c Wireless Dat
WP7.2	*
Intelligence on the	7.2b Radiation to
detector	7.2c Virtual elect
WP7.3	
	7.3a High perform
	7.3b1 Strategies
4D and 5D tecnniques	impacting time m
	7.3b2 Timing dis

- For each project: Milestones and deliverables defined currently 2024 2026, with perspectives beyond for most projects
- Summary table for each project in the appendix of this presentation
- Project 7.2a (e-FPGA) postponed, pending consolidation of resources

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

tribution techniques

WorkPackages & Projects

High-Level Overview

WP7.4	
	7.4a Device mod
Extreme environmente	PDKs and IP
Extreme environments	7.4b Radiation r
	7.4c Cooling and
WP7.5	
Backend systems and	7.5a DAQOverflo
COTS components	7.5b From FE to
WP7.6	
Complex imaging ASICs	7.6a Common ac
and technologies	7.6b Shared acce

- For each project: Milestones and deliverables defined currently 2024 2026, with perspectives beyond for most projects
- Summary table for each project in the appendix of this presentation

2024 - 2026, with perspectives beyond for most projects on

Work Packages - Resource Overview

High-Level Overview

		FTE av	vailable			add. FT	E needed	l	fur	nds avail	able [kEl	JR]	add.	funds ne	eded [k	Εl
	2024	2025	2026	>2026	2024	2025	2026	>2026	2024	2025	2026	>2026	2024	2025	2026	2
total 7.1	38,5	35,7	33,8	31,3	17,5	21,8	23,6	15,4	883,0	760,0	460,0	535,0	648,0	928,0	978,0	
total 7.2	9,7	9,2	8,7	8,5	7,2	8,2	8,2	8,2	20,0	50,0	50,0	100,0	5,0	20,0	40,0	
total 7.3	16,2	15,5	13,4	6,6	8,0	11,0	13,6	11,1	682,5	637,5	465,0	10,0	300,0	435,0	590,0	
total 7.4	18,4	14,6	11,7	5,5	6,5	13,5	17,8	15,3	274,0	302,0	60,0	70,0	245,0	461,0	731,0	
total 7.5	10,6	10,3	8,3	1,0	5,3	7,3	8,8	7,5	70,5	65,5	33,0	0,0	133,0	218,0	203,0	
total 7.6	27,0	27,0	27,0	26,5	9,5	9,5	9,5	9,5	454,6	1093,3	623,3	988,3	68,0	68,0	68,0	
Grand Total	120,4	112,3	102,9	79,4	54,0	71,3	81,5	67,0	2384,6	2908,3	1691,3	1703,3	1399,0	2130,0	2610,0	-
				I		 	I	I]	1		l 		I

~335 MY

~200 MY

68 institutes

NB: By construction the plans beyond 2026 are less well defined, with several projects expected to end. Results in reduced resource estimates.

Resource estimates will evolve as results of grant applications become available, and as new projects materialize. Tables will be consolidated by the 3rd DRD7 workshop

~7 MCHF 19 countries

~6 MCHF

Transverse WG 7.7: Tools and Technologies

Enabling ASIC Development in State-of-the-Art Technologies

- Is resulting in increased risk of design failure.
- proposed. WG 7.7 will create a task force to develop the implementation of such a structure.
- lead focus. Overall goal:
 - and EDA software tools
 - practice in design, verification and foundry submission,
 - IP block sharing, and
 - changes in projects.

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

• Development of ASICs in modern deep submicron technologies is a major endeavour, requiring a wide skillset that many small design groups cannot deliver alone - resource requirements, legal complexity, ...

• To respond to these difficulties, a Hub-based structure for ASICs developments in the HEP community is

• Hub concept: A limited number of regional collaboration and coordination centers (hubs), with CERN as the

• To establish and maintain access, for the DRD community, to state-of-the art microelectronics technologies

• To ensure a professional approach to prototyping and production fabrication cycles by delivering best

• To facilitate collaborative work across distributed design teams establishing the necessary infrastructure for

• To ensure that projects follow rigorous project review and submission processes to manage risks and control

18

Connections to other DRDs, Summary

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

Connections to other DRDs

- Electronics is of importance in (nearly) all detector R&D projects:
 Development of specific electronics covering direct needs of R&D projects handled in respective DRDs.
- Contacts defined by other DRDs will interface with DRD7 where appropriate:
 - DRD1: Marco Bregant and Sorin Martoiu
 - DRD2: Elena Gramellini
 - DRD3: Jerome Baudot, Eva Vilella
 - DRD4: David Gascon
 - DRD6: Christophe de la Taille
 - Regular meetings with DRD7 Technical Committee may be established if required
- DRD7 will focus on low TRL developments, targeting in priority disruptive, transformative, far-reaching goals.
- Forums in each DRD7 WP will be an opportunity for interested parties in other DRDs to participate and contribute to discussions on important DRD7 topics.

Summary

- DRD7 is projects-based. It puts the technical conte as possible structure.
- It covers most priorities highlighted by the roadmap, confirming the desire of the collaboration to address in common the strategic challenges in electronics for detectors.
- It creates a transverse WG on tools and technologies, with a mandate to propose an implementation model for a hub-based structure for ASIC developments.
- It is agile, with projects formed bottom up, and a rolling renewal of the governance. Calls for new projects will take place yearly.
- The central Collaboration event is expected to be a yearly DRD7 workshop, which will coincide with the collaboration board meeting. The next DRD7 workshop will take place on 9-10 Sep 2024.
- WPs will organise additional, more focused events, including forums open to observers wishing to be kept informed of progress without committing to collaborate.
- 2024-2026 will be a learning phase, and tuning will take place as/if necessary, as decided by the CB.

• DRD7 is projects-based. It puts the technical content at the forefront, and supports it with an as lightweight

Appendix: Project Summaries

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.1a Silicon Photonics Transceiver Development

This project aims to develop high-speed optical transceivers based on Silicon Photonics technology for use in a wide range of future particle physics applications from low-temperature neutrino detectors to high-radiation environment HL-HLC pixel detectors.

Project Name	Silicon Photonics Transceiver Development (WP7.1a)
Project Decomption	Develop high-speed optical transceivers based on Silicon
Froject Description	Photonics technology. Duration 4-5 years.
Innovative/strategic	First opportunity to design and operate custom optical data
vision	transmission systems in HEP detectors.
	$100 \mathrm{Gb/s}$ per fibre optical readout with $2.5 \mathrm{Gb/s}$ control optical
	link operating at a BER of 10 ⁻¹² . Radiation tolerance up to
Performance Target	1×10^{16} particles/cm ² and 10 MGy and power consumption of
	250 mW. Cryogenic temperature operation for some lower-speed
	variants.
	M7.1a.1 (M12) Cryogenic test of SiPh PIC
	M7.1a.2 (M12) Submission of Ring Modulator Driver
Milestones and	D7.1a.1 (M12) Delivery of WDM test PIC
Deliverables	M7.1a.3 (M24) Radiation test of WDM PIC
Denverables	D7.1a.2 (M24) Delivery of packaged WDM PIC
	M7.1a.4 (M30) Submission of photodiode TIA
	M7.1a.5 (M36) System test of WDM PIC with Driver
Multi-disciplinary.	Silicon Photonics combines data-density, timing distribution,
cross-WP content	Back-end, as well as $2.5/3D$ integration, with the need for
	foundry access to specialist processes.
	CA: Sherbrooke
	CERN
	DE: DESY, KIT, Wuppertal
Contributors	ES: IGFAE
	UK: Birmingham, Imperial
	IT: INFN Milano, INFN Pisa, Sant'Anna, Uni. Trento
	US: Argonne, Fermilab
Available resources	25.7 FTE/yr
	440k/yr
Addt'l resource need	8 F'TE/yr
	250k/yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.1b Powering Next Generation Detector Systems

This project aims to develop power distribution schemes and their voltage/current regulators and converters for use in a wide range of future particle physics applications, from low-temperature neutrino detectors to high-radiation environment HL-HLC pixel detectors and beyond (future collider experiments)

Project Name	Powering Next Generation Detector Systems (WP7.1b)
Project Description	Develop power distribution schemes and their voltage/current
I toject Description	regulators. Duration 4-5 years.
	Develop very efficient converters (at least 90% at high load,
Innovative/strategic	10A), and at unprecedented radiation hardness up to
vision	$1 \times 10^{16} \mathrm{particles/cm^2}$ and $10 \mathrm{MGy}$. New technologies as CMOS
V131011	High voltage 0.18um will be used along with new Gallium
	Nitride (GaN).
	High-efficiency (at least 90% at high load) converters for serial
Performance Target	and parallel powering schemes for high voltage conversion and
renormance rarget	around 75% for fully integrated DCDC in 28nm technology.
	Radiation tolerance up to $1 \times 10^{16} \text{ particles/cm}^2$ and 10 MGy
	M7.1b.2 (M12) Test results on first prototypes of a linear
Milestones and	regulator and a resonant converter in 28nm technology
Deliverables, see	M7.1b.1,3,4,5 (M24) Tests on parallel and serial GaN DCDC
Appendix B.1.2 for	converter prototypes with custom air core inductors
details of activities.	D7.1b.1,3,4,6 (M36) Delivery of a report on high voltage (48V)
	DC-DC converter for serial and parallel powering schemes
Multi-disciplinary	Power distribution scheme combines connection with Back-end
cross-WP content	power supplies and integration of the on-chip regulation in the
	front-end ASICs (Pixel, strips and monolithic)
	AT: TU Graz
	CERN
	DE: FH Dortmund, RWTH Aachen University
Contributors	EE: Tallinn University of Technology (TalTech)
	ES: ITAINNOVA
	IT: INFN Milan, University of Udine (UNIUD), University of
	Milan (UNIMI)
Available resources	5.2 FTE/yr
	87k/yr
Addt'l resource need	5.4 FTE/yr
ridu i resource need	101k/yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.1c Wireless Data and Power Transmission

This project aims to develop wireless technology based on a millimeter wave (mmw) transceiver IC as well as on Free Space Optics to connect neighboring detector layers, providing increased data rates, high power efficiency and high density of data links, with the aim of reducing mass and power consumption.

Project Name	WADAPT (WP7.1c)
	Develop millimeter wave Wireless technology together with Free Space
Project Description	Optics technology to connect neighboring detector layers with the aim
Froject Description	of reducing mass and power consumption. Wireless power transmission
	will also be explored.
	First attempt to provide a promising alternative to cables and optical
	links that would revolutionize the detector design. Removing partly or
Terrestan	totally cables would be a major advance in reducing the amount of
tinova-	spurious matter spoiling the measurement of the particle parameters.
tive/strategic	In addition wireless technology allows efficient partitioning of detectors
VISION	in topological regions of interest, with the possibility of adding
	intelligence on the detector to perform four-dimensional reconstruction
	of the tracks and vertices online.
	Radial wireless readout for pixel detectors. Data from detector
	front-end modules can be serialized as channels up to 10 Gb/s and be
	aggregated across detector layers (25 to 100 Gb/s). Commercially
Performance	available technology has demonstrated radiation hardness amply
Target	sufficient for envisaged lepton colliders. Radiation hard transceivers
0	will be developed in order to match radiation levels expected at future
	hadron colliders, maximum fluence at HL-LHC is
	$2 \times 10^{16} \text{ particles/cm}^2$ and at FCC-hh is $6 \times 10^{16} \text{ particles/cm}^2$.
	M7.1c.1,2,3 (M12,24,36) Intermediate annual reports
	D7.1c.4 (M24) Delivery of report summarising a proof of principle
Milestower and	demonstration of multi-hop RF data transmission using commercial ICs
Delivereble	D7.1c.7 (M24) Delivery of a design of an optimized RF transceiver IC
Deliverables	D7.1c.10 (M36) Delivery of a test report demonstrating FSO data
	transmission, integration, radiation hardness
	M7.1c.4 (M36) Demonstrators made available and training organized.
	mmw technology and FSO technology will as much as possible aim at
	developing common tools as common interfaces and common test
	benches in order to ease performance comparison in a given context
	and provide the users with adapted solutions. After proof of principle,
Multi-disciplinary,	the ultimate goal would be to generalize the use of wireless data-links
cross-WP content	to other detectors, with the potential of adding on-detector intelligence.
	This is however beyond the scope of this 3-years project and further
	system and implementation analysis will then be required. Some
	collaborations with group developing radiation hard ICs, 4D and
	monolothic techniques could be envisaged.
	FR: CEA-Leti, LPSC
	IL: Tel-Aviv
Contributors	IT: INFN Pisa, Scuola Superiore Sant'Anna
Contributors	KR: GWNU
	SE: Uppsala
	US: Ohio State University
Available resources	5 FTE /yr; 174k /yr
Add. resource need	7.5 FTE /yr; 500k /yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.2b Radiation Tolerant RISC-V System-On-Chip

The project aims to develop a radiation-hardened System-On-Chip (SoC) based on the RISC-V ISA standard.

Project Name	Radiation Tolerant RISC-V System-On-Chip (WP7.2b)
Project Description	 Develop a radiation-hardened SoC based on the RISC-V ISA standard according to the roadmap defined in M7.2b.1. Topics: 1- SoC architectures 2- Radiation Tolerance design methodology, 3- Verification methodology, 4- SoC generator toolchain. Duration 5-6 years.
Innovative/strategic vision	Develop a technology and a design platform to anticipate and adapt the challenges and opportunities of the future Electronic systems and IC design.
Performance Target	The following targets will be defined in M7.2b.2: Processing Speed Power Consumption Radiation Tolerance Memory and Storage Communication Interfaces Scalability and Flexibility Verification and Testing
Milestones and Deliverables	 M7.2b.1 (M12) Rad-Tol RISC-V SoC roadmap M7.2b.2 (M24) SoC architectures proposal D7.2b.3 (M36) Delivery of Rad-Tol SoC building block test chip
Multi-disciplinary, cross-WP content	Electronics Engineering - Digital Design Computer Science - Embedded Systems Systems Engineering - Integration and Testing
Contributors	DE: FH Dortmund BE: KU Leuven CERN UK: UKRI-STFC RAL UK: Royal Holloway University Of London UK: University of Warwick UK: University of Bristol US: Fermilab
Available resources	6.15 FTE/year
	40 kEUR/year 7.9 FTE/year
Addt'l resource need	21.7 kEUR/year

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.2c Virtual Electronic System Prototyping

The project aims to develop a simulation of the readout chain of a particle detector at a high level modelling the essential components and processes that occur from the moment particles interact with the detector to the digital readout of the collected data.

Project Name	Virtual Electronic System Prototyping (WP7.2c)
	Develop frameworks for high-level simulation of particle
	detectors.
	Topics:
	1- Signal generation in detector elements
	2- Digitization and Signal Processing
Project Description	3- Data readout architecture
•	Topics 1. and 3. aim to create independent frameworks that can
	be used as a single toolchain. Topic 2. will be better defined
	during the project and might converge in one of the two
	frameworks or represent a third framework of the chain.
	Duration 3-4 years.
	Develop a toolchain for virtual prototyping to:
Innovative/strategic	1- model detector at high-level
vision	2- perform architectural studies
	3- provide a reference model for the verification
	Topic 1: Cluster multiplicity: 1-10
	Position resolution: $<10 \ \mu m$
	Time resolution: 10 ps to 100 ns
	Topic 2: to be defined in M7.2c.2
Performance Target	Topic 3: Accuracy: Event/Cycle-level
8	Speed: hundred thousand transactions per second
	Scalability: readout components library
	Verification: integrate in verification environment
	User-Friendly: docs & support for user-only roles
	D7.2c.1 (M12) Delivery of a release of the PixESL framework
	M7.2c.2 (M12) Target/methodology for Topic 2
Milestones and	M7.2c.3 (M18) Model Common interface ASIC
Deliverables	D7.2c.4 (M24) Delivery of a release of the detector simulation
	tool-chain.
	Detector Technologies: support various detector technologies
	Particle Physics Models: integration of comprehensive
	particle physics models
	Geometric Configurations: ability to define and customize
	the geometry
	Data Formats: support for common data formats
aross WP content	Monte Carlo Techniques: implementation of Monte Carlo
cross-wP content	methods for simulating particle interactions and energy
	depositions,
	Electronics Simulation: accurate modeling of the readout
	electronics
	Readout Architectures: support triggered and data-driven
	systems
	CERN
Contributors	FR: IPHC Strasbourg
	USER: PSI (CH), UK Cons., INFN Cagliari (IT)
Available resources	3.0 FTE/year 0 kEUR/year
Addt'l resource need	0.0 FTE/year 0 kEUR/year

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.3a High performance TDC and ADC blocks at ultra-low power

This project aims to develop ultra-low power high performance TDC and ADC blocks for use in a wide range of future particle physics experiments.

Project Name	High performance TDC and ADC blocks at ultra-low power (WP7.3a)
Project Description	Development of high performance, ultra-low power TDC and ADC blocks. Duration 3 years. A further extension is planned after 3 years.
Innovative/strategic vision	Develop high-performance, ultra-low power TDC and ADC blocks in advanced CMOS technologies, ready to be deployed as key components of SoC readout ASICs for a variety of future particle detectors.
Performance Target	High resolution (~ 10ps) TDC and medium-high resolution (10-14 bits) fast sampling (>40 MSps) ADC blocks. High performance, especially ultra-low power consumption, should be confirmed with a very good Figure of Merit, compared to the state-of-the-art solutions obtained using the same CMOS technology and characterized by similar parameters
Milestones and Deliverables	 M7.3a.1 (M12) Report on design of ADCs and related blocks M7.3a.2 (M12) Report on design of TDCs and related blocks M7.3a.3 (M24) Progress report on development of ADCs and related blocks M7.3a.4 (M24) Progress report on development of TDCs and related blocks D7.3a.1 (M36) Delivery of prototype ASICs of ADCs and related blocks D7.3a.2 (M36) Delivery of prototype ASICs of TDCs and related blocks.
Multi-disciplinary,	TDCs and ADCs are common blocks of readout ASICs for wide
cross-WP content	range of detector systems.
Contributors	AT: TO Graz ES: ICCUB FR: CEA IRFU, CPPM, IP2I, OMEGA KR: DGIST PL: AGH US: SLAC
Available resources	7.3 FTE/yr 500k/yr
Addt'l resource need	7.3 FTE/yr 280k/yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.3b1 Strategies for characterizing and calibrating sources impacting time measurements

This project aims to study and propose generic data-driven calibration strategies for the time measurements in detectors requiring high precision timing. These include simulation, impact studies and data-based calibration strategies of phase variations in all or part of the detector timing distribution tree (for example jumps due to resets in the electronics system and or temperature dependent phase drift), as well as the calibration of the front-end TDC timewalk and non-linearities.

Project Name	Strategies for characterizing and calibrating sources impacting
	time measurements (WP7.3b1)
Project Description	Generic data-driven impact studies and calibration strategies of
	phase variations for timing detectors. Duration 3 years.
Innovative/strategic	First opportunity to have a common strategy between the
vision	different experiments for data-driven timing studies.
	Design of a protocol of measurement. Development of simulation
	tools in the different experiments. Definition of common figures
Performance Target	of merit. Measurement of the properties in test facilities to
	compare with the predictions. Design of calibration chain inside
	the different experiments.
	D7.3b1.1 (M12) Delivery of a report summarising common
	metrics and description of the effects for simulation
Milestones and	M7.3b1.1 (M24) Implementation of measurements on realistic
Dolivorablos	DAQ chain
Deliverables	D7.3b1.2 (M36) Delivery of a report summarising the items
	(hardware or software) to be improved for the next generation of
	experiments.
Multi-disciplinary,	Concerns all state-of-the-art timing detectors and therefore
	requires a unified approach which is proposed by this project.
cross- wr content	Reciprocal reports with DRD7.3a & 7.3b2
	CERN: ATLAS HGTD, CMS HGCAL
Contributors	FR: Université Clermont Auvergne. CNRS-IN2P3, LPCA
Contributors	(ATLAS HGTD)
	US: Boston University (CMS ETL)
Available resources	1.5 FTE/yr (ATLAS & CMS core funds)
Available resources	0 kEUR^1
Addtil recourse need	0 FTE
Addt ⁻¹ resource need	0 kEUR^1

¹ The teams will have full access to simulation processors, detector simulation data & testbenches

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.3b2 Timing Distribution Techniques

This project aims to study and propose strategies to optimize and assess ultimate precision and determinism of timing distribution systems for future detectors. The precision target of upcoming timing detectors is now enforcing new figures of merit to be taken into account in addition to the traditional random jitter, such as clock phase stability and determinism (at picosecond level). Such metrics are systems- and COTS-specific and need to be carefully assessed. In addition, generic solutions shall be provided to mitigate the various kinds of instabilities brought by the selected components. This project will be carried out in tight collaboration with its counterpart project based on simulation (7.3b1): Strategies for characterizing and calibrating sources impacting time measurements.

Project Name	Timing Distribution Techniques (WP7.3b2)
Project Description	Bench-marking of the performance of COTS- or custom-based solutions to assess achievable timing precision and determinism. Investigation of generic solutions to mitigate the observed limitations.
Innovative/strategic vision	Common effort of the community to explore limits of COTS and reach ambitious timing precision not targeted by commercially available solutions
Performance Target	Develop and compare implementations on different COTS and custom platforms. Studies and implementation of FPGA-agnostic or ground-breaking solutions to improve phase stability.
Milestones and Deliverables	 M7.3b2.1 (M12) Specification for a light-weight timing and synchronization protocol also capable of passing fixed latency messages D7.3b2.2 (M18) Deliver a report comparing the phase determinism of various FPGAs (PolarFire, Agilex, Versal) and potential mitigation mechanisms D7.3b2.3 (M18) Delivery of first demonstrators of the light-weight protocol, and of a generic deterministic link based on AMD FPGAs and DDMTD + DCPS ASICs from University of Minnesota M7.3b2.2 (M18) Submission of a unique chip for Phase Monitoring and Phase Shifting (PMPS) D7.3b2.4 (M24) Delivery of a report on White Rabbit for 4D detectors and for Agilex FPGA D7.3b2.5 (M36) Delivery of a report summarising a proof of concept demonstration of a FPGA-Agnostic Cascaded Link (FACL) with PMPS ASIC.
Multi-disciplinary, cross-WP content	Distribution is critical and universal to all detectors requiring timing. DRD7.3b1 and 7.3b2 will feed each other with simulation and assessed figures
Contributors	CERN: HPTD team ES: CIEMAT, ITAINNOVA, CSIC (IFCA & IMB-CNM) FR: IN2P3 (CPPM, IJCLab) UK: Bristol University NL: Nikhef USA: The University of Minnesota
Available resources	18.7 FTE over 3 years 310 kEUR over 3 years
Addt'l resource need	10.6 FTE over 3 years 485 kEUR over 3 years

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.4a Device modelling and Development of Cryogenic CMOS PDKs and IP

The project will focus on cryogenic device modelling from selected CMOS technology nodes, the development of "cold" Process Design Kits (PDKs) and mixed-signal CMOS IP blocks and mixed-signal demonstrator chips for cryogenic operation.

Project Name	Device modelling and Development of Cryogenic CMOS PDKs and IP (WP7.4a)
	Device modelling from selected CMOS technology nodes
	development of "cold" Process Design Kits (PDKs) design and
Project Description	characterisation of mixed-signal CMOS IP blocks and
Project Description	demonstrator chips for photon detection in (LAr, LXe) noble
	liquid experiments, quantum computing interface and consing
	inquid experiments, quantum computing interface and sensing.
	The aggregation of the international research teams will create
	the critical mass needed for the construction of infrastructures
Innovative/strategic	and tools, needed for device characterisation and modelling,
vision	towards the development of cold PDKs and cold-IP blocks.
	These will be made available to a wider community working
	towards the construction of frontier particle and photon
	cryogenic detectors.
	cold PDK for a deep sub-micron CMOS technology, with
Denferment Transt	temperature corners at 165-87-77-4K, cold IP blocks
Performance Target	demonstrated on board of a multi-channel mixed-mode
	demonstrator chip.
	D7.4a.1 (M9) Deliever a specification and requirements
	document for a full-chip demonstrator.
Milestones and	M7.4a.2 (M18) Cold-PDK for TSMC28nm complete
Deliverables	M7.4a.3 (M26) Tapeout of full-demonstrator chip
Denverables	D7 4a 4 (M38) Deliver a report of full-demonstrator silicon chip
	characterisation
	The availability of reliable device models and PDKs for
	advanced CMOS technology nodes, gualified for expension at
Multi-disciplinary,	advanced CMOS technology nodes, quanned for operation at
cross-WP content	cryogenic temperatures, will pave the way for the development of
	cryo-qualified CMOS IP blocks suitable for integration on
	complex mixed-signal ASICs for DRD2 and DRD5.
	Graz University of Technology (Austria)
	University of Sherbrooke (Canada)
	Forschungszentrum Jülich (Germany)
	INFN (Italy)
Contributors	KEK (Japan)
Contributors	ICCUB, University of Barcelona (Spain)
	EPFL (Switzerland)
	RHUL (UK)
	University of Oxford (UK)
	Fermilab (US)
	5.4 FTE/vr
Available resources	$46 \mathrm{k/vr}$
	6.3 FTE/vr
Addt'l resource need	184k/yr
	IOTK/VI

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.4b Radiation Resistance of Advanced CMOS Nodes

This project investigates the radiation response of CMOS technologies from the 28nm node onward for use in the next generations of ASICs for particle detectors.

Project Name	Radiation Resistance of Advanced CMOS Nodes (WP7.4b)
Project Description	This project aims to evaluate the radiation response (total ionizing dose TID, single event effects SEE, and displacement damage DD) of commercial CMOS technologies more advanced than the 65nm node for use in the next generations of ASICs for particle detectors. Duration 4-5 years.
Innovative/strategic vision	Understanding the effects of radiation on CMOS technologies is essential for the design of ASICs used in particle detectors. This project represents a first and crucial step in evaluating the performance of advanced CMOS nodes for the unique environment of particle detectors.
Performance Target	Deepen the knowledge of the radiation response of 40nm and 28nm technologies and begin to study finFETs technologies.
Milestones and Deliverables	 D7.4b.1 (M12) Deliver a 28nm CMOS front-end (FE) circuits for pixel sensors prototype; TID test of IP-blocks in 28nm node D7.4b.2 (M18) Deliver a chip in 28nm CMOS including matrices of FE channels for readout of pixel sensors M7.4b.3 (M24) Radiation test of FE structures; Design and testing of rad-hard memory elements in 28nm node D7.4b.4 (M36) Deliver a prototype in FinFET technology including IP blocks for pixel readout circuits.
Multi-disciplinary, cross-WP content	In order to ensure the success of projects involving ASIC design for particle detectors, it is imperative to consider the radiation resistance of the technologies used. On the other hand, the definition of radiation qualification would greatly benefit from the input of the designer. For example, ASICs developed in WP7.3a must be radiation tolerant and could also serve as valuable test vehicles to evaluate radiation effects.
Contributors	CERN AT: TU Graz IT: INFN Pavia, Uni. Bergamo, Uni. Padova, Uni. Pavia FR: CPPM
Available resources	3.2 FTE/yr 104k/yr
Addt'l resource need	2.4 FTE/yr 105k/yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.4c Cooling and cooling plates

This project focuses on the development of the next generation of cooling plates for front-end electronics and sensors based on different materials/techniques. The main goal is to explore manufacturing techniques while improving electronics integration with a cost-effective solution.

Note that depending on the evolution of the forming DRD8 Collaboration, some cooling-related projects may be best integrated in DRD8. This will be fine tuned in due-time to best match the needs of the projects.

Project Name	Cooling and cooling plates (WP7.4c)
0	Development of the general purpose next generation of
Project Description	microchannels cooling structures to deliver excellent cooling
	performance, minimal material budget, and better electronics
	integration. Duration about 2+ years.
	Better integration of electronics features to the cooling plates
T	especially in dense electronics applications. Better scalability
Innovative/strategic	considering alternative manufacturing techniques (more
VISION	cost-effective). Thermal performance numerical simulation tools
	for new applications.
	Different topics will explore different combinations of the
	following parameters: power dissipation (up to $2W/cm^2$),
	material budget ($\leq 0.5\% X_0$), integration and/or cost. Different
Performance Target	experiments will be able to profit from the portfolio created and
_	optimize those solutions for their final application. The progress
	will be tracked via public reports in the form of presentations,
	public notes and/or papers.
	D7.4c.3 (M15) Deliver a feasibility public note or paper (topic
	3)
	M7.4c.6 (M24) 3D printing public note or paper (topic 4)
Milestones and	D7.4c.5 (M27) Deliver a report summarising fluidic and thermal
Deliverables	tests of demonstrators public note or paper (topic 1)
	M7.4c.7 (M36) Bi-phase CO2 Thermo-fluidic models developed
	for microchannel, nuclear and annular flows, and thermal heat
	exchanger characterization and interconnection (topic 2).
	Communication with DRD8 (Mechanics) and DRD3
Multi-disciplinary,	(Semiconductor detectors) via liaisons and workshops (e. g.:
cross-WP content	Forum on tracking mechanics) and 7.6b project (common access
	3D and advanced integration) within the DRD7.
Contributors	CA: Sherbrooke
	CERN
	DE: DESY
	ES: IMB-CNM, IFIC-Valencia
	UK: Manchester
	FR: CPPM, LAPP, LEGI, LPNHE, LPSC
Available resources	7.7 FTE/yr (First year), 102k/yr (First year)
Addt'l resource need	7.0/vr (Largest, on 2026), 275k/vr (Largest, on 2026)

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.5a DAQOverflow

The DAQOverflow project aims to provide a benchmark of heterogeneous COTs architectures alongside a open-access, repository-hosted infrastructure and set of commonly used tools and algorithms that will keep pace with evolving COTs technologies (GPU, CPU and FPGA coprocessor farms) for the purpose of cost- and performance considered near-detector, near-real-time backend processing for HEP experiments.

Project Name	DAQOverflow (WP7.5a)
Project Description	Benchmarking of heterogeneous COTs architectures and
	development of TDAQ tools and algorithms distributed via a
	common repository that are up-to-date with evolving COTs
	technologies for cost- and performance-considered
	near-detector/real-time backend processing.
	Identify experiment-agnostic common TDAQ activities, define
	generic benchmarks to allow easy comparison of cost/energy
Innovative/strategic	efficiency for various compute architectures for the purposes of
vision	backend/trigger processing. Make generic algorithms / tools
	available for various architectures as a repository of 'best
	practice'.
	Cost- and performance-evaluated figures of merit (cost/energy
	per unit of work), mutil-disciplinary deliverables (kept
	up-to-date for newer generations of hardware) and distributed
	reference implementations and examples through a documented
Performance Target	common repository of firmware and software. The target after
1 0110111111100 111800	three years is a community-driven, growing project of
	development with appropriate funding mechanism from the work
	package and interested users to re-benchmark for new
	hardwares/technologies when needed.
	D7.5a.1 (M9) Delivery of first reference implementations of
	workflows on simpler platforms
	$\mathbf{D7.5a.2}$ (M12) Delivery of a repository and documentation with
	format agreed upon reference implementations hosted
	D7.5a.3 (M24) Delivery of reference implementations of
	workflows for a full suite of ASIC/CPU/GPU delivered
Milestones and	D7.5a.4 (M30) Delivery of the benchmarking for full suite.
Deliverables	documented and published
	D7.5a.5 (M33) Delivery of any followup benchmarks using
	improved algorithms on existing hardware and first benchmarks
	on next-gen hardware
	D7.5a.6 (M36) Delivery of any comparative performance studies
	between previous and current generation hardware published.
	Commodity TDAQ hardware is cross-experiment in nature. The
Multi-disciplinary,	outcomes will be transverse to much of the DRD program for
cross-WP content	specific DAQ considerations.
	Instituto de Física Corpuscular (IFIC) Valencia, University
	College London University of Birmingham University of Bristol
Contributors	Rutherford Appleton Laboratory, University of Geneva
	Universidad de Oviedo. University of Manchester
Available resources	$\sim 6.5 \text{ FTE/yr} \sim 30 \text{kEUR/yr}$
Addt'l resource need	$\sim 2.5 \text{ FTE/yr} \sim 125 \text{kEUR/yr}$

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.5b From Front-End to Back-End with 100GbE

The perspective of future HEP experiments with lower radiation levels than typically seen at LHC opens the door to increasing the complexity of Front-End electronics, implementing for example RISC-V based processors and SoC in the Front-End. In this context, high throughput 100GbE-based data readout link can reasonably be envisaged. This is a new paradigm which will be investigated in this DRD7.5 Project. It will be tightly linked to other Working Groups like DRD7.2/RISC-V or DRD7.1/links activities.

Project Name	From Front-End to Back-End with 100GbE (WP7.5b)
Project Description	Develop full 100Gb Ethernet-based solutions for Data Readout links from Front-End to DAQ.
Innovative/strategic vision	Lower radiation levels and higher data throughput in future detectors open the door to envisage and investigate 100GbE-based data readout links.
Performance Target	Design and performance comparison between network demonstrators of 100GbE networks based on specific protocol designs, configurations of COTS and potentially customized switches.
Milestones and Deliverables	 M7.5b.1 (M12) Delivery of a report on generic implementation of standard 100GbE on current custom Back-End boards D7.5b.1 (M12) Delivery of a demonstrator of a FEC-based asymmetric 100GbE link with lpGBT M7.5b.2 (M18) Specifications for a Macrocell for potential future 100GbEFront-End ASICs D7.5b.2 (M18) Delivery of smart switch specifications (document) and prototype, including a paper submission and a gitlab repository - Theme 2 D7.5b.3 (M24) Delivery of first prototype test ASIC including protocol IPs and test report. M7.5b.3 (M36) Full report with conclusion on feasibility of 100GbE-based readout links for Front-End of future detectors
Multi-disciplinary, cross-WP content	Universal across HEP for detectors requiring high/concentrated data readout bandwidth. Tightly linked to other WP like DRD7.2/RISC-V or DRD7.1/links activities
Contributors	CERN FR: CPPM CNRS/IN2P3 NL: Nikhef UK: Bristol University, ¹ Imperial College, Rutherford Lab US: Brookhaven National Lab ¹
Available resources	9.7 FTE over 3 years 70k over 3 years
Addt'l resource need	14 FTE over 3 years 185k over 3 years

¹ The participation of this institute in the project depends on the success of the request for funds made at the end of 2023.

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.6a Common Access to Selected Imaging Technologies

This project aims to provide common access to advanced imaging technologies through the organization of common fabrication runs. These are initially envisaged for the TowerJazz 180 nm, TPSCo 65 nm ISC, and the LFoundry 110 nm CMOS imaging technologies. These will be accessible for different clients in the community, among which the other DRDs like DRD3, experiments and projects in HEP. Assembly of the reticle for the different runs is foreseen, as well as design support for the PDK, development of special design rules, TCAD support for sensor optimization and interfacing to the foundry. IP development is also foreseen to accelerate and streamline the design effort. Continuation of this common access beyond the initial three years is expected. Synergy with the 7.6b 3D development will be explored possibly with already existing chips or chiplets. Full 3D-stacked runs, offered in all three technologies, may possibly be pursued later.

Project Name	Common Access to Selected Imaging Technologies (WP7.6a)
Project Description	Provide common access and centralized support for selected CMOS imaging technologies, including specific IP development to accelerate the design effort. Duration 3 years, expected to be extended.
Innovative/strategic vision	Potential of monolithic technologies, confirmed by successful ALICE ITS2 tracker and the widespread community interest. Efficient and affordable technology access requires concentration of the resources in the community.
Performance Target	Organize common runs and efficient and cost-effective access to selected technologies.
Milestones and Deliverables	 TPSCo 65 nm ISC: M7.6a.1a (M12) Completion of IP specifications M7.6a.2a (M18) First version of IP complete D7.6a.1a (M24) Delivery of a report summarising a foundry submission Q4 2025 M7.6a.3a (M36) Documentation of IP for common use <i>TJ 180 nm (submissions subject to demand)</i>: M7.6a.1b (M12) Completion of IP specifications M7.6a.2b (M18) First version of IP complete D7.6a.1b (M24) Delivery of a report summarising a foundry submission Q4 2025 M7.6a.3b (M36) Documentation of IP for common use <i>LF110 nm</i>: D7.6a.1c (M24) Delivery of a report summarising a foundry submission Q4 2025 D7.6a.2c (M36) Delivery of a report summarising a foundry submission Q2 2026
Multi-disciplinary, cross-WP content	Concerns several detectors types, calorimeters, tracking, etc. Serves other DRDs like DRD3 and DRD6, experiments and projects in HEP. Strong connection with 7.6b (e.g. 3D integration of chiplets). Requires expertise in analog and digital IC design, device design and technology, and significant testing effort.
Contributors	CH: CERN FR: IN2P3: CPPM, IPHC, IP2I + others IT: INFN(TO, TIFPA, MI, BO, PD, PV, PG, PI) NL: NIKHEF NO: UiB, UiO and USN UK: STFC US: TBC, SLAC already doing effort
Available resources	TPSCo 65nm 12 FTE/yr 290k/yr TJ 180 nm 1.5 FTE/yr 20k/yr LF 110 nm is 8 FTE/yr 100 k/yr
Addt'l resource need	6.5FTE/yr 410k/yr (TBD)

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.6b Shared Access to 3D Integration

This project aims to develop essential technologies for both 2.5D and 3D integration that can be quickly transposed to wafer-to-wafer 3D integration for a wide range of future particle physics applications, ranging from low-temperature neutrino detectors to high-radiation environment HL-HLC pixel detectors. Synergy with the 7.6a will be explored by employing either already existing chips or dedicated test structures. Furthermore, 3D-integration technologies are evolving quickly in industry. Therefore, exploring concrete connections with industrial partners is a key mission of the project.

Project Name	Shared Access to 3D Integration (WP7.6b)
Project Description	Develop advanced chiplet and 3D integration technologies,
	including the integration of SiPh chips on detector, by in-house
	infrastructures and third-party vendors. Initial duration of 3
	years with potential for further prolongation beyond.
	Potential of silicon interposer and chiplet technologies. In-house
Innovativo (stratogia	infrastructure for quick production of prototypes/demonstrators
minovative/strategic	and test vehicles, by employing bump-bonding and detector
VISIOII	packaging technologies already available. To establish a concrete
	connection with the industrial partners.
	Shared competences/experiences and infrastructures/processes.
Deuferment Transt	Build up and maintain the capability for a quickly transposed to
Performance Target	3D integration. Keeping a cost-effective access to selected
	technologies.
	M7.6b.1 (M18) Establish TSVs process on Si interposer and
	dummy wafers
	M7.6b.2 (M24) Establish RDL process on Si dummy structures
	D7.6b.1 (M30) Delivery of report summariasing the integration
Milestones and	of SiPh on detector by 2.5D interposer/chiplet technologies
Deliverables	D7.6b.2 (M30) Delivery of a report on W2W bonding by
	industrial partners
	D7.6b.3 (M36) Deliver documentation of the process for the
	common use.
	Strong connection with 7.1 for the integration of SiPh chip and
Multi-disciplinary,	optical fiber on detector module. Strong connection with 7.6a
cross-WP content	(e.g. 3D integration/chiplets).
	CA: Sherbrooke
	DE: MPG-HLL, FH Dortm. KIT
Contributors	NO: Norwegian Institutes (Uni. of Bergen (UiB), Uni. of Oslo
	(UiO), and Uni. of Southeast Norway (USN))
	US: Fermilab (TBC)
A	5.5 FTE/yr
Available resources	390k/yr
	3 FTE/yr
Addt'l resource need	68 k/yr

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

7.7 Tools and technologies

The efficient delivery of the common technical goals in the area of electronics, and the strategic recommendations of the Road-map both demand that the community collectively conform to a portfolio of practices, standards and tools to enable professional and efficient collaboration.

This need is particularly acute for micro-electronics technologies, where the complexity and cost of development are extremely high and continue to increase for every new generation. The issue has been highlighted in recent years where several critical path ASIC developments for experiments have not delivered as expected. This has delayed upgrades and escalated costs with systems often requiring multiple additional foundry cycles. The particle physics community need to address this and ensure as far as is practicable that production ASIC developments deliver solutions that are robust and ready for manufacture whilst also harnessing the full potential of the wider community.

With the current deep submicron technologies, ASIC development is now a major endeavour requiring a wide skillset that many small design groups cannot deliver alone. This has left many projects exposed to greater risk of design failures than in the past. Given the number of projects and the breadth of the R&D programme taking shape under the auspices of the DRD collaborations, taking such a risk in the future is now unaffordable and unacceptable: for new large and complex ASIC developments, smaller groups will need to partner with experienced centres that possess, or have access to, the necessary expertise and tools to ensure successful submissions.

The access to semiconductor technologies that is required for future projects is also subject to strict legal control measures that are rigorously enforced by both the semiconductor manufacturers and the EDA software tool providers in a way that's intended to protect their business interests. These controls, along with strict end-use restrictions, export controls and taxation issues further complicate the situation. While these restrictions have not prevented ASIC design collaborative work and IP sharing with the right agreements in place, the community will benefit from making this process as lightweight and efficient as possible for the future.

In response to the above concerns, and in order to manage ASIC-related design risks in our distributed community, the Steering Committee invites Conveners of WG7.7 to create and steer a task force that will propose an **implementation solution for a Hub-based structure for ASICs developments in the HEP community**.

The Terms Of Reference for the task force will be:

- To establish and maintain access, for the DRD community, to state-of-the art microelectronics technologies and EDA software tools through regional collaboration and coordination (the Hubs)
- To ensure a professional approach to prototyping and production fabrication cycles by delivering best practice in design, verification and foundry submission
- To facilitate collaborative work across distributed design teams establishing the necessary infrastructure for IP block sharing, and
- To ensure that projects follow rigorous project review and submission processes to manage risks and control changes in projects

The ambition will be to be as inclusive as possible, the scope of the EDA tool provision will build on the successful Europractice model. It's extension will be evaluated on a case-by-case basis taking into account existing agreements and other possible restrictions.

DRD7 Overview - DRDC Plenary Meeting, 3 June 2024

