DRD5:

A global initiative on R&D on quantum sensors and emerging technologies for particle physics*

Michael Doser, Marcel Demarteau (and <u>many</u> contributors)

* spanning from very low energy to high energy particle physics

Broad range of application for quantum sensing

Novel designer materials Extreme sensitivity: candidate techniques for ultra-low interaction energy scales Gravitational wave detection Novel types of detectors

Searches for dark matter Probing of fundamental symmetries (via particle, atomic, molecular EDM's, spectroscopy) Gravitational waves Searches for novel couplings

Applied (detectors)

Fundamental physics

Improved quantum measurements

Tests of fundamental symmetries and interactions Foundational questions Exploit full power of Quantum Mechanics

Example: searches for dark matter

Many fundamental physics areas where quantum sensing can have a real impact, but for e.g. UL-DM, QS is essential

Goals of DRD5:

Among the *very* many areas and technologies being worked on worldwide,

- Identify key quantum/emerging technologies (within the ECFA roadmap) (where is collaboration relevant?)
- Within these, identify key topics which would most benefit the corresponding communities but that are not being addressed because they go beyond what individual groups can tackle

(where is collaboration <u>useful</u>?)

 On these topics, identify groups that are willing to participate in a global collaborative effort
(where is collaboration welcome?)

<u>Challenge 1</u>: non-HEP communities, need to establish trust, mutual interest, benefits for all involved

Challenge 2: need to grow a corresponding community (unlike other DRD's)

Timeline:

2021-2022: ECFA roadmap (top-down)

Identify key quantum/emerging technologies

2023: transform roadmap into proposal (bottom-up)

- Identify key figures in the communities → ~30 contributors
- Workshop to identify relevant WP-able groupings (April)
- proto-proposal (September)
- public workshop to fine-tune WP's, *milestones*, *deliverables* (October)
- final proposal formulated and circulated (January '24)
- call for participation (ongoing)
- in parallel, constant communication & community building

Our WP deliverables emphasize the initial community building. This forms the necessary basis for the technical specifications that will be required in order to achieve the goal of ultimately producing better devices

Roadmap topics

Sensor family \rightarrow	clocks	superconduct-	kinetic	atoms / ions /	opto-	nano-engineered
	& clock	ing & spin-	detectors	molecules & atom	mechanical	/ low-dimensional
Work Package \downarrow	networks	based sensors		interferometry	sensors	/ materials
WP1 Atomic, Nuclear	Х			Х	(X)	
and Molecular Systems						
in traps & beams						
WP2 Quantum		(X)	(X)		X	Х
Materials (0-, 1-, 2-D)						
WP3 Quantum super-		Х				(X)
conducting devices						
WP4 Scaled-up		Х	(X)	X	(X)	Х
$massive \ ensembles$						
(spin-sensitive devices,						
hybrid devices,						
mechanical sensors)						
WP5 Quantum	Х	Х	X	Х	Х	
Techniques for Sensing						
WP6 Capacity	Х	Х	Х	Х	Х	Х
expansion						

Ensure that all sensor families that were identified in the roadmap as relevant to future advances in particle physics are included WP → sub-WP → sub-sub-WP

WP1: Atomic, ionic, nuclear, molecular systems and nanoparticles

in traps and beams

WP-1a : Exotic systems in traps and beams

WP-1a_a: extension and improved manipulation of exotic systems

WP-1a_b: Bound state calculations

WP-1a c: Global analysis in the presence of new physics

WP-1b : Atom Interferometry

WP-1b a: Terrestrial Very-Long-Baseline Atom Interferometry Roadmap

WP-1b b: High-Precision Atom Interferometry cross-WP activity

WP-1c: Networks, Signal and Clock distribution

WP-1c a: Large-scale clock network

WP-1c b: Portable references and sources

(Time and frequency distribution via space)

(build on existing efforts / roadmaps / interest : involve & mesh with communities such that fundamental physics questions are well integrated)

Visions: -

Widely **expanded set of systems and of tools** to form, manipulate and study them (atoms, molecules, ions, trapped nanoparticles; improved production, trapping and cooling techniques)

Match (future) experimental precision with improved precision in theory for simple 2 or 3 body systems, allowing testing QED, BSM, nuclear properties, fundamental symmetries, in all possible bound systems.

A birds-eye view on the **landscape of well-motivated new physics scenarios** and their effects on different measurements. At least one **km-scale detector** operational by 2035, and preparation for a space-based atom-interferometry mission

Several orders of magnitude gain in sensitivity by:

- Advance on large momentum transfer techniques
- Increasing the source flux of ultra-cold Rb and Sr atoms
- High repetition rate set-ups
- Deployment of entangled atoms

Global network of high-stability and high-accuracy **clocks**: time-stamping to O(10ps) and distribution of a highly precise continuous clock signals as multiple references

Design and fabrication of **standardized portable references** (neutrals & charged); robust portable trapping systems.

WP1: Atomic, ionic, nuclear, molecular systems and nanoparticles

in traps and beams

Specific example: define the specifications for a real-time clock network

WP2: Quantum materials (0-, 1- & 2-D) materials

(Building blocks for complex nanoscale "quantum materials")

WP-2a: Application-specific tailoring

Exploring the landscape of possible building blocks of the low dimensional devices:

Quantum dots, nanocrystals, nano-platelets

Nanowires (also WP-3)

Mono-layers, surface deposition, surface treatments (thin films, also of superconductors)

WP-2b: Extended functionalities

Geometries, chemical composition, internal layout, environment: all play a role in shaping the properties of individual elements;

Visions: -

WP-2c: Simulations

Simulation packages need to go beyond the assumption of continuous media (G4) and incorporate processes at the local molecular scale;

Optimized engineering for specific applications (e.g. scintillators)

Radiation hardness

Extensive **overview** of what the **design landscape** enables on one hand, and what detector design benefits from.

Engineering of the building blocks of **arbitrary nanocomposite material**

Full understanding of performance requires accounting for interactions between the building blocks and their environment.

WP2: Quantum materials (0-, 1- & 2-D) materials

(Building blocks for complex nanoscale "quantum materials")

WP-2 (0-,1- and 2-	D materials)		
WP-2a \longrightarrow cha	racterization protocol	\rightarrow database definition —	→ populated db
(application-specific tailorin	g) <mark>protocol</mark>	Database prototype	Functional database
WP-2ab> V	vorkshop/conference _	\longrightarrow device designs	\rightarrow novel hybrid devices
(extended functionalities)	Device concepts	Prototype devices	Functional devices
WP-2c>	status & desiderata —	\longrightarrow prototype model —	
(simulations)	Report	Simulation SW designs	Validation report

WP3: Cryogenic materials, devices & systems

WP-3a: The 4K stage

Optimized, standardized and robust electronics for superconducting devices with minimal degradation of performance (ultra-low-noise amplifiers, arrayable high dynamic range amplifiers, integrated system building blocks, multiplexing for mega-pixel devices)

WP-3b: Cryogenic quantum sensors for particle and photon detection

Improved devices for photon and massive particle detection;

improved modeling of charged-particle impact on full devices;

address need for a forest of high-resolution calibration lines between 50 keV and 300 keV

Visions: -

WP 3c: Resilient integration of superconducting systems

Go beyond rule-of-thumb approaches to allow development, use and scaling up by numerous groups

Library of validated modules

Fabrication of **large arrays** of such devices beyond the existing photon sensors

Investigation of role of **high-Tc superconductors** for HEP applications

Optimized, standardized and robust **packaging approaches**; shielding against stray light, EMI, magnetic fields, operation in harsh environments; optimal thermal design

WP3: Cryogenic materials, devices & systems

WP4: Scaling up Quantum ("bulkification")

WP-4a: Massive spin polarized ensembles

Large ensembles of spin-polarized samples:

WP-4b: Hybrid devices

WP-4b a: Scintillators WP 4b b: Ensembles of heterostructures

WP-4b c: Heterodox devices

WP-4c: Opto-Mechanical Sensors

Bulk systems of quantum-behavior exhibiting individual elements: levitated nanospheres, levitated torque sensors, arrays of cantilevered detectors, superfluid He sensors whose detection modality (mechanical) is different from the readout modality (optical)

Visions: -

Go beyond building blocks

Optimization of polarization:

- Levitated ferromagnetic torque sensors
- Molecules with radio-isotopes (for EDM searches)
- High-spin-polarization "targets" and "scattering planes" for HEP
- High-spin-polarization ensembles for spin-dependent interactions

HEP (Scintillators): full <u>optimization</u> of the complete chain: not just of the quantum dots but also of surface treatments, novel types of scintillators (e.g. quantum wells in semiconductors), embedding materials and photon detection

Composite structures engineered for optimal performance and potentially combining different dimensionalities or compositions or geometries (work-function engineering, fine-tuning of charge transport in gaseous detectors, ...)

Novel types of devices that use individual quantum elements to engineer new types of behavior, e.g. QCL coupled to silicon strip detectors. **Optimization** of sensors & interconnects

WP4: Scaling up Quantum ("bulkification")

WP5: Quantum techniques for sensing

WP-5a: Squeezing

- opto-mechanical resonators
- Atom interferometers

Need: versatile and scalable sources of squeezed light

WP-5b: Back action evasion

Develop a *theoretical framework* for implementation in experiments beyond gravitational wave experiments

Perform <u>proof-of-principle</u> <u>experiments</u> as validation

WP-5c: Entanglement

(Applicability to HE particle physics?)

WP-5d: Optimization of physics reach

theoretical exploration of landscape

Visions: —

<u>Beyond</u> gravitational wave detection: other systems

Extraction of information without modifying the observed system <u>Beyond</u> two-sensor entanglement:

- scaling up to networks of sensors
- distribution of entanglement over networks

How far can one go?

WP5: Quantum techniques for sensing

WP6: Capacity building

WP-6a: Education platforms

Quantum Sensing and Technology Schools

Education based on micro-credentials

WP-6b: Exchange platforms

Cross-disciplinary contacts & exchanges

WP-6c: Shared infrastructures

Optimization of existing facilities

Visions: —

Growing a workforce of quantum technology savvy individuals, both for research and for society

Sharing and exchange of expertise and of research questions / opportunities

Sharing of infrastructures (test beams, dilution refrigerators, fab labs, ...) via agreed-upon standardized protocols

Cross-WP and DRD synergies

work package	WP-1	WP-2	WP-3	WP-4	WP-5	WP-6
WP 1 (Quantum systems in traps and beams)	-					
WP 2 (Quantum materials: 0-, 1- and 2-D)	?	-				
WP 3 (Superconducting quantum devices)	?	Х	-			
WP 4 (Scaled-up bulk systems for mip's)		Х	Х	-		
WP 5 (Quantum techniques)	Х	?	Х	?	-	
WP 6 (Capacity building)	Х	Х	Х	Х	Х	_

WP-WP cross-influences and impacts

VVP-VVP cross-influences and impacts										
Gaseous detectors conditioned and calor and ca										
work package	DRD1	DRD2	DRD3	DRD4	DRD6	DRD7	DRD8	DRD9		
WP 1 (Quantum systems in traps and beams)	Х			Х						
WP 2 (Quantum materials: 0-, 1- and 2-D)		Х	Х		Х					
WP 3 (Superconducting quantum devices)			Х	Х		Х				
WP 4 (Scaled-up bulk systems for mip's)		 - - - -	Х							
WP 5 (Quantum techniques)		 - - - -								
WP 6 (Capacity building)	Х	Х	Х	Х	Х	Х	Х	X		

cross-DRD influences and impacts

Potential HEP impact

Applied (detectors) Fundame

Fundamental physics

(Colliders, fixed targets)

Improved quantum measurements

HEP function Work package	Tracking	Calorimetry	Timing	PID	Helicity
WP 1 (Quantum systems in traps and beam)	Rydberg TPC	BEC WIMP scattering (recoil)	O(fs) reference clock for time-sensitive synchronization (photon TOF)	Rydberg dE/dx amplifiers	
WP2 (Quantum materials: 0-, 1- and 2-D)	"DotPix"; improved GEM's; chromatic tracking (sub-pixel); active scintillators	Chromatic calorimetry	Suspended / embedded quantum dot scintillators	Photonic dE/dx through suspended quantum dots in TPC	
WP 3 (Superconducting quantum devices)	O(ps) SNSPD trackers for diffractive scattering (Roman pot)	FIR, UV & x-ray calorimetry	O(ps) high Tc SNSPD	Milli- & microcharged particle trackers in beam dumps	
WP 4 (scaled-up bulk systems for mip's)	Multi-mode trackers (electrons, photons)	Multi-mode calorimeters (electrons, photons, phonons)	Wavefront detection (e.g. O(ps) embedded devices)		Helicity detector via ultra-thin NV optically polarized scattering / tracking stack
WP 5 (Quantum techniques)				Many-to-one entanglement detection of interaction	
WP 6 (capacity building)	Technical exp thus enhance base for infra	ertise of future workfo d attractiveness; cross structure (beam tests, o	rce (detector constructi -departmental networki dilution refrigerators, pr	on); broadened career ng and collaboration; b ocessing technologies)	prospects and roadened user

(under way; in preparation; under discussion or imaginable applications; long-range potential)

Structure of DRD5:

Membership is free (no common fund contributions)! (Only for academics! industry?)

Simple membership access (via request to CB) / leave (inform CB) processes;

WP's are coordinated as WG's

MB, POB, WG coordinators: by election through CB (1 institute = 1 vote) (Attention to balance!) (sub-WP coordinators are appointed)

MB = spokesperson, deputy, CB, RB and POB chairs

* CB: collaboration board; MB: management board; POB: project oversight board; RB: resources board; WG: working group for a specific Work Package

Participants per WP and total (as of 3.6.2024)

University / Lab.	Country	WP1	WP2	WP3	WP4	WP5	WP6	People
University of Queensland	Australia							1
University of Western Australia	Australia				х			1
Swinburne Univ. of Technology	Australia			х				3
IQOQI Vienna	Austria	х		х	х	х	х	2
McGill University	Canada	Х			х	х		1
TRIUMF	Canada	х				х		1
Institute of Physics, Zagreb	Croatia	Х						6
Czech Technical University	Czech Rep.		х	х				2
VTT	Finland	х		х				2
Helsinki Inst. Physics	Finland		х		х			8
OBSPM / SYRTE	France	х			х	х		1
CNRS-Université Sorbonne Paris Nord	France	х			х	х		6
Laboratoire Keller Brossel, Paris	France			х				3
University Claude Bernard Lyon1 - CNRS (ILM)	France		х		х		х	3
University Ulm	Germany	Х				х		1
Leibnitz Universität Hannover	Germany	Х				х		3
РТВ	Germany	х						2
DESY	Germany	Х	х	х	х	х	х	21
HU Berlin	Germany	х						1
FBH Berlin	Germany	х						1
University Düsseldorf	Germany	Х						1
Universität Bremen / ZARM	Germany	х			х			2
TU Darmstadt	Germany	х				х		2
KIT, Karlsruhe	Germany			х				2
TU Munich	Germany			х				3
MPP Garching	Germany			х				7
University of Heidelberg	Germany		х	х				1
University of Mainz	Germany							1
Universität Tübingen	Germany				х			1
Semiconductor Lab HLL / MPG	Germany			х				4
IITTP, Tirupati	India	х						3
Indian Inst. of Science Ed. and Research (IISER),Kolkata	India		х		х			6
TIFR, Mumbai	India		х	х	х			1
University of SOA, Bhubaneswar	India				х			2
Isfahan University of Technology	Iran	х	х	х		х	х	7
Technion IIT, Haifa	Israel	х		х				1
University / INFN - Florence	Italy	х	х		х		х	6
Fondazione Bruno Kessler Trento	Italy	х	х	х	х	х	х	13
Univ. of Napoli	Italy	х		х				6
University of Pisa and INFN	Italy		х	х	х	х	х	10
University / INFN - Pavia	Italy		х	х	Х	х	х	14
INFN Padova	Italy			х				3
INFN LNF	Italy			х		х		3
INFN TIFPA (Trento)	Italy					х		3
INFN Lecce	Italy		х					9
INFN Torino	Italy				х	х		11
INFN LNL	Italy		х		х			3
INFN Roma 1	Italy			х		х	х	6
University / INFN Milano-Bicocca	Italy		х	х	х			6

University / Lab.	Country	WP1	WP2	WP3	WP4	WP5	WP6	Peopl
IOM CNR & Elettra Sincrotrone, Trieste	Italy		х		х			3
University / Politecnico / INFN - Bari	Italy		х			х		10
Univ. Roma 1 (Sapienza)	Italy		х					2
Univ. Roma 3	Italy		х					1
Univ. of Napoli	Italy	х		х				6
CNR-SPIN Institute	Italy			х	х			1
INFN Roma Tor Vergata	Italy		х	х	х	х		7
University of Camerino	Italy		х	х	х			5
QUP / KEK	Japan			х			х	4
UTokyo / ICEPP	Japan			х		х		2
Kyoto University	Japan			х		х		1
Korea University	Korea	х						3
Universidad de Aguascalientes	Mexico	х						1
University of Groningen	Netherlands	х			х	Х	х	1
Univ. of Oslo	Norway		х			х		2
Warsaw University of Technology	Poland	х	х	х	х	Х	х	7
National Centre for Nuclear Research in Warsaw	Poland	х				Х	х	1
National Laboratory FAMO / Torun	Poland	х				Х	х	3
University of Cape Town	South Africa		х					2
University Zaragoza	Spain					Х		4
IFIC (CSIC - University of Valencia)	Spain			х		Х		1
University of Lleida	Spain	х				Х		1
Universidad de Cartagena	Spain			х				3
University of Stockholm	Sweden							1
University of Geneva	Switzerland			Х				1
University of Zürich	Switzerland			Х				7
ETHZ	Switzerland	Х						1
CERN	Switzerland	х	Х	Х	х	Х	Х	4
Oxford University	UK	х		Х		Х	Х	5
University of Warwick	UK	х			х	х		5
University of Birmingham	UK	х						2
NPL	UK	х						5
University of Southhampton	UK	х			х	Х		4
Imperial College	UK	х		х		х		7
University of Sussex	UK	х		х		х		7
Arizona State University	USA			х	х			3
University of Arizona	USA				х	х		1
UCLA	USA	х	х		х	х		2
MIT	USA	х						1
Northwestern University	USA	х		х	х	х		1
Yale	USA	х			х	х	х	2
ORNL	USA		х		х	х	х	3
Caltech	USA							2
NIST, Time and Frequency Division	USA	Х						3
LBNL	USA	Х	х	Х	Х	Х	х	3
Univ. of Delaware	USA							1
FNAL	USA			Х		Х		1
SLAC	USA	х						1

344 participants

1

Total number of institutes (as of 3.6.2024): 96

Total number of participants (as of 3.6.2024): 344 (= 100 FTE, assuming 30% scaling)

Widespread (geographically and community-wise) interest & participation

Conclusions:

 thanks to the involvement of key figures in the different Quantum Sensor and emerging technologies communities, we have identified a number of areas where the DRD5 collaboration can provide an added value to both particle physics and quantum technology activities

• we have formulated WP's, milestones and deliverables in such a form that they are reasonable and acceptable to those communities

• we have started the process of growing a community; this process will require *time* and *trust*, both among the participants, but also from the side of the involved institutions (DRDC, CERN). It is also an ongoing process that will rely on successfully implementing first milestones in form of workshops, reports, agreements *and* technical co-developments

• we believe that the widespread response indicates that this endeavor addresses a real need and can build on an understanding that a CERN-style collaborative approach *can* benefit the different communities, as long as their idiosyncrasies are understood and accommodated

This is a nascent area of research for HEP. Our efforts at this early stage already indicate strong interest from the communities. As is the tradition of CERN, we hope that DRD5 will be embraced by the DRDC given the potential for significant contributions to the field at large