Decoupling navigation and
stepping INACTS

#3449



https://github.com/acts-project/acts/pull/3449

Motivation

e Stepping and Navigation is
tightly coupled in ACTS

e Navigator will call stepper for
position and direction

e Therefore Stepper and it’s state
must be available to the
Navigator

(Stepper also depends on the Navigator but
that is a story for another day)

Andreas Stefl

Navigator.hpp#L. 304-1L.322

ACTS_VERBOSE(volInfo(state)
<< "Slow start initialization through search.");
// current volume and layer search through global search
ACTS_VERBOSE(volInfo(state)
<< "Starting from position "
<< toString(stepper.position(state.stepping))
<< " and direction "
<< toString(stepper.direction(state.stepping)));
state.navigation.startVolume =
m_cfg.trackingGeometry->lowestTrackingVolume(
state.geoContext, stepper.position(state.stepping));
state.navigation.startLayer =
state. 3 "startVolume != nullptr
? state.navigation.startVolume->associatedLayer(
state.geoContext, stepper.position(state.stepping))
: nullptr;
if (state.navigation.startVolume != nullptr) {
ACTS_VERBOSE(volInfo(state) << "Start volume resolved.");
}

Navigator.hpp#l 254-1 262

/// @brief Initialize call - start of navigation

propagator_state_t The state type of the propagator
/// @tparam s er_t The type of stepper used for the propagation
/17
/// @param [in,out] state e propagation state object
/// @param [in] stepper Stepper 1
template <typename propagator_state_t, typename stepper_t>

void initialize(propagator_state_t& state, const stepper_t& stepper) const {

ACTS dev meeting 30.07.2024 2


https://github.com/acts-project/acts/blob/555e6cea1786f1b2f64aa6703b4d1262fcd40402/Core/include/Acts/Propagator/Navigator.hpp#L254-L262
https://github.com/acts-project/acts/blob/555e6cea1786f1b2f64aa6703b4d1262fcd40402/Core/include/Acts/Propagator/Navigator.hpp#L304-L322

Navigator.hpp#lL 272-1. 276

/// @brief Initialize call - start of navigation
/17

PrOpOsal #1 /// @param [in,out] state the navigation state

void initialize(State& state, const Vector3& position,
const Vector3& direction) const {

e Break the dependency

Navigator—Stepper by providing

position and direction to the

Navigator explicitly
e This can be communicated by the

Propagator > The navigators job is just to give us
e Only provide the Navigator State a next step size

not the full Propagation State

Andreas Stefl ACTS dev meeting 30.07.2024


https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Navigator.hpp#L272-L276

Navigator.hpp#lL 272-1. 276

/// @brief Initialize call - start of navigation
/17

PrOpOsal #1 /// @param [in,out] state the navigation state

void initialize(State& state, const Vector3& position,

const Vector3& direction) const {
e Break the dependency
Navigator—Stepper by providing > The navigators job is just to give us

position and direction to the a next step size
Navigator explicitly

e This can be communicated by the BUT

Propagator | e MultiEigenStepperLoop breaks that
e Only provide the Navigator State assumption
not the full Propagation State e There the navigator only provides

the next surface and the Stepper
will run intersections to get the step
length

Andreas Stefl ACTS dev meeting 30.07.2024


https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Navigator.hpp#L272-L276

Proposal #2

e Reduce the Navigator to give the
next surface candidate

e The Stepper can run the
intersection

e We just need to inform the
Navigator when we reached or
missed a surface

Navigator.hpp#L.349-1.362

/// @brief Navigator estimateNextTarget call

/7

/// Call options

/// (a) there are still surfaces to be resolved: handle those

/// (b) there no surfaces but still layers to be resolved, handle those

/// (c) there are no surfaces nor layers to be resolved, handle boundary

/17

/// @param [in,out] state the navigation state

/// @param [in] position the current position

/// @param [in] direction the current direction

/17

/// @return the next target surface intersection

SurfaceIntersection estimateNextTarget(State& state, const Vector3& position,
const Vector3& direction) const {

Navigator.hpp#L 398-1400

void registerSurfaceStatus(State& state, const Vector3& position,
const Vector3& direction, const Surface& surface,
IntersectionStatus surfaceStatus) const {

Andreas Stefl ACTS dev meeting 30.07.2024 5


https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Navigator.hpp#L349-L362
https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Navigator.hpp#L398-L400

Proposal #2

e The Propagator communicates —
between Navigator and Stepper

Andreas Stefl

Propagator.ipp#L 89-1 99

if (nextTargetIntersection.isValid()) {
IntersectionStatus postStepSurfaceStatus =
m_stepper.updateSurfaceStatus(
state.stepping, *nextTargetIntersection.object(),
nextTargetIntersection.index(), state.options.direction,
BoundaryTolerance: :None(), s_onSurfaceTolerance, logger());
m_navigator.registerSurfaceStatus(
state.navigation, state.position,
state.options.direction * state.direction,
*nextTargetIntersection.object(), postStepSurfaceStatus);

ACTS dev meeting 30.07.2024

Propagator.ipp#L 51-L74

SurfaceIntersection nextTargetIntersection =
m_navigator.estimateNextTarget(
state.navigation, state.position,
state.options.direction % state.direction);
if (nextTargetIntersection.isValid()) {
m_stepper.updateSurfaceStatus(
state.stepping, *nextTargetIntersection.object(),
nextTargetIntersection.index(), state.options.direction,
BoundaryTolerance: :None(), s_onSurfaceTolerance, logger());

// Perform a propagation step - it takes the propagation state
Result<double> res = m_stepper.step(state, m_navigator);
if (!res.ok()) {
ACTS_ERROR("Step failed with " << res.error() << ": "
<< res.error().message());
// pass error to caller
return res.error();
}
// Accumulate the path length
state.pathLength += xres;
// Update the position and direction
state.position = m_stepper.position(state.stepping);
state.direction = m_stepper.direction(state.stepping);


https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Propagator.ipp#L51-L74
https://github.com/andiwand/acts/blob/901d3e4e322d238d0bf6b20ded5f20445cf604d8/Core/include/Acts/Propagator/Propagator.ipp#L89-L99

Summary

Proposal #2 effectively decouples the Navigator from the Stepper and the
Propagation State

This makes the components easier to reason about and to test

Changes should be transparent to the user as the Propagator interface stays
the same

Makes Navigators template free

Potentially saves on one or more intersections while approaching surface

Questions and feedback are very welcome!

Now or GitHub or Mattermost

Andreas Stefl ACTS dev meeting 30.07.2024


https://github.com/acts-project/acts/pull/3449

