(Really) Fast Single Vertex Finder

Petr Balek, Tomasz Bold

10 September 2024

- fast single vertex finder presented some time ago
 - ▶ <u>link1</u>, <u>link2</u>
 - used triplets of measurements fitted with a line or a plane
 - ► vertex was the point of minimal Σ distance² to the lines/planes
 - polynomial in the number of measurements as it had to create all the triplets
 - resolution of a few mm in z

vertex finder with Hough transform

- really fast single vertex finder
 - linear in the number of measurements
 - use Hough transform to populate 2D histogram of $z_{vertex} \cot(\theta)$
 - ★ $\cot(\theta) = (z z_{vertex})/r$
 - $\star\,$ also, $\cot(\theta)$ has reasonable values for any $|\eta|$ range
 - each measurement is a line in the 2D histogram
 - \blacktriangleright remove the bins without enough entries, i.e. where there is no track
 - make 1D projection to z_{vertex} axis
 - ▶ find a peak

parameters of the vertex finder

- sub-optimal setup may prevent the peak identification, as illustrated below
 - ► too many/too little measurements
 - $\star\,$ number of measurements can be adjusted with $|\eta|$ range
 - ★ $|\eta|$ range also sets limits on $\cot(\theta)$ range
 - too fine/too rough binning in $\cot(\theta)$
 - line is too wide/no enough wide
 - ► request too little/too much entries for pedestal removal

parameters of the vertex finder

- parameters tuned for ODD
 - \blacktriangleright limit η to use approx. 10^4 measurements and no more
 - ★ makes the algorithm even better than linear!
 - ▶ for less than 10⁴, use $|\eta| < 3.0$ but have less bins in $\cot(\theta)$
 - \bigstar for every 10× less measurements, decrease the number of bins 2×
 - ► make the line in HT wider for less than 1000 measurements; even wider for less than 200 measurements

- off-diagonal entries events with low multiplicity
- r is calculated from (x, y) = (0, 0)

implementation of the vertex finder

- initially wanted to reuse the implementation of the Hough transform as much as possible
- HoughTransformUtils is too complex
 - every bin in 2D histogram ("HoughPlane") is an object ("HoughCell") that keeps track of each hit
 - \star hits have unique identifiers, those are recorded
 - filling of the 2D histogram is not optimal
 - * we can easily calculate at what z_{vertex} value the line actually enters the histogram, skipping all z_{vertex} values before that
 - ★ in HoughPlane, we can't skip them because the "line" is represented as a generic function
 - wouldn't help with pedestal removal nor with the projection
 - using only minor function for bin center or for finding bin number
- using MultiIndexedVector2D for the 2D histogram
 - ► still need to implement the pedestal removal and 1D projection
- peak finding is a simple find-a-maximum loop
 - ► *z_{vertex}* position is a weighted average around the maximum

summary & outlook

- ultimately, this information will be used to filter seeds
 - only prof of concept implementation in place
- ideal for high-multiplicity events:
 - ► fast, accurate, potential benefit is large
- with multiplicity low enough, it's not worth to run it:
 - it's inaccurate
 - potential benefit is small
 - \Rightarrow there will be some cut-off for the number of measurements
- prepared an advanced paper draft describing this method and it's performance with ODD
- performance with ATLAS ITk should be comparable, assuming we tune the parameters again