CMOS Pixel Sensors designed for the STAR-PXL

M. Winter (PICSEL team of IPHC-Strasbourg) - coll. with IRFU-Saclay -

CERN - 29 May 2011

Contents

- Basic features of CMOS sensors
 - * general remarks on highly pixelated and thin sensors
 - * generic aspects of existing MIMOSA sensors
- Status of sensor realisation
 - * sensor architecture
 - * main outcome of sensor prototyping
 - * preliminary lab test results of ULTIMATE sensors
- Summary

CMOS Pixel Sensors: State of the Art

- Prominent features of CMOS pixel sensors:
 - * high granularity \Rightarrow excellent (micronic) spatial resolution
 - * very thin (signal generated in 10-20 μm thin epitaxial layer)
 - * signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics (\Rightarrow cost)

- Organisation of MIMOSA sensors:
 - * manufactured in 0.35 μm OPTO process
 - * signal sensing and analog processing in pixel array
 - * mixed and digital circuitry integrated in chip periphery
 - * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
 - \Rightarrow impact on power consumption

Granularity versus Speed

- Impact of high granularity:
 - * large number of pixels \Rightarrow handicap for read-out speed of the full pixel array
 - * **but:** slow down of detector read-out frequency compensated by accuracy
 - \hookrightarrow single point resolution and material budget :
 - ---- improved neighbouring hit separation on each detector layer
 - ---- improved track extrapolation accuracy during track reconstruction from layer to layer
 - ---- effect enhanced by small material budget
 - ---- strategy option: connect CMOS pixels sensors to 2-layer fast&thick detector
 - * global effect : improved track reconstruction capability in high density conditions
 - \Rightarrow data rate handling capability not really downgraded (but track rec. SW needs to be adapted)
- Illustration with CMOS pixels (20imes20 μm^2) :
 - * > 60 times smaller than ATLAS pixels (50×425 μm^2)
 - $* \geq$ O(10-100) times more accurate track extrapolation for hit search
 - $\Rightarrow \sim$ 3 ordres of magnitude improvement in hit rate handling capability
 - \hookrightarrow single CMOS pixel layer in a tracker does not provide all added value of granular & thin sensors
 - \hookrightarrow large particle rate does not necessarily imply priority to r.o. speed

CMOS Pixel Sensors: General Remarks

- Intrinsic limitations of technology :
 - * very thin sensitive volume \Rightarrow impact on signal magnitude
 - * standard process sensitive volume almost undepleted \Rightarrow impact on radiation tolerance & speed
 - * commercial fabrication (parametres) \Rightarrow not optimised for charged particle detection
 - \Rightarrow impact on sensing performances and radiation tolerance
- Limitations of the fabrication process retained for ULTIMATE:
 - st only 4 ML \Rightarrow rolling shutter sequencer in 350 μm wide side band
 - * feature size \Rightarrow restricted nb of transistors in the pixel
 - * oxide thickness (from feature size) \Rightarrow weakens the tolerance to ionising radiation
 - * double-well technology \Rightarrow restricted circuitry inside pixel
- Limitations due to the STAR environment :
 - * limited cooling \Rightarrow power consumption is a concern (consequences on SNR, alignment)
 - * limited cooling \Rightarrow reduced noise performance, in particular after irradiation (though not critical)

CMOS Pixel Sensors: State of the Art

- Main characteristics of MIMOSA sensor equipping EUDET BT:
 - * 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - $\,\, \ast \,$ column // architecture with in-pixel amplification (CDS) and end-of-column discrimination, followed by $\, \varnothing \,$
 - * active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - st pitch: 18.4 $\mu m
 ightarrow \sim$ 0.7 million pixels charge sharing $\Rightarrow ~\sigma_{sp} \lesssim$ 4 μm
 - * $t_{r.o.} \lesssim 100 \ \mu s$ (~10⁴ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - $*\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)

MIMOSA-26: Functionality Implementation

courtesy of Ch. Hu-Guo / TWEPP-2010

MIMOSA-26 Zero-Suppression Logic

- Encoding limited to raws
 - \Rightarrow no raw to raw correlation for clustering
- Same logic implemented in Ultimate

High-Resistivity CMOS Pixel Sensors

• M.i.p. detection with LOW & HIGH resistivity CMOS sensors combined in a Beam Telescope (BT)

Direct Applications of MIMOSA-26

- Beam telescope of the FP6 project EUDET
 - * 2 arms of 3 planes (plus 1-2 high resolution planes)
 - * MIMOSA-26 thinned to 50 μm
 - $*~\sigma_{extrapol.} \sim$ 1-2 μm even with e $^-$ (3 GeV, DESY)
 - * frame read-out frequency $O(10^4)$ Hz
 - * running since '07 (demonstrator: analog outputs)
 at CERN-SPS & DESY (numerous users)

• Spin-offs :

- * Several BT copies : foreseen for detector R&D
- * **BT** for channelling studies, mass spectroscopy, etc.
- * CBM (FAIR) : MVD demonstrator (2-sided layers) for CBM-MVD (HP-2 project)
- * FIRST (GSI) : VD for hadrontherapy $d\sigma/d\Omega$ measurements $\Box \Box \Box$

Application of CMOS sensors to the STAR-PXL

>>> 1st vertex detector equipped with CMOS pixel sensors >>> 1st data taking in 2013

From MIMOSA-26 to ULTIMATE

- Half reticle 1152 x 567 pixel matrix
- Temperature ~20 °C
- Light power consumption constrains
- Space resolution ~4 μm
- No constrains on radiation tolerance

- Full reticle 960 x 928 pixel matrix
 - Longer integration time ~200 μs
- Temperature 30-35 °C
- Power consumption ~100 mW/cm²
- Space resolution < 10 μm</p>
- 150 kRad / yr & few 10¹² Neq /cm² /yr

courtesy of Ch. Hu-Guo / TWEPP-2010

➔ Optimisation

MIMOSA-22AHR: Motivations, Properties, Tests Performed

lotivations :
st validate larger pitch design \Rightarrow power dissipation
$*$ try enhancing in-pixel amplification \Rightarrow sensitivity to discri. offset
* enhance radiation tolerance at 30 ^o C
* explore and validate new epitaxial layers (AMS home made vs provide
lain components:
st pitch: 20.7 μm (UTIMATE) and 18.4 μm (MIMOSA-26)
* in-pixel amplification: Common Source & Cascode
st various features against ionising radiation damage: ETL, wide T gate

* features against non-ionising radiation damage: diode size, depletion potential

• Fabrication:

- st part of an AMS-0.35 μm engineering run submitted in May 2010 ightarrow back in July
- * various epitaxial layers: standard (M-22 & M-26), HR-10 (M-26), HR-15 (AMS), HR-20 (AMS)
- Tests performed (mainly at 3.3 V):

* extensive lab tests: CCE (55 Fe), noise (fake rate) * HR-15 and HR-10 tested at CERN-SPS (August & Sept. 2010) * irradiation tolerance tests: 150 kRad, $3 \cdot 10^{12} n_{eq}/cm^2$ and combined * temperature dependence: 20° C and 30° C

* "STAR running conditions": 150 kRad \oplus 3·10¹² n_{eq}/cm² \oplus 30^oC \oplus 75 MHz (should have been 50 MHz)

0		I N
32	S1 : Yavuz	0.7
64	S2 : Yavuz 2	Гщ
96	S3 : Depletion voltage	ם ר
128	S4 : Depletion voltage 2	<u>5</u>
160	S5 : Depletion voltage 3	
192	S6 : CAS (S10 but L40)	
224	S7 : CS	
256	S8 : CAS (L)	
288	S9 : CAS (S)	
200	S10 : CAS	
320		
320 352	S11 : CAS	le bear
320 352 384	S11 : CAS S12 : CAS (S11 but L45)	le beam
320 352 384 416	S11 : CAS S12 : CAS (S11 but L45) S13 : CS	le beam
320 352 384 416 448	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45)	he beam
320 352 384 416 448	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45) S15 : Elongated pixels	ne beam
320 352 384 416 448 512	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45) S15 : Elongated pixels (x2)	18.
320 352 384 416 448 512	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45) S15 : Elongated pixels (x2) S16 : Elongated pixels	18.4 µ
320 352 384 416 448 512	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45) S15 : Elongated pixels (x2) S16 : Elongated pixels (x4)	18.4 µm р
320 352 384 416 448 512	S11 : CAS S12 : CAS (S11 but L45) S13 : CS S14 : CS (S13 but L45) S15 : Elongated pixels (x2) S16 : Elongated pixels (x4)	18.4 µm pitc

MIMOSA-22AHR: Noise Performance

MIMOSA-22AHR: Performances before Irradiation

- Tests performed at CERN-SPS:
 - * sensor mounted on beam telescope(4 pairs of Si-strip detectors)
 - * vary discriminator threshold (JTAG), temperature, clock frequency
 - measure detection efficiency,
 fake hit rate, single point resolution
- Results for 20.7 μm pitch pixels \triangleright mV-SNR equivalence at 30°C

Threshold >	4 mV	6 mV	8 mV
S7	4.1	6.4	8.7
S10	2.5	4.2	5.9
S6	2.7	4.4	6.1
S8	2.5	4.2	5.9

• Typical noise performance : 12-14 e⁻ ENC

MIMOSA-22AHR: Performances before Irradiation

- Efficiency vs fake hit rate:
 - define threshold values allowing high detection efficiency and low fake rate
 - \Rightarrow keep fake rate $\lesssim 10^{-4}$

 Results for 20.7 µm pitch pixels ▷ mV-SNR equivalence at 30°C

Threshold ⊳	4 mV	6 mV	8 mV
S7	4.1	6.4	8.7
S10	2.5	4.2	5.9
S6	2.7	4.4	6.1
S8	2.5	4.2	5.9

MIMOSA-22AHR S7 Pixel : Summary

- Summary of results obtained with S7 (CS) :
 - * evolution of detection efficiency
 - * evolution of fake hit rate
 - \hookrightarrow look for viable working point
- Results for 20.7 µm pitch pixels ▷ mV-SNR equivalence at 30°C

Threshold (mV) $Dash$	4	5	6	8
before irrad.	4.1		6.4	8.7
$3\cdot 10^{12}~\mathrm{n}_{eq}/\mathrm{cm}^2$			5.5	7.7
150 kRad		4.5	5.4	7.2
combined (75 MHz)			5.2	6.9

\Rightarrow No problem to find a threshold where the detection efficiency is > 99.5 % while the fake hit rate remains negligible

MIMOSA-22AHR S10 Pixel : Summary

- Summary of results obtained with S10 (CAS) :
 - * evolution of detection efficiency
 - * evolution of fake hit rate
 - \hookrightarrow look for viable working point
- Results for 20.7 µm pitch pixels ▷ mV-SNR equivalence at 30°C

Threshold (mV) 🕞	4	5	6	8
before irrad.	2.5		4.2	5.9
3·10 $^{12}~\mathrm{n}_{eq}/\mathrm{cm}^2$			4.1	5.6
150 kRad		2.6	3.2	4.4
combined (75 MHz)			3.2	4.3

\Rightarrow No problem to find a threshold where the detection efficiency is > 99.5 % while the fake hit rate remains negligible

STAR-PXL Detector : MIMOSA-28

- Main characteristics of ULTIMATE:
 - st 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - st end-of-column discrimination and binary charge encoding, followed by $extsf{0}$
 - * active area: 960 columns of 928 pixels (19.9 \times 19.2 mm²)
 - st pitch: 20.7 $\mu m
 ightarrow \sim$ 0.9 million pixels

ightarrow charge sharing $\Rightarrow \sigma_{sp} \sim$ 3.5 μm expected

- * $\mathfrak{t}_{r.o.}\lesssim$ 200 μs (\sim 5imes10 3 frames/s)
 - \Rightarrow suited to >10⁶ part./cm²/s
- * 2 outputs at 160 MHz
- $*\lesssim$ 150 mW/cm 2 power consumption

 $\triangleright \triangleright \triangleright$ Chip back from foundry \Rightarrow lab tests under way since early April :

- * N \leq 15 e⁻ENC at 30-35^oC (as MIMOSA-22AHR)
- * CCE (⁵⁵Fe) similar to MIMOSA-22AHR
- --> m.i.p. detection assessment at CERN-SPS in June-July '11
- —o radiation tolerance assessment through Spring and Summer

Expected M.I.P. Detection Performances of MIMOSA-28

- Expected m.i.p. detection performances determined with MIMOSA-26 and with medium size MIMOSA-22AHR prototype of ULTIMATE/M28 at SPS with \sim 100 GeV π^- (Summer '10)
- Detection efficiency vs fake hit rate : sensor works with high detection efficiency and marginal contamination by noise fluctuations (fake hits)

- st 18.4 μm pitch (MIMOSA-26) $ightarrow \, \sigma_{sp} \sim$ 3 μm
- st 20.7 μm pitch (ULTIMATE) $\rightarrowtail ~\sigma_{sp} \sim$ 3.5 μm

SUMMARY

- The translation from MIMOSA-26 to ULTIMATE/Mimo-28 completed
 - \hookrightarrow in time for data taking in FY 2014
- Sensors were fabricated and are being tested :
 - * lab tests before irradiation show expected behaviour
 - * irradiation tests under way: 150 kRad and $3 \cdot 10^{12} n_{eq}/cm^2$
 - * mip detection performance assessment: beam tests at CERN-SPS in June/July
- **Pending question :** should the digital circuitry be made latch-up free ?
- ULTIMATE acts as an important forerunner for several sensors of upcoming vertex detectors