

# A Walking Tour of the STAR Heavy Flavor Tracker

#### **Detector Layout, Mechanics and Cooling**

**Jim Thomas** 

Lawrence Berkeley National Laboratory May 29<sup>th</sup>, 2011

# The Heavy Flavor Tracker: Location inside the TPC



# The HFT – Pixel Technology







8 cm



Now using high resistivity Si which allows for a biased depletion region (previously relied upon diffusion to collect the charge)



- Unique Features
  - 20.7 x 20.7  $\mu m$  pixels
  - 100-200 μsec integration time
  - 436 M pixels
  - 0.37% X/X<sub>0</sub> per layer
  - Install and Replace in 8 hours
- News
  - Change in process: now using HighResistivity Si
  - Better signal to noise and higher radiation tolerance >300 kRad
  - Don't have to replace the detector every year

PXL2

### **PXL Requirements and Design Choices**



- -1 ≤ Eta ≤ 1, full Phi coverage (TPC coverage)
- ≤ 30 µm DCA pointing resolution required for 750 MeV/c kaon
  - Two or more layers with a separation of > 5 cm.
  - Pixel size of ≤ 30 μm
  - Radiation length as low as possible but should be ≤ 0.5% / layer (including support structure). The goal is 0.37% / layer
- Integration time of < 200 μs
- Sensor efficiency  $\geq$  99% with accidental rate  $\leq$  10<sup>-4</sup>.
- Survive radiation environment.
- Air cooling
- Thinned silicon sensors (50 µm thickness)
- MAPS (Monolithic Active Pixel Sensor) pixel technology
  - Sensor power dissipation ~170 mW/cm<sup>2</sup>
  - Sensor integration time <200 μs (L=8×10<sup>27</sup>)
- Quick extraction and detector replacement (1 day)

**Design** Choices

### **Exploded view of the HFT inside the TPC**





### The "cone" assembly is removable (annually)





This is an old diagram ... in the new design, the cones are symmetric Jim Thomas - LBL

### The Silicon Strip Detector at 22 cm radius





### The Silicon Strip Detector – an existing detector





- 20 ladders located at a radius of 22 cm
- Double sided Si strips, 95 μm pitch, 4 cm long, crossed at 35 mrad
- The electronics on each end of the ladder are to be upgraded
- Readout Goal: > 1 kHz for all detectors in the HFT

# The Pixel Detector lies beneath the SSD and IST



## **Hinge detail**





- Parallelogram hinges support the two detector halves while sliding
- Cam and follower controls the opening of the hinges during insertion and extraction
- Detector support transfers to kinematic dock when positioned at the operating location

### **Pixel support structure near the vertex**





D Tube

Sector tube

PXL detector. The two halves separate in order to allow for easy access, removal and repair.

### **Kinematic Mounts**





- Kinematic mounts exploit the fact that three points define a plane
- Obvious 'perfect' alignment with four spheres  $\Rightarrow$  3 points of contact
- Reproducible position to 10 μm, often used on optical benches
- More typical design on the right ... the difficult part is to maintain enough pressure on the points of contact to hold their position

#### **HFT PXL status – fabrication and tooling**















Jim Thomas - LBL

#### Hinge and Cooling Duct detail





# **Air Cooling**



#### Air-flow based cooling system for PXL to minimize material budget.



- Silicon power: tested at 170 mW/cm<sup>2</sup> (~ power of sunlight)
- 350 W total in the ladder region (Si + drivers)



computational fluid dynamics



### **Structures: Exploded Detail**





### **Stability Performance**





- IDS analyzed for deflection
- Anticipated response convolved with measured STAR vibration environment
- + RMS Stability under 10  $\mu m$



Jim Thomas - LBL

#### PXL box rests on two 6

inch aluminum box beams. These beams are supported independent of walking platform

During this operation the

**Rapid Insertion** 

Up dated, includes measurement tool for checking alignment of two rail systems and instructions detector is supported on two round slide rails both in the PXL storage box and in the MSC. In this procedure the box most be accurately moved into position to align the slide rails of the box with the rails in the MSC

Each half of the PXL



#### **View of Existing East Pole Tip Area**





T East Pole Tip as seen during a summer shutdown

Beam-Beam counter installed in East Pole Tip



| Pointing resolution        | (12 ⊕ 19 GeV/p⋅c) μm                                             |  |  |  |  |
|----------------------------|------------------------------------------------------------------|--|--|--|--|
| Layers                     | Layer 1 at 2.5 cm radius                                         |  |  |  |  |
|                            | Layer 2 at 8 cm radius                                           |  |  |  |  |
| Pixel size                 | 20.7 μm X 20.7 μm                                                |  |  |  |  |
| Hit resolution             | 6 μm                                                             |  |  |  |  |
| Position stability         | 6 μm rms (20 μm envelope)                                        |  |  |  |  |
| Radiation length per layer | $X/X_0 = 0.37\%$                                                 |  |  |  |  |
| Number of pixels           | 356 M                                                            |  |  |  |  |
| Integration time (affects  |                                                                  |  |  |  |  |
| pileup)                    | 185.6 μs                                                         |  |  |  |  |
| Radiation environment      | 20 to 90 kRad                                                    |  |  |  |  |
|                            | 2*10 <sup>11</sup> to 10 <sup>12</sup> 1MeV n eq/cm <sup>2</sup> |  |  |  |  |
| Rapid detector replacement | ~ 1 day                                                          |  |  |  |  |

#### 356 M pixels on ~0.16 m<sup>2</sup> of Silicon ... it will work!



**Backup Slides** 

# **The HFT – The configuration**





- The HFT puts 4
  layers of Silicon
  around the vertex
- Provides 8 μm space point resolution @ 2.5 cm
- 30 μm vertex resolution @ 1 GeV, 10 μm @ 5 GeV
- Works at high rate (~ 800 Hz – 1K)
- Does topological reconstruction of open charm
- Will be ready for the 2014 run



| Rad<br>cm  |                |             | 2.5          | 2.5                   | 14.0         | 22.0         | 2.5                          | 2.5                                       | 14                           | 22                           |
|------------|----------------|-------------|--------------|-----------------------|--------------|--------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|
|            |                | # of<br>wks | Phys<br>krad | Phys<br>+ UPC<br>krad | Phys<br>krad | Phys<br>krad | Ramp<br>and<br>Total<br>krad | Ramp<br>and<br>Total<br>n/cm <sup>2</sup> | Ramp<br>and<br>Total<br>krad | Ramp<br>and<br>Total<br>krad |
| 200<br>GeV | Au + Au<br>Max | 12          | 28.3         | 59.8                  | 0.9          | 0.4          | 88.0                         | 1.1E+12                                   | 1.8                          | 0.7                          |
|            | Au + Au<br>Min | 12          | 5.3          | 11.3                  | 0.2          | 0.1          | 16.6                         | 0.2E+12                                   | 0.3                          | 0.1                          |
| 500<br>GeV | p + p<br>Max   | 12          | 133.3        | 133.3                 | 4.3          | 1.7          | 266.7                        | 5.3E+12                                   | 8.5                          | 3.4                          |
|            | p + p<br>Min   | 12          | 28.9         | 28.9                  | 0.9          | 0.4          | 57.8                         | 1.1E+12                                   | 1.8                          | 0.7                          |

# **Thermal Studies**



Kapton cables with copper traces forming heaters allow us to dissipate the expected amount of power in the detector



- 6 NTC thermistors on each ladder
- Sector 1 was equipped with 10 thinned dummy silicon chips per ladder with Pt heaters vapor deposited on top of the silicon and wire bonded to heater power.







48.0

45

# **Thermal Results**





340 W with ambient air = 26.8 C

- Measurement results agree with simulations and meets calculated stability • envelope tolerance.
- Air flow-induced vibrations ( $\leq 10 \text{ m/s}$ ) are within required stability window. ٠