CMOS Pixel Sensors designed for the ALICE-ITS Upgrade

M. Winter (PICSEL team of IPHC-Strasbourg) - coll. with IRFU-Saclay -

CERN – 29 May 2011

Contents

- General features of sensor
	- $*$ specifications and architecture
	- $*$ changes w.r.t. STAR-PXL sensor
- Work plan
	- $*$ some features of the 0.18 μm technology
	- $*$ tentative work plan
- Ladder concepts
- Summary

MISTRAL : Main Characteristics

- **MISTRAL** ≡ **MI**MOSA **S**ensor for the inner **TR**acker of **AL**ICE
- **Adapted to "standard" running including TPC**
- **Derived from ULTIMATE (STAR - PXL) :**
	- $*$ in-pixel pre-amp + cDS
	- $*$ column parallel read-out (\equiv rolling shutter)
	- $*$ each column ended with discri. \triangleright binary charge encoding
	- $*$ zero-suppression & output buffers integrated at chip periphery
	- * JTAG programmable
	- $*$ thinned to 50 μm

• **Differences w.r.t. ULTIMATE :**

- $\dot{\mathcal{L}}$ 0.18 μ m triple-well HR-epi techno. (instead of 0.35 μ m double-well hR-epi)
- $\divideontimes\sim$ 1 \times 3 cm 2 large sensitive area (instead of 2 \times 2 cm 2)
- $*$ double-sided read-out (instead of single-sided)
- $*$ 1 or 2 output pairs at \gtrsim 200 MHz (instead of 1 output pair at 160 MHz)
- \divideontimes two \lesssim 200 μm wide raw sequencers (instead of one 350 μm wide sequencer)
	- \triangleright potentially : raw sequencers moved to bottom (requires \sim 6 ML \Rrightarrow longer design)

MISTRAL : M.I.P. Detection Characteristics

• **Detection related characteristics :**

- **Radiation tolerance at +30[°]C** (not yet established) :
	- $*$ several MRad

$$
\ast \, \gtrsim 2{\times}10^{13}n_{eq}{\rm /cm}^2
$$

MISTRAL : Moving to 0.18 µm **CMOS Technology**

- **Evolve towards feature size** $<<$ 0.35 μ m :
	- **※** *µ*circuits : smaller transistors, more Metal Layers, ... → ※ sensing : triple well, depleted sensitive volume, ...
		-

- **Benefits :**
	- $*$ faster read-out \Rightarrow improved time resolution
	- $*$ higher μ circuit density \Rightarrow higher data reduction capability
	- $*$ thinner gates, depletion \Rightarrow improved radiation tolerance
- **Image Sensor process of Tower/Jazz Semi-Conductor :**
	- $*$ visited on May 16th in Israël
	- $*$ attractive features of technology (and founder):
		- \diamond optimised sensing systems available and tunable (?) \Rrightarrow enhanced SNR
		- \diamond high-resistivity epitaxy (1 5 $k\Omega\cdot cm)$ \Rightarrow $\;$ enhanced SNR
		- \diamond stitching \Rrightarrow multireticule surface sensor
		- \Diamond 6 ML, deep P-well, etc.
		- $\diamond~\geq$ 8 Multi-Project-Wafer runs per year $\rightarrowtail~$ Shuttle Nr 62 on 24.10.11
- **Synergies :**
	- $*$ CBM MVD sensor
	- \divideontimes SuperB vertex detector: in-pixel μs time-stamping architecture fits in 50 \times 50 μm^2 pixel

MISTRAL : Chip Submission Plans

• **Chip submission flow :**

*** Q4/2011 : MIMOSA-32** ⊳ prototype for technology exploration

 \div Q2/2012 :

- \diamond MIMOSA-22THR $\;\rhd\;$ prototype with 128 columns (of 128-256 pixels) ended with discriminators
- $\diamond~$ SUZE-02 $~\triangleright~$ prototype with latch-up free zero-suppression μ circuit and output buffers
- * Q2/2013 : MISTRAL-1 ▷ full size prototype combining MIMOSA-22THR with SUZE-02 designs

* Q2/2014 : MISTRAL-2 ⊳ final sensor ≡ optimised MISTRAL-1 design

• **Still pending :**

- $*$ building blocks vs radiation tolerance : do we need ELT, latch-up free design, etc. ?????
- $*$ optimisation of data transfer μ circuitry ???
- $*$ integration of trigger ????

MISTRAL : Human Resources

• **Manpower for chip design :**

• **Manpower for sensor tests :**

- $*$ functionnality tests : designers
- \divideontimes particle detection characterisation in lab and at CERN : \gtrsim 1-2 FTEs missing
- > radiation tolerance tests : [∼] 2 FTEs welcome
- **Manpower for chip steering and DAQ :** Missing
- **Synergies :**
	- $*$ building blocks : SuperB
	- > techno. properties (e.g. radiation tolerance, charge collection) : SuperB, CBM, etc.

Besides/Beyond MISTRAL

• **Motivations :**

- baseline improvements (e.g. CCE, SNR)
- * extended running conditions or physics goals (e.g. read-out speed)
- **Baseline improvements** [≡] **keep baseline architecture :**
	- $*$ use of technology features improving charge collection or noise performance
	- $*$ full use of \geq 6 ML (e.g. row sequencer at bottom)

 $*$ etc.

- **Extended running conditions** ^V **modify baseline architecture :**
	- $*$ 2 different architectures;
		- \Diamond parallel rolling shutter (PRS) architecture
		- \Diamond high-density in-pixel (HDIP) functionnalities
	- > **Each option explores ^a different optimisation of speed** ? **resolution** ? **power :**
		- \diamond PRS \Rightarrow slower but more precise and dissipating less power
		- \diamond HDIP \Rightarrow faster and more selective but less precise and dissipating more power

Besides/Beyond MISTRAL

• **Parallel rolling shutter (still "in birth"):**

- * subdivide sensitive area into \sim 2×8 sub-arrays read out independently through rolling shutter
- $*$ enlarge the pixel and use in-pixel p-type $\mathsf T$
- $*$ implement in-pixel 2-bit ADC to keep spatial

resolution \sim 5-6 μm (\Rrightarrow $\,$ raw r.o. time \times 2 !)

 $*$ approach expected to improve read-out time

by factor \gtrsim 4 \Rightarrow $\;$ $t_{integ} \gtrsim$ 5 μs

- $*$ alleviates increase of power dissipation
- $*$ drawback : larger pitch \Rightarrow reduced NI radiation tolerance

• **HDIP architecture :**

- > in-pixel pre-amp ⊕ shaper ⊕ discriminator ⊕ time stamping
- $*$ faster than parallel rolling shutter \rightarrow is it needed?
- $*$ would benefit from expertise and designs of several ALICE groups (and from SuperB devt)
- $*$ easier to transfer to HPS in case of insufficient radiation tolerance of CMOS pixel
- $*$ drawbacks: more power consumption & worst impact param. resol. ("large" pitch (50 μ m)

Towards ^a Large Pitch

- **Large pitch : Motivations**
	- $\hat{\ast}$ trackers require $\sigma_{sp} \gtrsim$ 10 μm $\qquad\quad \hat{\ast}$ calorimeters require O(100 \times 100) μm^{2} cells
		- \Rightarrow minimise number of pixels for the sake of power dissipation, integration time and data flow
- **Large pitch : Limitations**
	- > DANGER: increasing distance inbetween neighbouring diodes
		- \Rightarrow particles traversing sensor "far" from sensing diodes may not be detected because of e $^{+}$ recombination
	- $*$ "fragile" detection efficiency, exposed to losses due to irradiation, high temperature operation & slow read-out
- **Elongated pixels : Test results**
	- $*$ elongated pixels allow minimising the drawbacks of large pitch
	- $*$ concept evaluated with MIMOSA-22AHR prototype, composed of a sub-array with 18.4 \times 73.6 μm^2 pixels $\qquad \rhd \rhd \rhd$
	- $*$ m.i.p. detection performances assessed at CERN-SPS (T \sim 15[°]C)
		- \sim ϵ_{det} ~ 99.8 %
		- $\overline{\sigma}_{sp}$ \sim 5-6 μm (binary charge encoding)
- **Square pixels : prototype under fabrication**
	- $*$ MIMOSA-29 being fabricated on high-res epitaxy
	- \divideontimes pixels of \leq 80 \times 80 μm^2

Sensor Integration in Ultra Light Devices

 $\bullet\,$ "Useful" sensor thickness \lesssim 30 $\mu m \, \Rrightarrow \,$ opens new possibilities w.r.t. thicker sensors

 \triangleright coarse thickness of sensors (e.g. EUDET BT) is 50 μm

- **STAR-PXL ladder** (room temperature, single-end supported)**:**
	- $*$ total material budget \simeq 0.37 % X_0 :
		- 50 μm thin sensors \simeq 0.05 % X₀
		- o flexible cable \simeq 0.07 % X_0
		- \circ mechanical support \simeq 0.2 % X₀
		- o adhesive, etc. \simeq 0.05 % X_0

- **Double-sided ladders with** [∼] **0.2-0.3 % X** 0 **:**
	- manifold bonus : compactness, alignment, redundancy, pointing accuracy (shallow angle), fake hit rejection, etc.

- \bullet Unsupported & flexible ladders with \lesssim 0.15 % X $_0$
	- \Rightarrow 30-50 μm thin CMOS sensors mounted on thin cable & embedded in thin polyimide \rightarrowtail suited to beam pipe?

SUMMARY

- A baseline CMOS pixel sensor adapted to the specifications of L0 ⁺ ... is likely to be achievable by 2014, based on the ULTIMATE/MIMOSA-28 chip realised for the STAR-PXL :
	- $\dot{\ast}$ 0.18 μ m CMOS technology
	- $\dot{\mathcal{L}} \sim 20\times20\ \mu m^2$ or 20×40 μm^2 pixels \Rightarrow 40-50 or 20-25 μs r.o. time
	- $*$ e.g. 2×1500 columns of 256 pixels \Rightarrow 1×3 cm² sensitive area
	- $*$ room temperature operation (air flow)
- 2011 steps :
	- $*$ understand and validate 0.18 μm technology (radiation tolerance, TJ sensing elements, ELT !!!)
	- $*$ identify all human resources needed for sensor design (e.g. latch-up free digital circuitry ?)
	- $*$ identify all resources needed for services (end of ladder steering & read-out)
	- $*$ start designing binary output prototype
	- $*$ identify and structure synergies with other projects (e.g. CBM)
- Besides baseline :
	- $*$ develop focused improvements of baseline design (exploit > 6 ML, TJ sensing diode)
	- $*$ develop alternative, more effective, design \Rightarrow 2 options :
		- \Diamond parallel rolling shutter (power economic) and hybrid pixel like (selective)
		- \Diamond need input from WG-1/2 to optimise specifications
		- \Diamond need to define which elementary structures to explore in multi-project run of Q4(2011)

0.18 µ **Image Sensor Technology**

• **Epitaxial layer :**

- $*$ high-resistivity p-type :
	- \sim controled high-resistivity : 300 $\Omega \cdot cm$
	- \rightarrow uncontroled high-resistivity : 1–5 $k\Omega \cdot cm$, measurements for each wafer (mean, min, max)
- $*$ thickness: 12–18 μm (adjustable ?)

• **Sensing diode :**

- $\hat{\mathcal{X}}$ 2 optimised sensing systems designed by foundry, claimed to be much superiot to n-wells
	- \rightarrow founder willing to support their implementation in MISTRAL design
- $*$ involvement of founder in design is part of the contract (business plan)

• **Radiation tolerance :**

- $*$ founder interested in assessments of the technology radiation tolerance
- $*$ "radiation tolerant" chips fab. by founder will be sent to CERN-IPHC for radiation tolerant study
- $*$ possibility of ordering rad. tol. (digital) IPs to founder customer (SLU free NROM)?

• **Fabrication :**

- $\Im \chi \geq 8$ MPW runs per year \rightarrow 50 kUSD for minimal surface (25 mm²)
- * MPW runs in *Image Sensor* process can include "special" features (high-res epi, 6 ML, etc.)
- $*$ founder works on full project basis, including agreed set of MPW and engineering runs
- $*$ need of high-res epi wafers requires special request \Rightarrow ordre well in advance

Application of CMOS Sensors to the CBM Experiment

- **Cold Baryonic Matter (CBM) experiment at FAIR:**
	- $*$ Micro-Vertex Detector (MVD) made of 2 or 3 stations located behind fixed target
	- $\hat{\mathcal{F}}$ double-sided stations equipped with CMOS pixel sensors)
	- > **operation ^a negative temperature in vacuum**
	- $*$ each station accounts for \lesssim 0.5 % X₀
	- $*$ sensor architecture close to ILC version

- **Most demanding requirements :**
	- $*$ ultimately (\sim 2020): 3D sensors \lesssim 10 μs , $>$ 10 14 n $_{eq}$ /cm 2 , \gtrsim 30 MRad
	- $*$ intermediate steps: 2D sensors \lesssim 30-40 μs , $>$ 10 13 n $_{eq}$ /cm 2 , \gtrsim 3 MRad
	- $*$ 1st sensor for SIS-100 (data taking \gtrsim 2016)

Pixel Array of ILD-VTX Sensor

- **Main sensing and read-out micro-circuit elements :**
	- $*$ charge collection on sensing diode
	- $*$ sensed charge conversion into signal (voltage)
	- $*$ pre-amplification
	- $*$ average noise (pedestal) subtraction (clamping)
		- $\triangleright \triangleright \triangleright$ single pixel consumption \simeq 0.2 mW (3.3 V)
- **Power consumption of pixel array** (0.35 μm process) :
	- $*$ **inner** layers :
		- \sim 1300 columns of 16 μm wide pixels
		- \circ two-sided read-out \Rightarrow 2600 columns/sensor
			- $\triangleright \triangleright \triangleright \sim 520$ mW/sensor

$*$ outer layers :

- \sim 600 columns of 35 μm wide pixels
- single-sided read-out ⇒ 600 columns/sensor
	- $\triangleright \triangleright \triangleright$ ~ 120 mW/sensor

Peripheral Circuitry of ILD-VTX Sensor

• **Main peripheral circuitry elements :**

- $*$ discriminators / ADCs : 300 / 500 μ W/col.
- $*$ bias DACs (discri. & ADC thresholds, V_{ref} , etc.) : O(1) mW/DAC
- $*$ digital circuitry (zero-supp., sequencers, etc.) : \sim 150 μW /col.
- $*$ memories (output buffers) : $O(1)$ mW/Mbps
- $*$ signal transmission (LVDS) : $O(10)$ mW/channel

- **Power consumption of peripheral circuitry** (0.35 μm process) **:**
	- $*$ discriminators / ADCs : 800 / 300 mW (in/out)
	- $*$ bias DACs (discri. & ADC thresholds, V_{ref} , etc.) : 50 / 20 mW (in/out)
	- $*$ digital circuitry (zero-suppression, sequencers, etc.) : 400 / 100 mW (in/out)
	- $*$ memories (output buffers) : 200 / 50 mW (in/out)
	- $*$ signal transmission (LVDS) : 200 / 50 mW (in/out)
		- BBB **inner layers :** [∼] 1650 mW/sensor
		- BBB **outer layers :** [∼] 500 mW/sensor