# TECHNOLOGIES FOR STRIP DETECTOR ITS UPGRADE - 29.5.2011

G. Contin

### Outline

- □ Aims of the strip upgrade
- The present ALICE strip detector (SSD)
- Proposal for a new sensor design
- Ideas for the detector layout
- Micro-cables for interconnections
- ASIC specifications and development
- Plans for assembly tests

## Aims of the strip upgrade

- Cover a large area on the outer (2-4) ITS-upgrade layers
  - A. 2 layers (present SDD)  $\sim 1.3 \text{ m}^2$
  - B. 4 layers (present SDD &SSD)  $\sim (1.3 + 5) \text{ m}^2$
- Manage higher multiplicity with low occupancy
  - even at small radius (15 cm) to replace SDD
- Provide tracking information with good resolution
  - Spatial resolution: at least 20  $\mu$ m ( $r\phi$ ), 800  $\mu$ m (z) as the present SSD
  - Connect tracks to TPC
- $\square$  Provide dE/dx for an improved PID
  - over a dynamic range 0-15 Mip (for light nuclei & low mom. part.)
  - with 0.1 Mip resolution (to separate different particle types on a wide P<sub>t</sub> range)

## The present ALICE strip detector

#### The SSD detector

| Overall dimensions:                              | Lxd~lmxlm             | $A = (2.2 + 2.8) m^2$     |
|--------------------------------------------------|-----------------------|---------------------------|
| Layer 5:                                         | $r = 38  \mathrm{cm}$ | $\pm z = 43.1 \text{ cm}$ |
| Layer 6:                                         | $r = 43  \mathrm{cm}$ | $\pm$ z = 48.9 cm         |
| Acceptance coverage                              | η  < 0.9              |                           |
| 144 half-ladders - 1698 modules - 2.6 M channels |                       |                           |

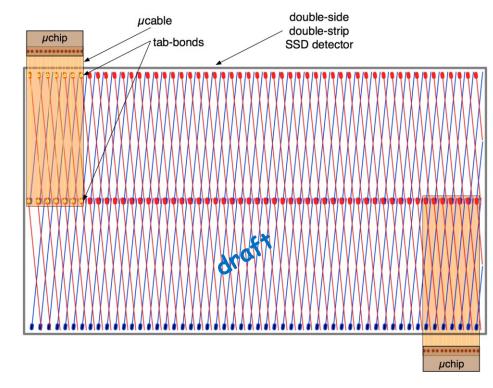
#### The sensor

- Layout: 300 μm thick, double-sided, 768 strip/side, 35 mrad stereo angle
- Sensor area: 0.0028 m<sup>2</sup>
- Achieved spatial resolution: 20  $\mu$ m ( $r\phi$ ) 800  $\mu$ m (z)

#### □ The Front-End chip

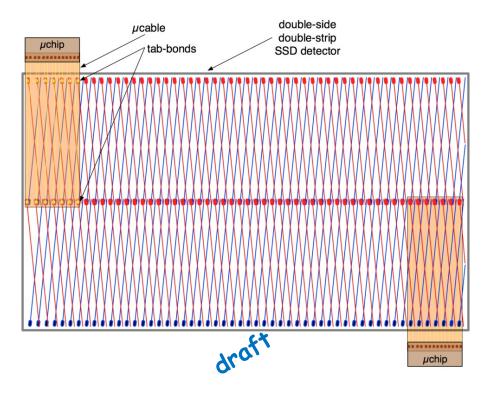
- HAL25 mixed analogue/digital ASIC designed in 0.25 CMOS process
- 128 channels with preamp, shaper, storage capacitor
- Input dynamic range:  $\pm$  14 MIP with good linearity
- 1.4 2.2 µs adjustable peaking time
- Signal sampled by external Hold and read-out through analogue multiplexer
- Serialized samples are then AC decoupled to multiplexer/buffer and driven to ADC

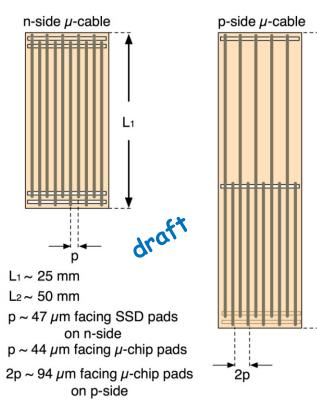
# R&D for the ALICE strip upgrade


- Start from the present strip technology which is optimized for the present experimental conditions
- Improve the strip system to meet the new ITS upgrade requirements (occupancy, acquisition rate, time resolution, extended PID, data format, ...)
- Benefit from the past experience to get better reliability and uniformity of components

## Strip sensor layout

6


- The new strip sensor layout is being designed (Trieste group)
  - decrease the strip length from ~40mm to 20mm
  - cell size ~ -50%
  - $\Box$  C<sub>strip</sub> ~ -50%
  - 2 x # of channels
  - same cluster size


- 2 rows of strips per sensor side
  - occupancy: 50%
  - > ambiguity resolution
  - < capacitive noise
  - > S/N ratio
  - ~ spatial resolution
  - < 2 × power consumption



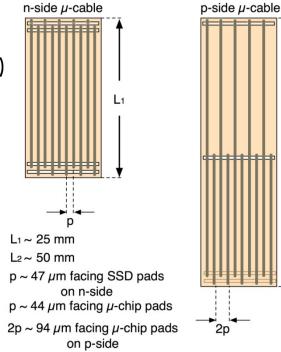
# Strip µcables design proposals

### Double no. of channels requires a new Al-polymide µcable design

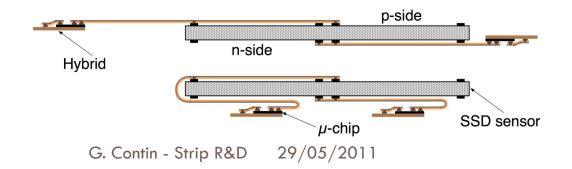




2


### SSD micro-cables

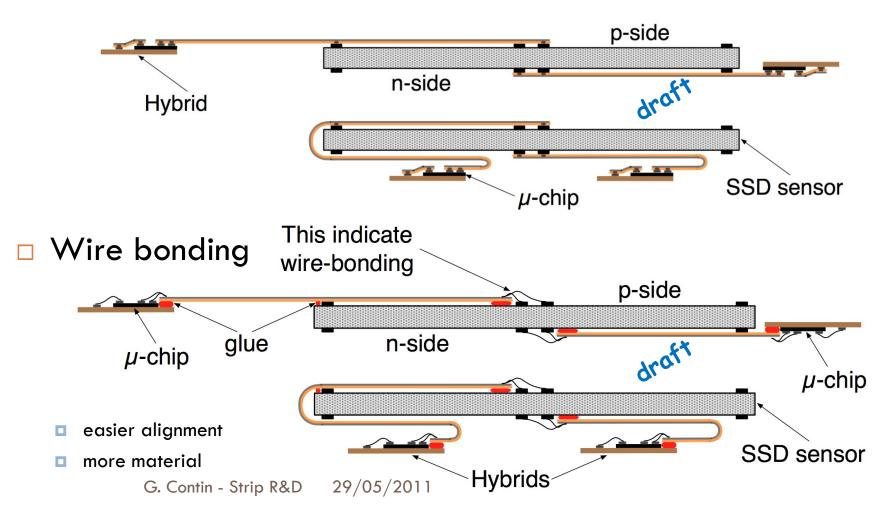
### Specifications:


- Kapton-Aluminum micro-cables (by Kharkov)
- Thickness: 10 μm + 14 μm
- Pitch: 44 μm (chip) / 47.5 μm (sensor)
- Length:  $\sim 25 \text{ mm} / \sim 50 \text{ mm}$

### Assembly and folding

- TAB bonding technique
- Bonding windows facing sensor/chip
- different hybrid layouts for P/N side




L2



## Options for bonding and layout

9

□ TAB bonding technique: allows chip tests, less material, safe folding



### SSD interconnections

### □ TAB bonding: ultrasonic bonding of traces directly on pads

- Advantages (wrt wire bonding):
  - allows chip tests before assembly
  - less material
  - better planarity for a safer folding
- Drawbacks for 50 um pitch:
  - narrow traces
  - risk of shorts

### Careful test of bonding procedure is required

- a wafer of dummy chips already sent to Kharkov group:
  - ALICE128-dummy: right input pitch as reference for the production of microcables prototypes
- dummy strip sensor mask (new layout) is being designed @ Trieste
- dummy sensor production foreseen @ FBK-IRST (by end of summer)
- first bonding tests @ Kharkov & Trieste (by end of 2011)

### ASIC development

11

- Investigating for available solutions for strip ASIC front-end chip: contacts with UK and CERN Groups
- Specification definition in progress:

| ASIC specs                     | HAL25 (Present SSD)          | Upgrade target                        |
|--------------------------------|------------------------------|---------------------------------------|
| CMOS technology                | 0.25 µm                      | 0.13 μm (?)                           |
| Input pitch                    | 80 µm                        | ~44 µm<br>On 2 staggered rows (?)     |
| ASIC size                      | 3.65 x 11.90 mm <sup>2</sup> | 5-6 x 6 mm <sup>2</sup> (?)           |
| Dynamic range                  | 1MeV<br>∼290000 e-           | <b>≿1.3MeV (15 Mip)</b><br>~360000 e- |
| Charge resolution              | ∼1 keV<br>∼290 e-            | <b>~1 keV (0.1 Mip)</b><br>∼290 e-    |
| Noise (ENC for 5 pF load cap.) | < 300 e-                     | < 300 e-                              |

### **ASIC** specifications

| ASIC specs                                 | HAL25 (Present SSD)                                               | Upgrade target                                                                     |
|--------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Peaking time                               | 1.4 – 2.2 µs                                                      | ≤1 µs                                                                              |
| Readout & Format                           | Serial, analogue                                                  | Digital (?)                                                                        |
| ADC                                        | Off-detector                                                      | On chip (?)                                                                        |
| Common Mode correction                     | Off-detector                                                      | On chip (?)                                                                        |
| Power dissipation per channel<br>[µW]      | <1ms> : 265 - 360<br>Readout: 680 - 759<br>Acquisition: 290 – 355 | Less than present                                                                  |
| # channels per chip                        | 128                                                               | 128                                                                                |
| Total # of channels                        | 2.6 M                                                             | ~1 – 5 M (?)                                                                       |
| Expected Dose/Hadron Fluence<br>(10 years) | //                                                                | 30 kRad (TID)<br>6*10 <sup>11</sup> cm <sup>-2</sup> (hadron fluence in<br>1MeV n) |

## Summary

- The aims of the strip upgrade are well defined
- Clear ideas for the detector layout
- Strip sensor design in progress
- Solutions for interconnections being studied
- Front-end ASIC:
  - specs definition ongoing
  - Iooking for partners to develop the chip
- Tests with dummy components are planned to evaluate the assembly feasibility

### Thank you for your attention...