ITS upgrade project: physics motivation

G. Usai and A. Dainese 29/05/2011

Outline

- HF measurement techniques in ALICE
- HF in heavy ion collisions
 - energy loss
 - flow and hadronization/coalescence
 - quarkonia
- Innner Tracking System Upgrade: motivation and concept

ALICE ITS upgrade project: Physics motivations

Extend ALICE capability to study heavy quarks as probes of the QGP in heavy-ion collisions

Main physics topics:

- Heavy flavour in the QGP (E loss, flow, coalescence, quarkonia)
- Small-x physics (pp, pA, AA) with light and heavy hadrons
- ➤ + long-range correlations, ...

Mapping to ALICE:

≻Heavy flavour at mid-rapidity (|η|<0.9) with hadronic (and semielecronic) decays → ITS barrel upgrade
≻Heavy flavour and resonances at forward rapidity with muons
(2.5<η<4) → endcap/telescope on the MUON side</p>

HF measurement at midrapidity: mesons and baryons

THE ALICE Inner Tracking System

- Main detector studying yields and spectra of particles containing heavy quarks
- Six cylindrical layers of silicon detectors

HF measurement at midrapidity: electrons

 $\begin{array}{c} & D^{0} \rightarrow K\pi \\ D^{+} \rightarrow K\pi\pi \\ D_{s} \rightarrow KK\pi \\ D^{*} \rightarrow D^{0}\pi \\ D^{0} \rightarrow K\pi\pi\pi \\ D_{r} \rightarrow D^{0}\pi \\ D^{0} \rightarrow K\pi\pi\pi \\ (\Lambda_{c} \rightarrow \pi Kp) \end{array}$ $\begin{array}{c} & \text{ITS (tracking \& vertexing)} & \checkmark D, B \rightarrow e+X \end{array}$

• D,B \rightarrow e+X (B \rightarrow J/ $\psi \rightarrow$ ee, tagged b-jets)

HF measurement at forward y: muons

- ✓ Energy loss based predictions: factor 3-5 suppression for D mesons
- ✓ Significantly smaller suppression for B
- ✓ Mass dependence: larger effects on beauty

Armesto, et al, PRD71 (2005)

Horowitz, Gyulassy, PLB666 (2008)

Further key measurement: beauty R_{AA}

R_{AA}^B/R_{AA}^D at low-p_T is the most interesting (larger mass effects on beauty) at high p_T it should become 1

 \succ Coverage down to moderately low p_T

Beauty energy loss

ALICE inclusive electrons and muons Dominated by beauty above 5-6 GeV/c?

NEWS FROM QM:

Beauty energy loss

NEWS FROM QM:

Central 0-20% R_{AA}^{--} = 0.36 ± 0.08 ± 0.03

Beauty energy loss

NEWS FROM QM:

CMS Jpsi from B (pt>6.5 GeV) Suppression by factor 2.5 (like ALICE muons)

CMS capability limited to pt>6 GeV?

Beauty measurement

➢ In ALICE HI current setup will most likely allow to measure beauty only via single-displaced electrons
 → suffers from a problematic subtraction of charm from the low-p_T electron spectrum

Improving beauty measurement

- Extend measurement of B production:
 - improve single displaced electron
 - displaced $J/\psi \rightarrow ee$
 - displaced $D^0 \rightarrow K\pi$
 - any of the previous + additional track/electron
 - fully exclusive channel (eg. B⁺→J/ψ K⁺, B⁰→J/ψ K⁰)
 → requires electrons (full barrel tracking, but clear TRD trigger possibility)
- Improvement on statistical accuracy of beauty measurement
 implementation of topological triggers?

Coalescence of c and b quarks in QGP

Basic measurements:

- baryon/meson $\rightarrow \Lambda_c/D$ and Λ_b/B vs. pt in PbPb and pp, or R_{CP} in PbPb
- Elliptic flow of charm/beauty mesons and baryons vs p_T (down to low p_T)

➤ + Effect on heavy flavour electrons nuclear modification factor: e.g.: BR (D⁺ → e⁺ + X) = (16.0 ± 0.4) % BR (D⁰ → e⁺ + X) = (6.53 ± 0.17)% BR (Λ_c → e⁺ + X) = (4.5 ± 1.7)% change in Λ_c /D from pp to AA affects hf electrons' R_{AA} ! ~ 20 % suppression @ p_T ~ 2 GeV if Λ_c /D ~ Λ /K @ RHIC G Martinez - Garcia et al: Phys. Lett. B 663 (2008) 55 P Sorensen and X Dong: Phys. Rev. C74 (2006) 024902

More exotic measurements: multi-charm baryons

- Multi-charm baryons (e.g. Becattini PRL95:022301, 2005)
 - Huge enhancement predicted by statistical models in case of hadronization by coalescence (x1000 for https://ccc)
 - States not observed yet!
 - Possible detection strategy: 3 displaced electrons with the same charge in a small code (cascade decay in three steps of ,

Issues for heavy flavor baryons measurement

$\Lambda^+_c(udc)$	$m \approx 2285 \text{ MeV}$	$c \tau \approx 60 \ \mu m$
$\Xi_c^+(usc)$	m ≈ 2466 MeV	$c \tau \approx 132 \ \mu m$
$\Xi_c^0(dsc)$	$m \approx 2472 \text{ MeV}$	$c \tau \approx 34 \ \mu m$
$\Omega_c^0(ssc)$	m ≈ 2698 MeV	$c \tau \approx 21 \ \mu m$
$D^+(c\overline{d})$	m ≈ 1869 MeV	$c \tau \approx 312 \ \mu m$
$D^{0}(c\overline{u})$	m ≈ 1865 MeV	$c \tau \approx 123 \ \mu m$
$D^+(c\bar{s})$	m ≈ 1968 MeV	$c\tau \approx 150 \text{ um}$

 Λ_{c} in pp @ \sqrt{s} = 7 TeV

Very accurate tracking and impact parameter resolution required

Implement a trigger based on displaced tracks + PID (proton)?

ITS limitations in charm measurement

- ≻ Charm: precise measurement of D mesons down to p_T~1
 → not at all trivial in PbPb with current setup
- > Λ_c : beyond capabilities of current setup in HI collisions

 d0 resolution should be better by factor 2
 + TPC and TOF PID for heavy background rejection (ITSupgrade + TPC)

Basic considerations for ITS upgrade

- Vertex detector closer to the beam
- Much lighter detector
- Radius of "outermost" layer rLn~
 43 cm (= current)
- Radius of "innermost" layer depends on beam pipe radius, but rL1~ 2.2 cm seems possible (currently 3.9 cm)
- Possible properties of new Pixel-detectors ?
- Material budget:
 X/X₀ ~ 0.5% (currently: 1.14%)
- Intrinsic resolution:
 (□_{r□}, □_z) ~ (6,6) □m (currently (12,100) □m)

Present beam pipe: R = 29.8 mm Thickness = 0.8 mm

Reduced beam pipe: R = 20 mm Thickness = 0.5-0.6 mm

Coverage down to $p_T=0$ 2.5<y<4.0: $\rightarrow \mu^+\mu^-$, μ -trigger

HF measurement at forward rapidity

Quarkonia

- > J/ψ suppression a smoking gun for long time, but quite complicated interpretation:
 - energy dependence (SPS vs RHIC vs LHC), p_T dependence, y dependence

→ the role of cold nuclear matter effects

• J/ ψ at LHC: regeneration also (besides suppression)?

Measurements with large y and p_T coverage

Quarkonia

NEWS FROM QM:

What about melting of excited states?

- > Υ (2S+3S) production relative to Υ (1S) in pp and PbPb
- $\succ \psi'$ vs J/ ψ in pp and PbPb
 - \rightarrow accessible only by ALICE down p_T = 0

Issues in HF measurements at forward y in ALICE

Muon spectrometer upgrade

HF precision measurements at forward y

- Open charm and beauty
 - Discrimination of decays from background on the basis of displacement from primary vertex (single displaced muon or dimuon from $B \rightarrow \mu\nu X$, $B \rightarrow D\nu X$, $D \rightarrow \mu X$)
 - Complementary to central barrel covering different x
 - Multi-muon measurements

Semi-exclusive or exclusive B decays and feeddown

- Displaced J/ $\psi \rightarrow \mu \mu$
- Exclusive decays (e.g. $B^+ \rightarrow J/\psi K^+$ with kaon measured in pixel tracker)
- Identification and reconstruction of secondary J/psi mesons essential to investigate medium effects on primary charmonia
- > Measurement of ψ'
 - Improved mass resolution: separation from J/ψ and much higher significance

Challenges for precision measurements at forward y

Large material budget from beam pipe
 At forward y
 might require a conical beam pipe

Tracking with B = 0 (matching efficiency/fake matches)

Pixel telescope under study:
5 stations covering muon arm y
+ conical beam pipe

