

$D^0 \rightarrow K\pi$ and $\Lambda_c \rightarrow pK\pi$

as benchmark channels

May 29th, 2011 – ITS upgrades meeting

A. Rossi, C. Terrevoli, M. Mager, S. Moretto

- Analysis strategy & MC methods
- D⁰ results for pp and PbPb
- Λ_c results
- Issues and outlook

- Tracks are reconstructed from RAW data
 - "RAW to ESD"

Decays are reconstructed from tracks

- "ESD to AOD/delta AOD"
- Decays are analysed
 - "AOD to mass plot"

production analysic cuts cuts

MC strategy

- Full MC requires for each considered detector geometry:
 - Lots of CPU time (detector response plus all three steps from RAW data to mass plot)
 - Lots of programming (e.g. different tracking algorithms for different layouts)
- Favour lightweight MC techniques:
 - Only repeat the D/Lambda candidate selection with the tracking resolution achievable with the upgrade

- "Hybrid approach":
 - Use existing MC productions, including the detector response (of the ,,old" ITS)
 - Smear the tracks by reducing the difference to MC by the fraction of resolutions
 - Recalculate the decay properties
- "MC smearing":
 - Similar to hybrid, but based on the pure MC info (no fractions, but gaussian smearing)
 - Even faster than "hybrid": no detector response sim. needed

Inputs

Details and updates will follow in the next talk.

R١

Hybrid MC methods

- Comparison between:
 - "Hybrid approach":
 - "MC smearing":

R١

- "Tender" for analysis:
 - Allows using of any analysis task to look at the impact of an upgrade
 - Very clean separation of code

May 29th, 2011 – ITS upgrades meeting

A. Rossi, C. Terrevoli, M. Mager, S. Moretto

- Already visible with the current ITS (both in pp and PbPb)
- Good candidate to study the improvement of significance
- Access beauty production via identification of secondary D⁰ from B decay
- Measure D^0 production down to $p_t=0$ in pp and PbPb

May 29th, 2011 – ITS upgrades meeting

Results D⁰ in pp

Results D⁰ in PbPb

R١

May 29th, 2011 – ITS upgrades meeting

D⁰ TODOs

- Re-calibrate

 Image: second second
 - Retune current cut 12.5571 12.5571 12.558 12.8155 12.855 12.7233 - 12.0014 11.9383 12.0053 12.8155 12.855 12.7233
 - Introduce

 -0.25
 -1.912
 11.913
 11.915
 11.918
 12.251
 12.109
 11.704

 Introduce
 -0.25
 -0.25
 -0.25
 -0.25
 -0.25
 -0.25
 11.913
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.915
 11.

• Loosen production cuts for lower momentum bins

- Strong motivation for an upgrade:
 - Very poor signal in pp
 - Currently inaccessible in PbPb (never seen there before)
- Difficult due to its short decay length (59.9 µm)

still assum	ning 100% detect	or efficiency & no f	urther cuts!
Strong	motivation fo	or a trigger	

Expected Λ_c -yields

Particle	Yield	$\langle dN/dy \rangle_{ y_{lab} < 1}$	Rel. Abund.	Particle	Yield	$\langle dN/dy \rangle_{ y_{lab} < 1}$	Rel. Abund.
$D^0 + \overline{D}^0$	0.1908	0.0196	61%	$B^0 + \overline{B}^0$	0.00577	0.00084	40%
$D^+ + D^-$	0.0587	0.0058	19%	$B^+ + B^-$	0.00576	0.00083	40%
$D_s^+ + D_s^-$	0.0362	0.0038	12%	$B_s^0 + \overline{B}_s^0$	0.00168	0.00025	6%
$\Lambda_{c}^{+} + \overline{\Lambda_{c}^{-}}$	0.0223	0.0026	8%	$\Lambda_{\rm b}^0 + \overline{\Lambda_{\rm b}}^0$	0.00106	0.00016	4%
	wit a ce	h charm and beauty entrality selection o	l, a stage rapidi in Pb–Pb collisi f 5% σ ^{inel} .	ty density for ions at $\sqrt{s_{\rm NN}}$	· y < 1, an = 5.5 TeV. 7	a relative abundance The values reported	c, for Later correspond to
Particle	wit a ce Yield	h charm and beauty entrality selection of $\langle dN/dy \rangle_{ y_{lab} < 1}$	l, and age rapidi (in Pb-Pb collisi f 5% σ ^{inel} . Rel. Abund.	ty density for ions at $\sqrt{s_{\rm NN}}$ Particle	· y < 1, an = 5.5 TeV. ' Yield	a relative abundance The values reported $\langle dN/dy \rangle_{ y_{lab} < 1}$	ce, for factorial correspond to Rel. Abund
Particle $D^0 + \overline{D}^0$	wit a co Yield 140.8	h charm and beauty entrality selection of $\langle dN/dy \rangle_{ y_{lab} < 1}$ 13.7	1, σ rapidi in Pb–Pb collisi f 5% σ^{inel} . Rel. Abund. 61%	ty density for ions at $\sqrt{s_{NN}}$ Particle $B^0 + \overline{B}^0$	y < 1, and $= 5.5 TeV$. Yield 3.65	a relative abundance The values reported $\langle dN/dy \rangle_{ y_{lab} < 1}$ 0.535	ce, for La l correspond to Rel. Abund 40%
Particle $D^0 + \overline{D}^0$ $D^+ + D^-$	wit a co Yield 140.8 44.6	h charm and beauty entrality selection of $\langle dN/dy \rangle_{ y_{lab} < 1}$ 13.7 4.12	l, a. crage rapidi in Pb–Pb collisi f 5% σ ^{inel} . Rel. Abund. 61% 19%	ty density for ions at $\sqrt{s_{NN}}$ Particle $B^0 + \overline{B}^0$ $B^+ + B^-$	y < 1, and z = 5.5 TeV. Yield 3.65 3.65	a relative abundance The values reported $\langle dN/dy \rangle_{ y_{lab} < 1}$ 0.535 0.521	c, for Later l correspond to Rel. Abund 40% 40%
Particle $D^0 + \overline{D}^0$ $D^+ + D^-$ $D_s^+ + D_s^-$	wit a co Yield 140.8 44.6 26.8	h charm and beauty entrality selection of $\langle dN/dy \rangle_{ y_{lab} < 1}$ 13.7 4.12 2.52	1, and age rapidity in Pb–Pb collisis f 5% σ^{inel} . Rel. Abund. 61% 19% 12%	ty density for ions at $\sqrt{s_{NN}}$ Particle $B^0 + \overline{B}^0$ $B^+ + B^-$ $B^0_s + \overline{B}^0_s$	y < 1, and = 5.5 TeV. 7 Yield 3.65 3.65 1.06	a relative abundance The values reported $\langle dN/dy \rangle_{ y_{lab} < 1}$ 0.535 0.521 0.159	Rel. Abund 40% 6%

 $1(\Lambda_c \to pK^-\pi^+ \text{ or inv.})/4 \times 10^4 \ pp$

 $1(\Lambda_c \to pK^-\pi^+ \text{ or inv.})/50 \ PbPb \ (5\% \text{ most central})$

Problems

Reconstructed Λ_c after production cuts

Most of the current candidates would not have passed the cuts, if the detector resolution was ideal!

May 29th, 2011 – ITS upgrades meeting

Λ_c TODOs

• We loose signal and background:

 Need to redo the reconstruction with looser cuts

Ac outlook: PbPb

May 29th, 2011 – ITS upgrades meeting

DCA (µm)

200 400 600 800 100012001400160018002000

0

A. Rossi, C. Terrevoli, M. Mager, S. Moretto

Conclusion

• Summary:

- Fast MC techniques can be used to assess impacts of resolution improvements on physics observables
- Already very good results for D^0 , Λ_c requires more work, but looks promising

• TODO:

- Redo part of the reconstruction with looser cuts
- Redo a MC production with cleaner sample