Detector specifications and performance studies

&

Giuseppe E Bruno

Università di Bari and INFN – Italy

Mario Sitta Università del Piemonte orientale and INFN- Italy

Outline:

introduction

available tools to estimate the physics performance of the upgrade

PID studies

considerations on occupancy & radiation load

I'm not going to cover all the topics under study within this wg

- I will give an overview of the methods developed so far to simulate the physics performances of the upgraded ITS detector
- I will also shortly present the ongoing studies to assess the relevance of PID capabilities for an upgraded ITS

Why should we need PID capabilities from ITS ?

In present analysis we rely on TPC+TOF PID, and this is very important for the study of low p_T charmed hadrons

ITSupgrade meeting

PID capabilities paired to high standalone tracking performances (operated at a L2 trigger) might reveal to be the key combination for a 2nd generation detector

 High standalone tracking efficiency would open the possibility to a level 2 (latency 100µs) trigger based on topological identification of open heavy flavour hadrons

How to simulate the detector performances ?

- 1. fast estimation tool
 - \rightarrow S. Rosseger, next talk, (input to 3 & 4)
- 2. slow simulation integrated within AliRoot
 - standard "event generator + transport code + reconstruction code" procedure
- 3. hybrid approach
 - use the existing MC simulations and improve the track parameters "on the fly" based on the expected improved performances of the upgraded ITS
- 4. pure MC smearing

only event generator + smearing of the track parameters according to parameterized response of TPC+ITS_{upgrade} detectors

Tools: what can they provide ?

- 1. fast estimation tool (\rightarrow S. Rosseger talk)
 - Impact parameter resolution and momentum resolution
 - tracking efficiency estimate
- 2. Slow Monte Carlo simulation
 - Simulated events as in the standard Aliroot framework (ESD,AOD)
- 3. Hybrid approach (→ M. Mager talk)
 - Improvements in Significance and S/B for existing analyses $(D^0 \rightarrow K\pi, \Lambda_c \rightarrow pK\pi, B \rightarrow J/\psi + X)$

4. pure MC smearing

fast way to study more exotic channels (e.g. exclusive Beauty)

A. Mastroserio, C.Terrevoli

Slow MC simulation

- Goal: replace in AliRoot the actual ITS "module" with a new one (ITS_{upgrade}) which has very flexible layout configuration
- From a configuration file (Config.C) one can set:
 - n. of layers
 - radii of the layers
 - material budgets
 - layer segmentation into modules (néw)
 - module segmentations (i.e. spatial resolution)
 - new beam pipe
- □ as a consequence of such a flexibility the geometry has to stay simple (→ cylinder)

••••

The implementation of this flexible geometry was per sè an easy task, but the adaptation of the ALICE reconstruction code to the new flexible geometry is not

□ status of reconstruction with ITS_{upgrade}

- clusterization
- stand-alone ITS reconstruction
 - □ track finding
 - рр
 - PbPb
 - □ track fitting
- combined TPC+ITS_{upgrade}

Option which can be implemented in the tracking: ideal (from MC truth) pattern recognition \rightarrow the tracking efficiency has to be evaluated differently

to be

to be optimized

M.Mager, A.Rossi, S.Moretto, C. Terrevoli

Hybrid approach (M. Mager talk)

Input:

- 1. Analysis Object Data (AOD) where the hadronic charm decay candidates are stored, from existing MC simulations
- 2. track I.P. and transverse momentum resolution vs. p_T (for different particle species) expected for the ITS_{upgrade}

Method:

- candidate by candidate (for Sig. and Back.), the parameters of the decay tracks are improved (from input 2), preserving the correlations in the covariance matrix of the track
- a new candidate is built with the improved tracks
- kinematical and topological cuts are applied to the candidates
- invariant mass analysis (as for data with actual detector)
- Output:
 - S, S/B and Significance for a given L_{int} as compared to the corresponding values with present ITS

Pure MC smearing

□ Input:

- track I.P. and transverse momentum resolution vs. p_T (for different particle species) expected for the ITS_{upgrade}
- other elements of the covariance matrix which describes a tracks from a parameterization of the present tracking system

Pure MC smearing

Input:

- track I.P. and transverse momentum resolution vs. p_T (for different particle species) expected for the ITS_{upgrade}
- other elements of the covariance matrix which describes a tracks from a parameterization of the present tracking system

□ Method:

- particles from event generator are "smeared" according to this parameterized response of the covariance matrix and to the input IP and p_T resolutions
 - candidates are built from these tracks
- physics analysis on these candidates to estimate S, S/N and Significance for different channels

PID studies

S.Bufalino, S.Piano, F.Prino

two approaches developed, providing consistent results: 1) Fast simulation, 2) transport code

1. Fast simulation: a parameterization of the dE/dx is used. Given a particle, in each layer the energy loss is extracted randomly from such a parameterization

ITSupgrade meeting

GiuseppeBruno@ba.infn.it

PID studies

ITSupgrade meeting

GiuseppeBruno@ba.infn.it

PID studies: particle separations

ITSupgrade meeting

Occupancy estimate

□ Input: measured dN/d η (0-5%) = 1600, scaled to $\sqrt{s_{NN}}$ =5.5 TeV

 \rightarrow occupancy at z=0 and r=3.7 cm: **28 charged tracks / cm**²

ITSupgrade meeting

UPDATED Estimate on Doses and Hadron fluences

Data points for a "ALICE 10-years running scenario" (see backup slide)

[1] ALICE-INT-2009-008, B.Pastircak et.al., "Radiation zoning calculations for ALICE experiment update", 2009

ttps://edms.cern.ch/document/993721/

Dose distribution versus r and z

- In previous plot you have seen the average distribution over each ITS layer (and its extrapolation).
- One can obtain from that the z-r differential distributions (and in particular the maximum dose, at z=0, versus r)

Previous dose estimates are still valid (pp dominates)
 We can simply extrapolate to smaller radius (the component from beam-beam interaction dominates the total dose)

Spare slides

Rescaled h-Φ [10 ¹⁰ /cm ²] in 1MeV n-equ.	Rescaled Hadron-Flux in 1MeV neutron-equivalent							
	328	121	50	30	22	19	14	
h-⊕ [10 ¹⁰ /cm²] in 1Me∨ n-equ.	350	130	55	32	23	20	15	[2], Tab. 6
Scale (NF[1] to NF[2])	0.94	0.93	0.91	0.93	0.95	0.98	0.92	
NF _[2] [10 ¹⁰ /cm ²]	85	60	49	45	43	42	39	[2], Tab. 5
NF _[1] [10 ¹⁰ /cm ²]	80	56	45	42	41	41	36) (see
Dose [kRad]	220	51	19	10	4	2.6	1.3	Ξ
Radius [cm]	3.9	7.6	14	24	40	45	78	tabl
Detector	SPD1	SPD2	SDD1	SDD2	SSD1	SSD2	TPC(in)) 4
						Ste	fan Ros	segger

 ALICE-INT-2009-008, B.Pastircak et.al., "Radiation zoning calculations for ALICE experiment update", 2009 https://edms.cern.ch/document/992721/1

[2] ALICE-INT-2004-017, A.Morsch et.al, "Radiation in ALICE Detectors and Electronics Racks",2004 https://edms.cern.ch/document/358706/1

ITSupgrade meeting

GiuseppeBruno@ba.infn.it

ITSupgrade Geometry: Sectors

20 sectors in this example

Each layer is constituted by n cylindrical sectors:

- •the number of sectors is set in the Config
- possibility to switch between configurations:
- a)cylinder without segmentation b)cylinder made by n sectors
- the same number of sectors in each layer (→can be modified)
 each sector is made of silicon
- and copper
- no overlaps between volumes

Estimate on Doses and Neutron fluences

Data points for a "ALICE 10-years running scenario" (see [1], table 4)

[1] ALICE-INT-2009-008, B.Pastircak et.al., "Radiation zoning calculations for ALICE experiment update", 2009

ttps://edms.cern.ch/document/993721/1

Mandate of wg2

Define the detector specifications from physics requirements (WG2 \$\G1)

(1/2)

- Simulate the detector performance based on the detector design and implementation studies (WG1 \leftrightarrows WG3-5)
- Study particle density and radiation load for the innermost layer
- Define detector specifications at mid rapidity
 - Number of layers and their geometry
 - Hermeticity, segmentation and alignment
 - Material budget
 - Detector efficiency, signal dynamic range and linearity
 - Event time resolution
 - Event readout time (Integration time for MIMOSA)
 - Definition of trigger algorithms and primitives

 Study the possibility of extending the tracking at large rapidity (forward/backward) (in collaboration with muon-spectrometer upgrade group)

(2/2)

- vetexing and tracking
- PID
- timing and triggering
- Simulate detector response and performance
- Several design options should be studied
 - A. present ITS + Pixel Layer0
 - B. Pixel Layer0 + replace SDD with a combination of Strip and Pixel layers
 - C. Replace entire ITS with a combination of Pixel and Strip detectors
 - D. C + extend acceptance to large rapidity
- Prepare the "Detector specifications and performance" chapter of the Technical Proposal