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Introduction

I'm not going to cover all the topics
under study within this wg

I will give an overview of the methods
developed so far to simulate the
physics performances of the upgraded
ITS detector

I will also shortly present the ongoing
studies to assess the relevance of PID
capabilities for an upgraded ITS
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Introduction

Why should we need PID capabilities
from ITS ?
B In present analysis we rely on TPC+TOF PID,

and this is very important for the study of
low pr charmed hadrons
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Introduction

PID capabilities paired to high
standalone tracking performances
(operated at a L2 trigger) might reveal
to be the key combination for a 2nd
generation detector

High standalone tracking efficiency
would open the possibility to a level 2
(latency 100us) trigger based on
topological identification of open heavy
flavour hadrons
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How to simulate the detector performances ?

1. fast estimation tool
- S. Rosseger, next talk, (inputto 3 & 4)

2. slow simulation integrated within AliRoot

B standard “event generator + transport code
+ reconstruction code” procedure

3. hybrid approach

B use the existing MC simulations and improve
the track parameters “on the fly” based on
the expected improved performances of the
upgraded ITS

4. pure MC smearing

B only event generator + smearing of the track
parameters according to parameterized
response of TPC+ITS .4 detectors
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Tools: what can they provide ?

1. fast estimation tool (= S. Rosseger talk)

« Impact parameter resolution and momentum
resolution

- tracking efficiency estimate

2. Slow Monte Carlo simulation

« Simulated events as in the standard Aliroot framework
(ESD,AOD)

3. Hybrid approach (> M. Mager talk)

« Improvements in Significance and S§B for existing
analyses (D%>Kn,A>pKn, B2>1/y+X

4. pure MC smearing

- fast way to study more exotic channels (e.g. exclusive
Beauty)
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A. Mastroserio, C.Terrevoli ‘

Slow MC simulation

Goal: replace in AliRoot the actual ITS
“module” with a new one (ITS,;4ra4e) Which
has very flexible layout configuration

From a configuration file (Config.C) one
can set:

B n. of layers

B radii of the layers
B material budgets
O
N

layer segmentation into modules (new)
module segmentations (i.e. spatial resolution)
B new beam pipe

as a consequence of such a flexibility the
geometry has to stay simple (= cylinder)
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A. Mastroserio, C.Terrevoli ‘

Slow MC simulation

The implementation of this flexible geometry
was per se an easy task, but the adaptation

of the ALICE reconstruction code to the new

flexible geometry is not

status of reconstruction with ITS, 4 a4e

B clusterization (4

B stand-alone ITS reconstruction
O track finding

® pp v
m PbPb to be optimized
O track fitting 4
B combined TPC+ITS ; ade to be

Option which can be implemented in the tracking: ideal (from MC truth)
pattern recognition 2 the tracking efficiency has to be evaluated differently
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M.Mager, A.Rossi, S.Moretto,C. Terrevoli

Hybrid approach (M. Mager talk)

Input:

1. Analysis Object Data (AOD) where the hadronic charm decay
candidates are stored, from existing MC simulations

2. track I.P. and transverse momentum resolution vs. p; (for
different particle species) expected for the ITS,jaqe

Method:

B candidate by candidate (for Sig. and Back.), the parameters
of the decay tracks are improved (from input 2), preserving
the correlations in the covariance matrix of the track

B a new candidate is built with the improved tracks

B kinematical and topological cuts are applied to the
candidates

B invariant mass analysis (as for data with actual detector)

Output:

m S,S/B and Significance for a given L,

_ ¢ @s compared to the
corresponding values with present ITS
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C. Terrevoli

Pure MC smearing

Input:
B track I.P. and transverse momentum resolution vs. p; (for
different particle species) expected for the ITS, ,jaqe

B other elements of the covariance matrix which describes
a tracks from a parameterization of the present tracking
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C. Terrevoli

Pure MC smearing

Input:
B track I.P. and transverse momentum resolution vs. p; (for
different particle species) expected for the ITS ,jaqe

B other elements of the covariance matrix which describes
a tracks from a parameterization of the present tracking
system

Method:

B particles from event generator are “smeared” according
to this parameterized response of the covariance matrix
and to the input IP and p; resolutions

candidates are built from these tracks

physics analysis on these candidates to estimate S, S/N
and Significance for different channels

ITSupgrade meeting GiuseppeBruno@ba.infn.it 11



S.Bufalino, S.Piano, F.Prino

PID studies

two approaches developed, providing consistent
results: 1) Fast simulation, 2) transport code
1. Fast simulation: a parameterization of the dE/dx is

used. Given a particle, in each layer the energy loss
is extracted randomly from such a parameterization
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PID studies

S.Bufalino, S.Piano, F.Prino

Truncated mean
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S.Bufalino, S.Piano, F.Prino

PID studies: particle separations

-
[=]
L

10 LI LI — L I—— T T

§= 8F 1 5 & -
2 f4layers .. | 2 &7 javers |
c — LY ] I~ h, ]
: J{present-ITS) Ay EE- I Y E
AL / “aiald  § E(as present SDD/SSD)  treesid
& 2 e oF :
0 = ] n = .
0_ ...................................................................................... ..“........‘ -!| 0: ...'.....il
'2: .."= ‘....-. : '2: at®® ‘.'...‘.“ :
PR ST —— hnSigmaPiK 4 aien™ : _—

o 9 o —— hnSigmaPiK

= —— hnSigmaPK - .

8 Eg 8f — hnSigmaPK
1oL . N S R B B obemm L 1 T T T
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
p (GeV/c) p (GeVic)

=
o
-

E o s |~ hnSigmaPiK [
s o o hnSigmaPK 1
'ﬁ 4: ;““ _;
§ 227 layers (20 micron} "=
0F ..c.c‘aucc“""‘“‘?
L -
E application to physics cases
A0z 04 06 08 1 12 14 16

ITSupgrade meeting GiuseppeBruno@ba.infn.it 14



Occupancy estimate

O Input: measured dN/dn(0-5%) = 1600, scaled to Vs\,=5.5 TeV

- occupancy at z=0 and r=3.7 cm: 28 charged tracks / cm?

z (cm)

charged particle / cm”2
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UPDATED Estimate on Doses and Hadron fluences

Data points for a “ALICE 10-years running scenario’ (see backup slide)

Stefan Rossegger
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[1] ALICE-INT-2009-008, B.Pastircak et.al., “ Radiation zoning calculations for ALICE experiment update”, 2009



~)
INF

CDose distribution versus r and z

O In previous plot you have seen the average distribution
over each ITS layer (and its extrapolation).

[0 One can obtain from that the z-r differential distributions
(and in particular the maximum dose, at z=0, versus r)
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Previous dose estimates are still valid (pp dominates)

We can simply extrapolate to smaller radius (the
component from beam-beam interaction dominates
the total dose)
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Detector
Radius [cm]
Dose [kRad]
NF [10"/cm?]
NFe [10"%cm?]

Scale (NF[[] to NF[2|)

h-® [10"%em?] in
1MeV n-equ.
Rescaled

h-® [10"%cm?] in
1MeV n-equ.
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Stefan Rossegger
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[1] ALICE-INT-2009-008, B.Pastircak et.al., “Radiation zoning calculations for ALICE experiment update”, 2009
https://fedms.cern.ch/document/992721/1

[2] ALICE-INT-2004-017, A.Morsch et.al, “Radiation in ALICE Detectors and Electronics Racks”,2004
hitps:/fedms.cern.ch/document/ 3587 06/ 1
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ITSupgrade Geometry: Sectors

single sector -

ach layer is constituted by n
cylindrical sectors:
the number of sectors is set in
the Config
» possibility to switch between
configurations:
a)cylinder without segmentation
b)cylinder made by n sectors

4 * the same number of sectors in

~J each layer (->can be modified)

eeach sector is made of silicon
and copper
*no overlaps between volumes
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stirnaize on Dozes and MNsuiron flusnces

Stefan Rossegger ‘
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[1] ALICE-INT-2009-008, B.Pastircak et.al., “ Radiation zoning calculations for ALICE experiment update”, 2009




Mandate of wg2 (1/2)

Define the detector specifications from physics requirements (WG25 WG1)

Simulate the detector performance based on the detector design and
implementation studies (WG15 WG3-5)

. Study particle density and radiation load for the innermost layer

- Define detector specifications at mid rapidity
- Number of layers and their geometry

- Hermeticity, segmentation and alignment

- Material budget

- Detector efficiency, signal dynamic range and linearity
- Event time resolution

- Event readout time (Integration time for MIMOSA)

- Definition of trigger algorithms and primitives
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Mandate of wg2 (2/2)

- Study the possibility of extending the tracking at large rapidity (forward/backward)
(in collaboration with muon-spectrometer upgrade group)

- vetexing and tracking
- PID

- timing and triggering

- Simulate detector response and performance

- Several design options should be studied

A.

B.

C.

D.

present ITS + Pixel LayerO

Pixel Layer0O + replace SDD with a combination of Strip and Pixel layers
Replace entire ITS with a combination of Pixel and Strip detectors

C + extend acceptance to large rapidity

- Prepare the “Detector specifications and performance” chapter of the Technical Proposal
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