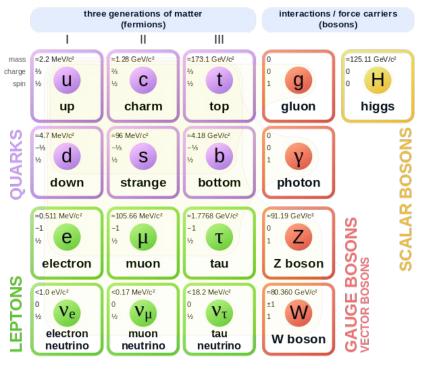


ATLAS in a nutshell

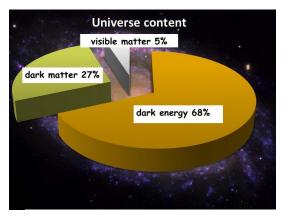

Visite ACTIF (Association CEA des Thésards d'Ile de Fance), June 14th

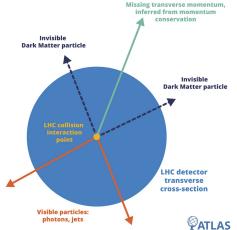
Fabrice Balli, Henri Bachacou

Standard Model of Elementary Particles

- Basic model of fundamental constituents of matter
 - Developed in 2nd half of 20th century
 - Builds on Quantum Field Theory
 - Quarks, leptons and bosons
 - \rightarrow quarks form the nuclei

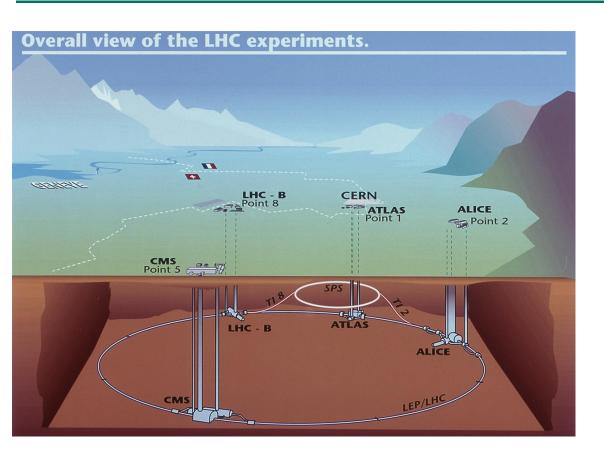
- Electromagnetic force mediated by massless photon
- Weak interaction mediated by bosons : Z, W+, W-
- Strong interaction mediated by 8 gluons
- Higgs boson : confers their mass to other particles via symmetry breaking
 - Discovered at LHC by ATLAS and CMS in 2012 !
- Gravity
 - \circ Not described by the SM




Going beyond the Standard Model

- Several loopholes in the SM
 - No explanation for ~95% of the content of the universe
 - Dark Matter (~25%), Dark Energy (~70%)
 - Some mathematical inelegancies (fine-tuning problems...)
- Several models go beyond the Standard Model to try and solve these
 - e.g. predict new particles constituting Dark Matter
- In LHC experiments, try to produce directly such new particles and detect their signatures
- Other way of finding hints of New Physics is the very precise measurement of known particles properties, and test their values against the SM predictions
 - Higgs couplings to bosons, quarks and leptons
 - top quark mass, W boson mass

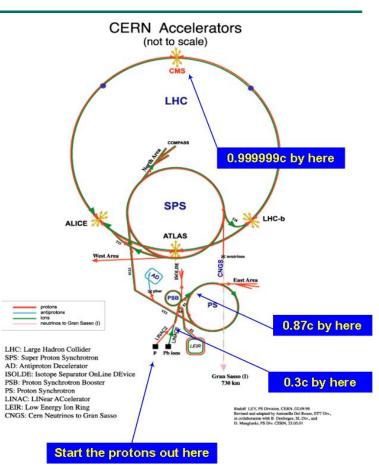
o ..


• Measurements and searches are led by analysing high energy collisions at the LHC

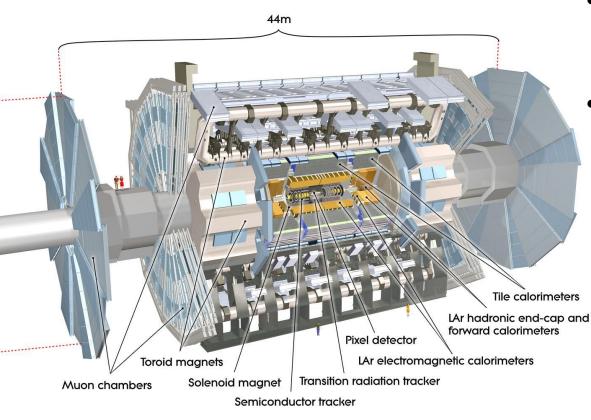
The LHC (Large Hadron Collider)

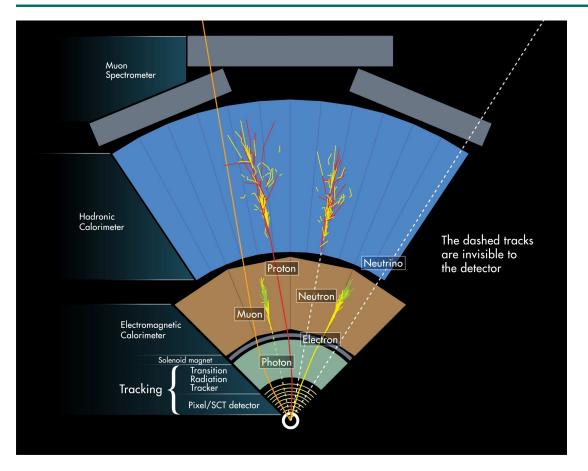
- proton-proton collider, in service since 2009-2010
 - Most energetic: reached an energy 13.6 TeV in the centre of mass since 2022
- 27 km of circumference, many superconducting magnets to bend the proton trajectories
- protons grouped in bunches separated in time by 25ns
- 4 points of collision, where detectors


are installed: LHCb, ALICE, CMS, ATLAS


The LHC (Large Hadron Collider)

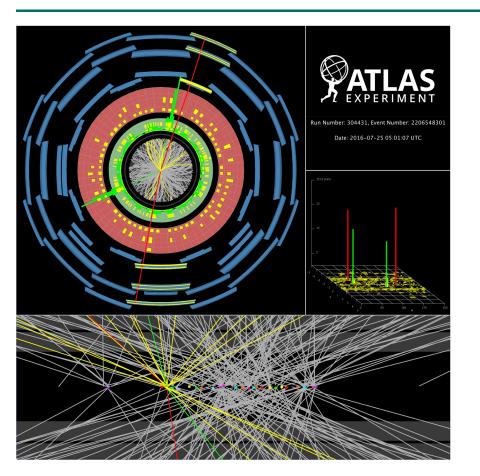
- Before they reach the LHC, the particles are sped up in a series of interconnected linear and circular accelerators
- LHC further accelerates and focuses the proton beams for them to collide at each interaction point
 - 1232 dipole magnets, 15 metres in length, which bend the beams
 - 392 quadrupole magnets, each 5–7 metres long,


which focus the beams



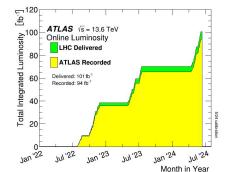
- ATLAS has the dimensions of a cylinder, 46m long, 25m in diameter, weighs 7000 tons and sits in a cavern 100m below ground.
- Main subsystems:
 - Inner Tracking system: charged particles, interaction vertex, secondary vertices
 - Electromagnetic calorimeter : electrons, photons
 - Hadronic calorimeter: 'jets' (quarks and gluons signatures)
 - Muon spectrometer: within a toroidal magnetic field

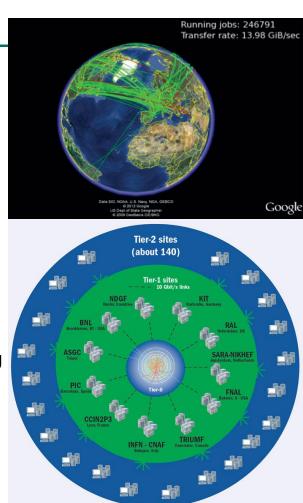
The ATLAS detector: How we "see" particles



- ATLAS has the dimensions of a cylinder, 46m long, 25m in diameter, weighs 7000 tons and sits in a cavern 100m below ground.
- Main subsystems:
 - Inner Tracking system: charged particles, interaction vertex, secondary vertices
 - Electromagnetic calorimeter : electrons, photons
 - Hadronic calorimeter: 'jets' (quarks and gluons signatures)
 - Muon spectrometer: within a toroidal magnetic field

An actual collision seen by ATLAS


- This is what a Higgs boson looks like in ATLAS
- pp -> H -> ZZ* -> 2 electrons + 2 muons
- "pile-up": due to the high luminosity, when two proton bunches cross, many other collisions occur (in this case, 25 other collisions)



The ATLAS data taking

- ATLAS records data from colliding proton bunches
 - Bunches collide at a frequency of ~40 MHz
 - Needs to record only the interesting collisions, a.k.a those that produce rare physics process
 - Dedicated and complex trigger system in all detector components, reducing recording rate to ~1kHz
 - i. ATLAS records >10 000 Tb of data per year
 - Detector operation requires a lot of care \rightarrow reach ~95% recording efficiency

- Data is then sent worldwide to the computing GRID (>130 computing centres)
- Then physics objects (electrons, muons, etc...) are reconstructed via algorithms developed by the collaboration → ready for physics analysis

The ATLAS Collaboration

- International collaboration
- ~6000 collaborators, among
 which ~3000 authors
 ~1200 PhD students
- More than 1200 papers
- Effort to make data public: https://atlas.cern/Resources/Ope ndata
- Career opportunities: https://atlas.cern/Discover/Collab oration/Jobs

- Planning for the coming years
 - Finishing Run3 end of 2025
 - Then entering long technical shutdown (LS3), opportunity to upgrade several parts of the detector
 - HL-LHC era will start with Run4 and beyond, plan to record ~10x more data, with much higher bunch

crossing rate

- Many areas to contribute
 - engineering : detector upgrade
 - computing: data storage and processing, new machine-learning applications to data simulation, etc.
 - detector operations
 - object reconstruction and physics studies
- Thanks for your attention!

