BUBBLE, BUBBLE, PERTURB & TROUBLE A NONPERTURBATIVE TEST OF NUCLEATION CALCULATIONS FOR STRONG PHASE TRANSITIONS

With Oliver Gould & David J. Weir Based on [arXiv:2404.01876](https://arxiv.org/abs/2404.01876)

Anna Kormu (she/her) CERN Cosmo Coffee May 8th 2024 University of Helsinki & Helsinki Institute of Physics

1. Cosmological phase transitions

2. Gravitational waves

3. A short history of the bubble nucleation calculations

4. Bubble nucleation rate, nonperturbatively

Phase transitions

- Grand Unified Theories, Electroweak, QCD...
- In the Standard Model (SM) the electroweak PT is a crossover
- SM is incomplete \rightarrow beyond SM (BSM) physics
- Things to look for: topological defects, bubbles from EWPT, … ?

Electroweak Phase Transition

Electroweak Phase Transition

Gravitational waves

• Perturbations in the space-time geometry

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

Gravitational waves

• Stochastic gravitational wave background

 \sum planar wave \times amplitude \times polarisation

- GW spectrum usually modelled by broken power laws
- Main contributions: bubble wall collisions, sound waves in the surrounding plasma and turbulence

Gravitational waves

 $\Omega_{\rm gw} = F(T_*, R_*, \alpha_*, v_w)$ T_* : transition temperature β_* : inverse duration of the transition α_* : transition strenght v_w : bubble wall speed

GW DETECTION LIGO

Caltech/MIT/LIGO Lab) 13

GW DETECTION LIGO

Caltech/MIT/LIGO Lab) 14

GW detection

LISA (AND OTHER SPACE INTERFEROMETERS)

- Launch in 2036, mission adoption 27.1.2024
- Three spacecraft, laser arms 2.5 million km
- Measure changes in path length between spacecraft
- Taiji & TianQin launch in 2030s

GW detection

PULSAR TIMING ARRAYS

- Hints of stochastic GW background - June 2023 (European PTA, Indian PTA, NANOGrav, Parkes PTA '23)
- Mostly likely supermassive black holes, but new physics cannot be ruled out yet

Analogue experiments

- Testing cosmology in laboratory: nucleation theory essentially the same in laboratory and in cosmology
- Superfluid Helium-3 Hindmarsh et al. [arXiv:2401.07878](https://arxiv.org/abs/2401.07878)
- Ferromagnetic superfluids Zenesini et al. [arXiv:2305.05225](https://arxiv.org/abs/2305.05225)
- Proposals to test nucleation in (other) ultracold atomic gases [arXiv:1408.1163](https://arxiv.org/abs/1408.1163) [arXiv:2212.03621](https://arxiv.org/abs/2212.03621) [arXiv:2307.02549](https://arxiv.org/abs/2307.02549) Hindmarsh et al.

[arXiv:2401.07878](https://arxiv.org/abs/2401.07878)

Key points – why the accurate estimation of bubble nucleation rate is important

- Relativistic field theory generalisation Callan & Coleman [\(Phys. Rev. D 16, 1762 \(1977\)\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.1762)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)

$$
\Gamma = A_{\rm dyn} \times \sqrt{\left| \frac{\det(S''[\phi_0]/2\pi)}{\det'(S''[\phi_b]/2\pi)} \right|} \left(\frac{\Delta S[\phi_b]}{2\pi} \right)^{3/2} e^{-\Delta S[\phi_b]}
$$

 $\Gamma = A_{\text{dyn}} \times A_{\text{stat}}$

- Relativistic field theory generalisation Callan & Coleman [\(Phys. Rev. D 16, 1762 \(1977\)\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.1762)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)

Usually not computed!

$$
\Gamma = A_{\rm dyn} \times \sqrt{\left| \frac{\det(S''[\phi_0]/2\pi)}{\det'(S''[\phi_b]/2\pi)} \right|} \left(\frac{\Delta S[\phi_b]}{2\pi} \right)^{3/2} e^{-\Delta S[\phi_b]}
$$

 $\Gamma = A_{\text{dyn}} \times A_{\text{stat}}$

- Relativistic field theory generalisation Callan & Coleman (*Phys. Rev. D 16, 1762 (1977)*)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)
- Determining the prefactor difficult, even in perturbation theory
- Perturbation theory suffers from the so-called infrared problem

$$
\frac{g^2}{e^{E/T} - 1} \xrightarrow{E \ll T, \mathbf{p} = \mathbf{0}} \frac{g^2 T}{m}
$$

- Relativistic field theory generalisation Callan & Coleman (*Phys. Rev. D 16, 1762 (1977)*)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)
- Determining the prefactor difficult, even in perturbation theory
- Perturbation theory suffers from the so-called infrared problem

$$
\frac{g^2}{e^{E/T}-1} \xrightarrow{E \ll T, \mathbf{p}=\mathbf{0}} \frac{g^2T}{m}
$$

- Relativistic field theory generalisation Callan & Coleman (*Phys. Rev. D 16, 1762 (1977)*)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)
- Determining the prefactor difficult, even in perturbation theory
- Perturbation theory suffers from the so-called infrared problem

Gould, Tenkanen

- Relativistic field theory generalisation Callan & Coleman [\(Phys. Rev. D 16, 1762 \(1977\)\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.1762)
- Finite temperature approach introduced later by Affleck & Linde (Phys. Rev. Lett. 46, 388 [\(1981\),](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.46.388) [Phys. Lett. B 100, 37 \(1981\)\)](https://www.sciencedirect.com/science/article/pii/0370269380907698?via%3Dihub)
- Determining the prefactor difficult, even in perturbation theory
- Perturbation theory suffers from the so-called infrared problem
- Introduces uncertainty! How accurate are our cosmological predictions?
- Moore, Rummukainen & Tranberg introduce a simulation method [\(hep-lat/0103036,](https://arxiv.org/abs/hep-lat/0103036) [hep](https://arxiv.org/abs/hep-ph/0009132)[ph/0009132\)](https://arxiv.org/abs/hep-ph/0009132)

Key points – why the accurate estimation of bubble nucleation rate is important

Real scalar theory

For equilibrium dynamics, see Gould, [arXiv:2101.05528](https://arxiv.org/abs/2101.05528)

- Toy model possessing key features of BSM models
	- o Potential has a tree-level barrier
	- o Strong phase transition
	- o Perturbative expansion simpler (we understand the dynamics)
- Dimensional reduction (imaginary time, high temp)

$$
\mathscr{L} = -\frac{1}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi - V(\varphi) - J_{1}\varphi - J_{2}\varphi^{2} \quad \text{interaction} \quad \text{Eerms}
$$
\n
$$
V(\varphi) = \sigma\varphi + \frac{1}{2}m^{2}\varphi^{2} + \frac{1}{3!}g\varphi^{3} + \frac{1}{4!}\lambda\varphi^{4}, \qquad \text{Model} \quad \text{parameters}
$$

Dimensional reduction

Kajantie et al. [hep-ph/9508379](https://arxiv.org/abs/hep-ph/9508379)

- At high temperatures system looks 3d
- Dimensional reduction 4d cont \rightarrow 3d cont
- Integrate out heavy modes, match correlation functions
- (3d cont \rightarrow 3d lattice)

Real scalar theory

For equilibrium dynamics, see Gould, [arXiv:2101.05528](https://arxiv.org/abs/2101.05528)

- Toy model possessing key features of BSM models
	- o Potential has a tree-level barrier
	- o Strong phase transition
	- o Perturbative expansion simpler (we understand the dynamics)
- Dimensional reduction (imaginary time, high temp)

[hep-ph/0009132](https://arxiv.org/abs/hep-ph/0009132)

• Langevin equation

$$
\partial_t \phi(t, \mathbf{x}) = \pi(t, \mathbf{x}),
$$

\n
$$
\partial_t \pi(t, \mathbf{x}) = -\frac{\delta H_{\text{eff}}}{\delta \phi} - \gamma \pi(t, \mathbf{x}) + \xi(t, \mathbf{x})
$$

\n1. 2. 3. 4. $\Gamma = A_{\text{dyn}} \times A_{\text{stat}}$

Pick an order parameter, simulate probability distribution

$$
\theta_{\rm op}' = \bar{\phi}
$$

Pick an order parameter, simulate probability distribution

$$
\theta_{\rm op}' = \bar{\phi}
$$

Pick an order parameter, simulate probability distribution

$$
\theta_{\rm op}' = \bar{\phi}
$$

Pick an order parameter, simulate probability distribution

$$
\theta_{\rm op} = \bar{\phi^2} - 2A\bar{\phi}
$$

- Separatrix configurations suppressed by e^{-65}
	- \rightarrow Multicanonical Monte Carlo

Pick and the parameter of the probability
Calculate the probability \overline{c} 2. Draw separatrix comigurate the probability

- Draw field configurations from a $\theta_{\rm op} \in [\theta_{\rm c} - \frac{\epsilon}{2}, \theta_{\rm c} + \frac{\epsilon}{2}]$ narrow range
- These are initial conditions for the time evolution
- Calculate probability of the critical bubble and normalise it to the probability of being in the metastable phase

3. Determine the tunnelling fraction 3. Determine the tunnelling fraction

- Time evolve field configurations
- Determine if a time evolved trajectory has tunneled
- If metastable \rightarrow stable (or vice versa) then $\delta_{\rm tunnel}=1$

$$
\mathbf{d} = \frac{\delta_{\mathrm{tunnel}}}{N_{\mathrm{crossings}}}
$$

3. Determine the tunnelling fraction 3. Determine the tunnelling fraction

- Time evolve field configurations
- Determine if a time evolved trajectory has tunneled
- If metastable \rightarrow stable (or vice versa) then $\delta_{\rm tunnel}=1$

$$
\mathbf{d} = \frac{\delta_{\mathrm{tunnel}}}{N_{\mathrm{crossings}}}
$$

3. Determine the tunnelling fraction 3. Determine the tunnelling fraction

- Forest-Ruth, 4th order accurate symplectic integrator built from $\pi_{t+\frac{1}{2},x} = \pi_{t,x} - \frac{\partial H_{\text{eff}}}{\partial \phi_{t,x}} \frac{\Delta t}{2},$ Leapfrog $\phi_{t+1,x} = \phi_{t,x} + a^3 \pi_{t+\frac{1}{2},x} \Delta t,$ $\pi_{t+1,x} = \pi_{t+\frac{1}{2},x} - \frac{\partial H_{\text{eff}}}{\partial \phi_{t+1,x}} \frac{\Delta t}{2}$
- + noise and damping in momentum refresh

 $t=\Delta t$

4. Rate of change of the order
parameter **calculate the parameter**

• Flux - describes the rate of change of the order parameter a it crosses the separatrix

$$
\langle \text{flux} \rangle = \left\langle \left| \frac{\Delta \theta_{\text{op}}}{\Delta t} \right|_{\theta_c} \right\rangle
$$

4.

- Can be solved analytically!
- Order parameter dependent!

Nucleation rate, non-perturbatively

Pick an order parameter, simulate probability distribution

Draw separatrix configurations, \vert 2. \vert Draw separatrix configurate the probability

3. Determine the tunnelling fraction

4.

pnormalised

 $\langle \mathrm{flux} \rangle$

Rate of change of the order parameter

Nucleation rate, non-perturbatively

Pick an order parameter, simulate probability distribution

Draw separatrix configurations, 2. Praw separatrix comigurate 2.

$$
\Gamma \mathcal{V} \approx P_c^{\rm normalised} \frac{1}{2} \left< \textrm{flux} \right> \left< \textbf{d} \right>
$$

3. Determine the tunnelling fraction

4.

Results – Continuum limit

- Zero lattice spacing extrapolation
- We use O(a²) improved lattice discretisation
- One-loop approx for screening mass is 0.294
- Linear order parameter for reference, reduced errors in quadratic

Results – Volume limit

- Long range correlations die off exponentially with distance (3d model has no massles modes)
- $\bullet \rightarrow$ we fit an exponential
- We find agreement with the perturbative screening mass $m_{\rm s}/\lambda_3 = 0.287(12)$

Results – Nucleation rate

- Tree-level = functional det and dynamic prefactor approx as $T⁴$
- LPA = Local potential approx
- Lattice = one simulated param point, reweighted to other temps

Key points – do we fully understand bubble nucleation? Gould, [arXiv:2101.05528](https://arxiv.org/abs/2101.05528)

- Tree-level is 100% away, one-loop is 20% away in log *Γ*, system should be well described by oneloop (in linear space $10^{17}\%$ and $10^{6}\%$)
	- o Do we understand the discrepancy between lattice and perturbative results?
- Latent heat on the lattice vs. one-loop agree to 1% (in linear space)
	- o Semiclassical expansion breaks down? [arXiv:2201.07331](https://arxiv.org/abs/2201.07331) Other saddle points? Something else? [arXiv:1604.06090,](https://arxiv.org/abs/1604.06090) [arXiv:1806.06069](https://arxiv.org/abs/1806.06069)

Conclusions

- Allows us to calibrate the uncertainty in PT parameters when obtained from perturbative results
- Accurate computations of the nucleation rate are crucial for calculating e.g. the GW power spectrum
- Our simulations show us a suppression of the nucleation rate by a factor of 20 compared to the one loop estimate
- Method and results can be applied to other theories

One-bubble takeaway Nucleation rate calculations are inaccurate in perturbation theory, lattice is significantly better

BACKUP – DIMENSIONAL REDUCTION

• Fourier expansion

$$
\int_{\tau} \int_{x} \left[\frac{1}{2} \psi(\tau, x) (-\nabla^2 - \partial_{\tau}^2 + m^2) \psi(\tau, x) \right] = \frac{1}{T} \sum_{n} \int_{x} \left[\frac{2}{2} \phi_n(x) (-\nabla^2 + (n\pi T)^2 + m^2) \phi_n(x) \right]
$$

• Masses of the Fourier (Matsubara) modes are now

$$
m_n^2 = (n\pi T)^2 + m^2
$$

BACKUP – DIMENSIONAL REDUCTION

Soft:

 $E \sim gT$

 $E \sim \pi T$

Supersoft:

Ultrasoft:

 $E \sim g^{3/2}T$

 $E \sim g^2T$

Backup - Reweighting

- Simulations are computationally expensive \rightarrow use reweighting the order parameter histogram at different parameter points
- In our case we reweight in two parameters

