

RF power for Eupraxia@SPARC_LAB

David Alesini, INFN-LNF, Frascati

on behalf of the TeX technical team and the EuPRAXIA@SPARC_LAB RF team

2nd Workshop on efficient RF Sources

23-25 September 2024, Toledo, Spain

1. EuPRAXIA@SPARC_LAB Project

- X Band LINAC
- X BAND RF MODULE

2. TEX FACILITY STATUS AND PERSPECTIVES

- TEST OF X BAND ACCELERATING STRUCTURES
- TEST OF THE RF COMPONENTS

3. S BAND INJECTOR

EuPRAXIA@SPARC_LAB Project

⇒ The project EuPRAXIA@SPARC LAB is the **pillar** of the **European** Project **EUPRAXIA** (http://www.eupraxia-project.eu/) and is project based on beam driven plasma wakefield acceleration (**PWFA**). It aims at constructing a FEL radiation source (λ_{FFI} = 4 nm) combining:

- **1** GeV RF X-band Linac with an high brightness S band photo-injector
- Plasma module for PWFA.
- \Rightarrow The project is currently in the preparatory phase of the **Technical Design Report** (end 2025).
- \Rightarrow A **new building**, now under executive design phase, will host the new Facility at LNF, the construction should start in September 2026.

Overview of the LINAC

Photocathode RF gun S-band Injector

photocathode RF Gun and 4x TW S-band structure. (**Possible upgrade in C-band**)

Courtesy of E. Di Pasquale

X-band RF Module Schematic Layout

E^{*}PRA

X-band RF Module Layout

RF MODULE POWER SOURCES: ORIGINAL OPTIONS

CPI

CANON

- » 1x BOC on one line
- » Higher flexibility
- » Lower Modulator power requirements
- » Possible upgrade at high rep. rate of the Linac (400 Hz)

OPTION

- » 2x BOC on one line
- » Less flexibility
- » Different LE and HE module layout

- The TEst-stand for X-band (TEX) is conceived for R&D and test on high gradient X-band accelerating structures, RF components, LLRF systems
- » It has been co-funded by Lazio region in the framework of the LATINO project (Laboratory in Advanced Technologies for INnOvation).
- » The setup has been done in collaboration with CERN (that provided the klystron) and it will be also used to test CLIC structures
- The installation and commissioning of the whole system (Source and RF network, LLRF, vacuum and EPICS control system) have been completed by the end of 2022 [3,4,5].

» Then started the testing activity:

Period	Device tested at high power		
Jan Feb. 2023	3D printed Spiral RF loads and wg		
May - Oct. 2023	X-band T24 CLIC structure		
Nov Dec. 2023	X-band Mode converter and circular wg		
Jan Feb. 2024	X-band RF waterload from PSI		
March 2024	20 cells first EuPRAXIA RF prototype		

[3] F. Cardelli et al., 13th Int. Particle Accelerator Conf. IPAC22, Bangkok, Thailand, Jun. 2022, paper TUPOPT061

[4] L. Piersanti et al. "RF power station stabilization techniques and measurements at LNF" In Proc. IPAC24 - TUPR01.

[5] L. Piersanti et al. "Design and test of a klystron intra-pulse phase feedback system for electron linear accelerators" Photonics 2024, 11(5), 413.

LLRF system

50 MW RF Source

VKX8311A Klystron

EuPRAXIA X-band structure power test

	Val	ue	
PARAIVIETER	CG	CI	
Frequency [GHz]	11.9	942	
Average acc. gradient [MV/m]	6	0	
Structures per module	2	2	
Iris radius a [mm]	3.85 - 3.15	3.5	
Tapering angle [deg]	0.04	0	
Struct. length L _s act. Length [m]	0.94		
No. of cells	112		
Shunt impedance R [MΩ/m]	93-107	100	
Effective shunt Imp. $R_{sh eff}$ [M Ω /m]	350	347	
Peak input power per structure [MW]	70		
Filling time [ns]	13	30	
Peak Modified Poynting Vector [W/µm ²]	3.6	4.3	
Peak surface electric field [MV/m]	160	190	
Repetition Rate [Hz]	100 (400)	

distance [m]

TEST AND REALIZATION OF X-BAND WAVEGUIDE EUPRAXIA

COMPONENT	DESIGN BY	STATUS	LEVEL OF POWER TO BE TESTED FOR EUPRAXIA MODULE	TEST DONE SO FAR	
Pump units (rect. Wav.)	CERN	Fabricated and installed @ TEX	25 MW 1.5 μs and 70-35 MW 0.13 μs Compressed pulse 100 Hz	45 MW, 1 μs, 50 Hz, P _{avg} = 2.25 kW	
Directional coupler	CERN	Fabricated and installed @ TEX	25 MW 1.5 μs and 70-35 MW 0.13 μs compressed pulse 100 Hz	45 MW, 1 μs, 50 Hz, P _{avg} = 2.25 kW	
Splitter	CERN	Fabricated and installed @ TEX	70-35 MW, 0.13 μs Compressed pulse 100 Hz	35 MW, 0.6 μs, 50 Hz, P _{avg} = 1 kW	
RF load	CERN	Fabricated and installed @ TEX	18-9 MW 0.13 μs compressed pulse 100 Hz	17 MW, 0.6 μs, 50 Hz, P _{avg} = 0.5 kW	0
Mode converter circular/rect	INFN	Fabricated and Installed @ TEX	25 MW 1.5 μs 100 Hz	35 MW, 1 μs, 50 Hz, P _{avg} = 1.75 kW	
Pump unit (circ. Waveg.)	INFN	Fabricated and Installed @ TEX	25 MW 1.5 μs 100 Hz	35 MW, 1 μs, 50 Hz, P _{avg} = 1.75 kW	
3dB hybrid	CERN	Delivered	140-70 MW 0.13 μs Compressed pulse 100 Hz		
BOC pulse compr.	PSI	Delivered	140-70 MW 0.13 μs Compressed pulse 100 Hz		

TEX Upgrade with new Power Sources

Currently, the test stand TEX is based on **CPI VKX8311A** Klystron **on loan from CERN** already **commissioned** and **in operation**.

Three other klystrons are being installed at TEX:

1. CANON X Band 25 MW, 400 Hz E37119 Status:

- FAT of the klystron done @ CANON on a PFN modulator 11/2023, 25 MW, 10 Hz, t=1.5us
- FAT of the RF source @Scandinova 05/2024, full power in diode mode
- Modulator and klystron positioned at TEX

3. CANON C Band E37217

Status:

- FAT of the klystron done @ CANON on a PFN modulator 11/2023, 20 MW, 10 Hz, t=2.5us
- FAT of the RF source @Scandinova 05/2024, full power in diode mode
- Modulator and klystron positioned at TEX

2. CPI X Band 50 MW, 100 Hz High efficiency VKX8311HE

Status:

• Tender has been done, realization phase (expected delivery from CPI Sept 2025)

The commissioning of these sources and the waveguide networks is scheduled for January 2025, after the installation of the cooling and power systems that will serve these sources.

	Parameter	Unit	Canon F37119	CPI		Canon
	Frequency	MHz	L3/115	11994	VRX0511	5712
	Vk beam voltage	kV	312	415	420	280
Ī	Ik cathode current	Α	199	201	320	240
	Peak RF output Power	MW	25	50	50	20
5	Average RF output power	kW	15	7,5	7,5	21
5	Modulator Average power	kW	80	25	48	80
	RF pulse length	μs	1,5			2.5
5	Repetition Rate	Hz	400	100	100	400
r	Gain	dB	47	50	47	50
r c	Efficiency	%	40	55	38	40
ן ז ג	Perveance	μр	1.16	0.75	1.15	1
	50MW, 50 Hz X-band Source	25 MW, 400 Hz X-band Source				

New RF Power Sources: Detailed Parameters Eupra Kia

Canon E37119

Parameters	Symbol	Units	Min.	Max.	Notes
Frequency	f	MHz	11993	11995	
Heater Voltage	Ef	V		22	3, 24
Heater Current	lf	Α		22	3
Heater Current (surge)	lf(surge)	А		28	3
Heater Warm-up Time	tk	minutes	60		
Peak Forward Beam Voltage	еру	k∨		335	4
Peak Inverse Beam Voltage	ерх	kV		30	
Peak Cathode Current	ik	А	-10	225	
Peak Drive Power	pd	W		500	5
Peak RF Output Power	ро	MW		25.5	
Average RF Output Power	Po	kW		15.3	
Collector Dissipation	Pcol	kW		100	
Pulse Width(duration) (epy)	t(epy)	μs		3.5	6
Pulse Width(duration) (rf)	t(rf)	μs		1.5	7
Pulse Repetition Rate	prr	pps		400	
Load VSWR (occasionally)	σL			1.4:1	8,9
Load VSWR (stable condition)	σL,s			1.2:1	9
Coolant Flow (collector)	Qw	l/min	65		10
Coolant Flow (body)	Qw	l/min	15		10
Coolant Flow (window)	Qw	l/min	1.8	3	10
Inlet Coolant Temperature	Tw,i	centigrade	5	35	10, 11
Outlet Coolant Temperature	Tw,o	centigrade		65	10
Coolant Pressure Collector	Pw,c	MPa		1	10
Body	Pw,b	MPa		0.8	10
Window	Pw,w	MPa		0.3	10
Waveguide Pressure	PW/G	Pa		1.3x10⁻⁵	13
(Vacuum)		(Torr		1x10 ⁻⁷)	
Environmental temperature	Те	Centigrade	e 0	40	12
Environmental humidity	Н	%	0	90	11, 12
Ion pump Voltage	Eip	kV	3.1	3.9	2

VKX-8311A3

Communications & Power Industries

Canon E37119

Parameters	Symbol	Units	Min.	Max.	Notes
Frequency	f	MHz	5711	5713	
Heater Voltage	Ef	V		24	3, 4, 5, 27
Heater Current	lf	А		24	5
Heater Current (surge)	lf(surge)	А		30	5
Heater Warm-up Time	tk	minutes	60		
Peak Forward Beam Voltage	еру	kV		280	6, 7
Peak Inverse Beam Voltage	ерх	kV		30	7A
Peak Cathode Current	ik	А	-10	240	8, 8A
Peak Drive Power	pd	W		500	9
Peak RF Output Power	ро	MW		21	
Average RF Output Power	Po	kW		21	
Collector Dissipation	Pcol	kW		100	
Pulse Width(duration) (epy)	t(epy)	μs		5.0	10
Pulse Width(duration) (rf)	t(rf)	μs		2.5	11
Pulse Repetition Rate	prr	pps		400	
Load VSWR (occasionally)	σL			1.4:1	11A
Load VSWR (stable condition)	σL			1.2:1	11B
Coolant Flow					
Collector	Qw	ℓ/min	65		12, 14
Body	Qw	ℓ/min	15		12, 14
Waveguide	Qw	ℓ/min	2	3	12, 14
Inlet Coolant Temperature	Tw,i	°C	5	35	12, 12A
Outlet Coolant Temperature	Tw,o	°C		65	12, 14
Coolant Pressure					
Collector	Pw	MPa		1	12
Body	Pw	MPa		0.8	12
Windows and waveguide	Pw	MPa		0.3	12
Waveguide Pressure (Vacuum)	PW/G	Pa		1.3x10⁻⁵	13
		(Torr		1x10 ⁻⁷)	
Environmental Temperature	Те	°C	0	40	12A
Environmental Humidity	Н	%	0	90	12A, 12B
lon pump Voltage	Eip	kV	3.1	3.9	2

PARAMETER	UNITS	VALUE
RF Frequency	MHz	11994.2
Bandwidth at -1dB	MHz	<u>≥</u> 10
RF Power:		
Pout - Peak Power at the output flange of the klystron [*]	MW	<u>≥</u> 45
Average RF Power	kW	<u>≥</u> 3.75
Maximum Klystron peak Current	А	240
Maximum High voltage applied to the cathode	kV	450
Trf, RF Pulse length (at -3dB) [*]	μs	1.5
HV Video Pulse length (FWHM)	μs	<u>≤</u> 3.5
Repetition Rate [*]	Hz	<u>100</u>
Tolerable peak reverse voltage	kV	<u>≤</u> 30
Efficiency at peak power	%	≥46
RF gain at peak power	dB	<u>≥</u> 47
Perveance	μΑ/ν ^{1.5}	<u>≥</u> 0,67
Variation of anodic current (at klystron peak power) within +/-5% cathode heater power variation	%	±3
Stability of RE output signal over the range of		

0.5-1.0 of max. power and 0.75 -1.0 of max. cathode HV to be:

RF input vs output phase jitter [**]	RF degree	± 0.5 max
RF amplitude jitter	%	± 0.25 max
Fraction of RF power in 2 nd harmonic	dB	<u>≤</u> -20
Pulse failures (arcs etc.) during 24-hour continuous test period		<u>≤</u> 1
Radiation at 1 m distance from klystron	µSv/h	<u><</u> 1

Istituto Nazionale di Fisica Nucleare

Hz.

- ⇒ A new C band RF photo-gun with the brazing free technology has been designed, built, assembled and installed at PSI (with solenoid and vacuum chamber): I-FAST project.
- \Rightarrow The design is compatible with the 400 Hz operation
- \Rightarrow The high power tests showed ~160 MV/m cathode peak field limited w/o gun limitation.
- ⇒ The C band gun will be installed in the TEX facility and used for high beam quality generation and experiments.
- ⇒ The possibility of a full C band injector for EUPRAXIA@SPARC_LAB is also being considered for the possibility to operate at 400

[6] D. Alesini et al. "Design, realization and high power test of the new brazed free C-band Photo-Gun" In Proc. IPAC24 – THAN01

RF Load

Overview of the LINAC

X-band (11.994 GHz)

K300 Modulator

Canon E37119

- The Linac uses an S-band photo-injector followed by an X-band LINAC to produce a high brightness electron beam up to an energy of 1 GeV (Q = 200-500 pC, ε_{RMS} ≤ 1 mm·mrad, PRF = 100Hz).
- The beam can be either injected directly in the FEL undulators or used to drive the plasma module for PWFA to further increase the energy.

S-band (2856 MHz) 3x E37314 60 MW Canon Klystron + Solid State modulator Undulators

Plasma module

X-band modules

X-band Booster 16x, 0.9m, TW accelerating structures that has to work at 60 MV/m

Photocathode RF gun S-band Injector

photocathode RF Gun and 4x TW S-band structure. (Possible upgrade in C-band)

> 14 Courtesy of E. Di Pasquale

S BAND INJECTOR MECHANICAL LAYOUT

INFŃ

Istituto Nazionale di Fisica Nucleare

Courtesy E Di Pasquale

S BAND INJECTOR RF SCHEMATIC LAYOUT

Frequency [GHz]

Iris radius a [mm]

No. of cells

[MW]

 P_{out}/P_{in} [%]

Filling time [ns]

RF pulse [µs]

Rep. Rate [Hz]

Unloaded SLED/BOC Q-factor Q₀

Required Kly input power (w/o att.)[MW]

External SLED/BOC Q-factor Q_r

Number of Structures

Tapering of structure

S BAND STRUCTURES PARAMETERS

Structure lenght PARAMETER 2 m 3 m 2.856 Average acc. gradient [MV/m] 35 21 2 2 11.76 10.65 $2\pi/3$ C.I. 85 57 Shunt impedance R [M Ω /m] 56 59 Effective shunt Imp. $R_{sh eff}$ [M Ω /m] 109 114 Peak input power in the structure [MW] 67.2 120 Input power averaged over the pulse 38.6 69 Average dissipated power [kW] 3 5.1 32 920 Peak Modified Poynting Vector $[W/\mu m^2]$ 0.43 1 115 Peak surface electric field [MV/m] 70

150000

21000

4

100

21.5

12.1

Klystron Canon E37314

PARAMETER	Value E37314
Frequency [GHz]	2,856
Maximum ouput power [MW]	60
Average power [kW]	24
Efficiency (%)	41
Gain (dB)	53
Pulse Length (μs)	4
Rep. Rate [Hz]	100
Beam Voltage [kV]	360
Beam current [A]	412

Required klystron powers (considering the waveguide attenuation): $K2 \implies \sim 30-35 \text{ MW}$ $K3 \implies \sim 45-50 MW$

K1: Modulator k300 + Klystron Canon E37314

K2&K3: Modulator k400 + Klystron Canon E37314

X-band Linearizing Cavity and POLARIX deflectors

a = 4 mm	тw	SW
f	11.9942 GHz	11.9942 GHz
Q	6600	8,600
Vg	3.6 %	-
r	85.3 MΩ/m	80 MΩ/m
Eacc	16.5 MV/m	16.3 MV/m
alpha	0.63 1/m	-
Lt	10 cm	10 cm
$Coupling \beta$	-	2
Fill time Tf	9.3 ns	-
Build up τ	-	76 ns*
Pin	3.2 MW	0.37 MW

2 X band klystrond dedicated to this

X-BAND/S-BAND LLRF ACTIVITIES

Requirements phase jitter (compliant with BD requirements):

- 0.02 deg S band (S-band RF stability state of the art (PSI))
- 0.06 deg X band

IPAC24 - TUPR01. [2] L. Piersanti et al. "Design and test of a klystron intra-pulse phase feedback system for electron linear accelerators" Photonics 2024, 11(5), 413.

- ⇒ We cannot develop the system in house because of the complexity, dimension, maintenance for a user facility.
- 2 industrial partners willing to participate to X-band LLRF R&D (Instrumentation Technologies solid LLRF experience, Safran new to high frequency applications);
- ⇒ The internal procedures for the tender for the production of the whole LLRF system should start by the end of 2024;
- ⇒ Detailed jitter studies on X-band power station carried out at TEX facility in February 2024 [1] (no klystron loop):
 - 1. Driver added jitter: <0.04 deg rms
 - 2. Klystron added jitter: <0.04 deg rms
 - 3. LLRF added jitter (tender spec.): <0.015 deg rms
 - 4. Estimated RF station jitter: <0.06 deg rms
- ⇒ **Dedicated stability measurements** will be carried out at SPARC in S band after the SABINA upgrade.
- ⇒ We believe also that with solid state modulator and klystron loops we can have an additional jitter reduction from new fast intra-pulse phase feedback system [2] to be evaluated for S-band and X-band stations at SPARC and TEX respectively.
- \Rightarrow Jitter compression down to 0.019 deg rms already demonstrated for C-band station at SPARC in Dec 2023.

Figure 3: TEX facility RF block diagram.

Courtesy RF group

Highlights

- ⇒ **EuPRAXIA@SPARC_LAB** is the next INFN-LNF facility. It is the beam driven pillar of the European EuPRAXIA project
- \Rightarrow The new machine include **10 X band power stations**: baseline **CANON E37119**
- ⇒ TEX (Frascati Test stand for X-band) is of fundamental importance to validate all the X band components, structures
 - A new X-band RF source based on the E37119 klystron (25 MW, 400Hzwill be commissioned at TEX in the next months, together with a C-band source for C-band photoinjector testing.
 - A high efficiency klystron 50 MW VKX8311HE developed by CPI/CERN should be commissioned in end 2025.
- \Rightarrow Many X-band RF components of the EuPRAXIA RF module have been purchased and tested at nominal power other will be tested soon:
 - The X-band BOC from PSI
 - The hybrid
- X-band structures: An intensive prototyping activity is ongoing exploiting the new vacuum furnace at LNF (Two full-scale mechanical prototypes, the 20 cells CI RF prototype, A full-scale 0.9m RF prototype for high power test is in production.
- \Rightarrow For the S band Injector 60 MW CANON Klystron are foreseen

Aknowledgements:

INFN-LNF: F. Cardelli, S. Bini, B. Buonomo, S. Cantarella, G. Catuscelli, R. Clementi, L. Faillace, M. Ferrario, A. Gallo, C. Di Giulio, E. Di Pasquale, G. Di Raddo, G. Latini, A. Liedl, V. Lollo, L. Piersanti, S. Pioli, B. Serenellini, L. Spallino on behalf of the, INFN-LNF Accelerator Division and Technical Division

CERN: W. Wuensh, N. Catalan-Lasheras, A. Grudiev, G. McMonagle on behalf of the CLIC group

SLAC: V. A. Dolgashev

THANK YOU FOR YOUR ATTENTION!

