

Latest progress of Klystron activities in UESTC

Jinchi Cai*, Zixuan Su, Xinke Zhang, Zheng Zhang, Lin Zeng, Yanyu Wei 2024.9

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Introduction of UESTC

University Ranking

Sichuan	<u>1#</u>
China	<u>20-30#</u>
World	<u>300-400</u> #
E & E	<u>A+</u>

University of Electronic Science and Technology of China (UESTC)

Featured Expertised Acadmics: Vacuum Electronics

Magnetron

TWT

PIC software

2nd Workshop on efficient RF sources

High efficiency klystron development chart

- In recent years, varies types of HE Klystron technology has been proposed to boost Klystron efficiency by 10—30%.
- Apart from enhancing the efficiency performance of Klystron, there are some other critical issues to be addressed.
 - Bandwidth performance of Klystron
 - Compactness of Klystrons
 - Instabilities in Klystrons
 - MBK optics design still takes quite a long time
 - Terahertz/MMW Klystron operates at rather low efficiency
 - Novel Klystron-like devices to be explored

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Broadband Klystron development

Use coupled mode theory to tackle the filterloaded output cavity

Use Small signal theory to handle staggered tuned bunching circuit

Investigation on the Effects of Assembly Gaps

Problems detected: Assmebly gap cause low Q

Based on the findings, a new approach was proposed to conveniently reduce the Q0 of the resonant cavity via employing an appropriately long, relatively narrow gap (1/1000 of its radii, to ensure concentricity even in the worst scenario), thereby facilitating the development of broadband klystrons.

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Ultra-compact HE CSM MBK Using Hybrid-modes Resonant Cavities

 \rightarrow \rightarrow \rightarrow \rightarrow

Parameter	Value	Cavity		Lgap(mm)	f(MHz)	R/Q (Ω)	м	R/Q*M²(Ω)
Operation Frequency (GHz)	1.3	Fundamental m		25	1200	40 5	0.00	24.4
Beam Voltage (KV)	110	Fundamental m	ode cavity	25	1300	43.5	0.89	34.4
Beamlet Current (A)	28	Second harmo	nic cavity	20	2600	24.5	0.69	11.6
Number of Beams	6	Third harmon	ic cavity	15	3900	19.8	0.52	5.3
Beam Tube Radius (mm)	10		Type I	25	1300	11.3	0.89	8.9
Beam Radius (mm)	6.5		(f-2f)		2600	9.4	0.62	3.6
Cathode current emission density	$\leq 8A/cm^2$	hybrid-modes	Type II (f-3f)	20	1300	8.1	0.91	6.7
Output Power (MW)	>10	resonant			3900	3.4	0.43	0.6
Efficiency (%)	>50	cavity	Type IIII (2f-3f) 30	20	2600	11.9	0.53	3.3
Gain (dB)	>40			30	3900	7.5	0.19	0.3
Lr Rr Rr Rr Rr Rr Rr			$\frac{f_{TM_{020}}}{f_{TM_{010}}}\approx 2$		$\frac{f_{TM_{030}}}{f_{TM_{010}}} \approx 3 \qquad \frac{f_{TM_{030}}}{f_{TM_{020}}} \approx 1.5$		1. 5	

Ultra-compact HE CSM MBK Using Hybrid-modes Resonant Cavities

Ultra-compact HE CSM MBK Using Hybrid-modes Resonant Cavities

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Threshold Prediction of Spurious Oscillation

Small signal model is improved to inlcude the effects of backstreaming electrons

400 (M) 300 200 BCR Oscillation 1.1×10^{-4} 1.3×10^{-4} 1.5×10^{-4} Output 0 3×10⁻⁴ 0 200 300 400 500 100 600 Time(ns) CST 1.03 ×10⁻⁴ Safe CST fit 1-1 -2 -3 -3 CST 0 **KlyC** KlyC 1 ×10⁻⁴ Ocillation -5 1.5 2.5 3.0 1.0 2.0 3.5 **4.0** BCR (×10⁻⁴)

Kladistron might not be a good idea in this regards

Collector design acknowleding BCR threshold

With the knowledge of BCR threshold, it is possible to rationally validate and then design the collector without the need for excessively large sizes.

Collector of C band klystron

Suppress HOM Oscillations

A Choke structure to suppress high-order-modes (HOM) oscillations in MBK.

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Fast model for MBK optics optimization

Design Methodology of Adjustable Magnetic System for Klystron

FIG. 11. 3D structure of the magnetic system modeled in CST, and the X-O-Y plane is located at the anode plane.

FIG. 12. (a) Topology of the six-beam gun. (b) 3D electron trajectories of the multibeam gun in immersive flow strategy.

FIG. 13. (a) Beam axis offset in immersive flow mode in CST. (b) Beam axis offset in the Brillouin flow mode in CST.

Design Methodology of Adjustable Magnetic System for Klystron

TABLE III. The gun of the L-band MBK design by the CGUN code.

Parameter	Value
Cathode radius Beam perveance	12 mm
Cathode–anode interval	28.4 mm
Voltage Current	110 kV 28 A
Beam waist radius Maximum cathode loading	6.5 mm 6.2 A/cm ²

TABLE IV. The magnetic system configuration for the L-band MBK. Current density data in the immersive mode are underlined, while that in the Brillouin mode is not.

Component	Thickness/current density (6.5 mm)	Thickness/current density (3.5 mm)
M1	3 mm	
M2	20 mm	
M3	6 mm	
C0	1.386/-0.317 A/mm ²	1.346/-0.475 A/mm ²
C1	1.518/1.03 A/mm ²	0.924/1.4 A/mm ²
C2	1.32/0.634 A/mm ²	1.333/0.688 A/mm ²
C3	$\approx 1.35 \approx 0.41 \text{ A/mm}^2$	$\approx 1.37 \approx 0.82 \text{ A/mm}^2$

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

• 100GHz EIK cavity

• Sensitivity analysis of $R/Q \cdot M^2$

• Selection of operating voltage and current

TABLE I

U (kV)	<i>I</i> (А)	Ρ (μΡ)	<i>R/Q</i> (Ω)	М	Maximum electric field (kV/mm)	Ohmic loss	RF Efficiency
40	2.5	0.31	254	0.723	50.5	1.7%	16.9%
50	2	0.18	297	0.732	62.8	3.1%	25.5%
60	1.66	0.11	331	0.737	66.1	3.5%	28.5%
70	1.42	0.08	361	0.741	72.8	4.4%	29.7%
80	1.25	0.06	384	0.745	81.9	5.3%	30.6%

• EIK circuit simulation model

TABLE II

PARAMETERS OF EACH CAVITY

Cavity	<i>f</i> (GHz)	$R/Q(\Omega)$	M	$Q_{\rm e}$	Q_0	z(mm)	L(mm)
Input	100.3	297	0.7322	258	1117	0	3.7
Idler 1	100.38	305	0.7345	∞	1185	7.36	2.9
Idler 2	100.73	306	0.7297	∞	1194	17.9	2.9
Output	100.14	233	0.4645	155	1117	23.4	4.5

• (a) Output and input signals

• Electron gun and PPM bunching

• The 3D model of novel BOS

• 3D PIC simulation of W-band EIK, conversion efficiency is close to 40%

• Output cavity processing and cold test results

THE DESIGN PARAMETERS OF THE WHOLE EIK					
Voltage (kV)	Current (A)	Maximum electronic efficiency	Maximum RF efficiency		
50	2	44.5%	39.2%		
Maximum RF power(kW)	Maximum electric field(kV/mm)	Gain (dB)	Bandwidth (MHz)		
39.2	120	65.5	250		
Beam transmission	Cathode current density(A/cm ²)	Length(cm)	Diameter (cm)		
94.5%	17	17	10		

TABLE IV

• Overall technical layout of 40kW W-band EIK

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

SW-TW hybrid device

Twsytron, Varian Coporation, US, 1970

a) b) (cathode (cathode (cathode) (c

SW+TW RF GUN, UCLA&Roma Unv., 2011

Klystron-like R-BWO, Northwest N.T, ., 2010

Accurate Space Charge Modeling for 1-D Large Signal Simulation of Sheet Beam TWTs

- Problems to be solved
- Broaden the bandwidth of Klystrons
- Make high efficiency Klystron more compact
- Instabilities in High-gain Klystrons
- Fast design methodology of MBK optics
- Make terahertz Klystron more efficiency
- Novel hybrid TWT/Klystron devices
- Summary and outlook

Summary and outlook

- Lots of Work has been done in UESTC to address some critical issues in the development of Klystrons.
- KlyC has been updated to version 8 include more features (Small signal model, TWT module, Sheet beam module, etc) for more general purpose.
- Prototype of high efficiency S-band 5MW MBK is being developed at home, which will be reported in the next few month.

Thanks for your attention!

