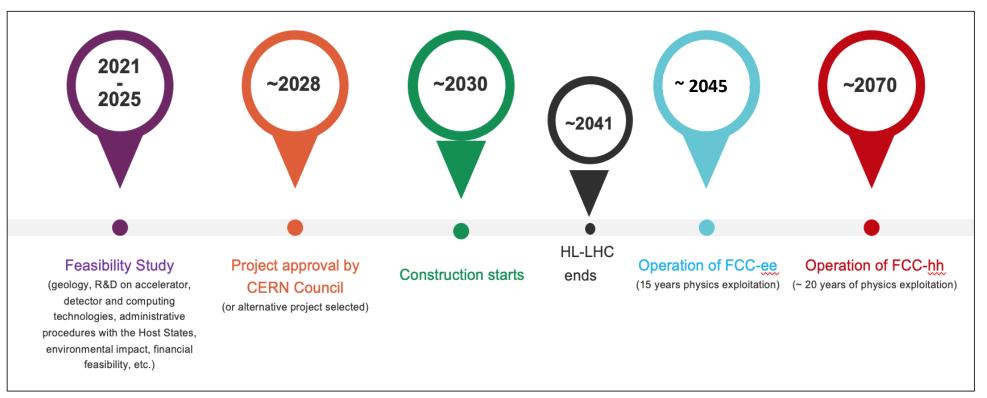
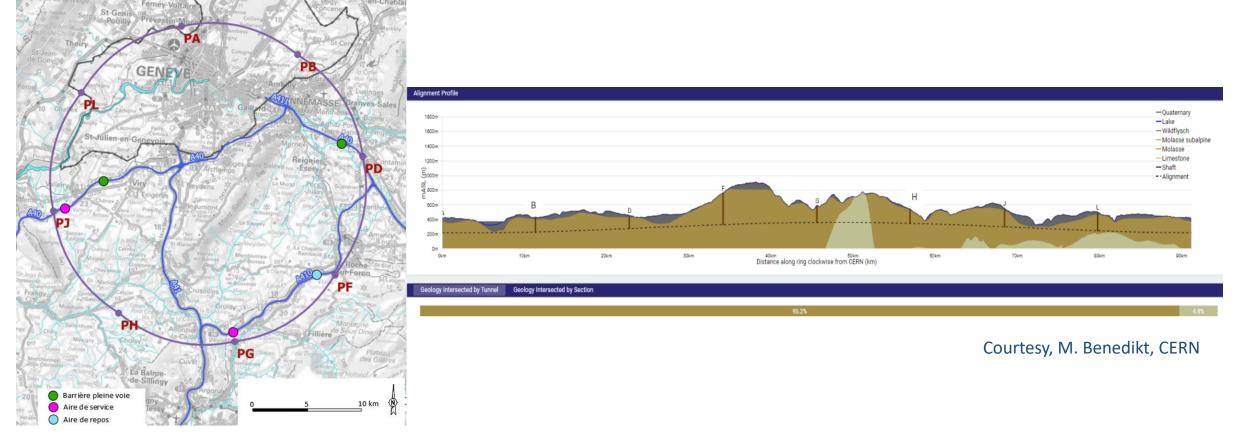
FCC_ee SRF systems


2nd Workshop on efficient RF sources September 23rd, 2024

O. Brunner, on behalf of the FCC SRF WP

FCC: a century of physics

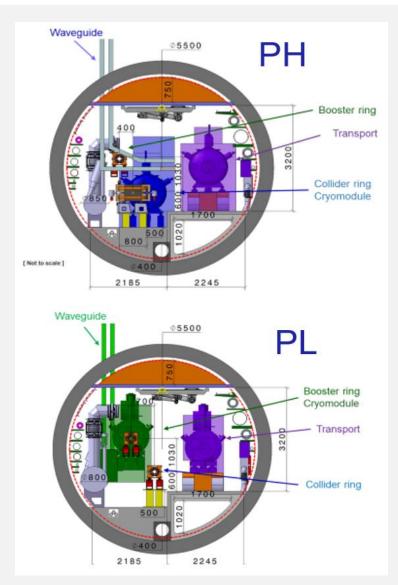
Courtesy, M. Benedikt, CERN


- stage 1: FCC_ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC_hh (~ 100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option

-- Comprehensive long-term program maximizing physics opportunities --

Optimized implementation

- Layout chosen out of ~ 100 initial variants, based on geology and surface constraints (land availability, access to roads, etc.), environment (protected zones), infrastructure (water, electricity, transport), machine performance etc.
- Tunnel implementation \rightarrow aim at minimising tunnel construction risks

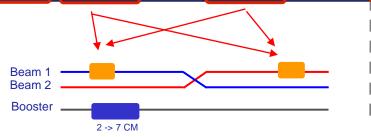


High level RF requirements

	Energy (GeV)	Current (mA)	RF voltage (GV)	
Z	45.6	1280	0.080	High current
W	80	135	1.05	machine
н	120	26.7	2.1	High
ttb	182.5	5	11.3	gradient machine

- Collider (2 rings): 100 MW of RF power in CW (50 MW per ring) to compensate synchrotron radiation losses
- Booster (3rd ring) for top-up injection: to accelerate from 20 GeV to the final energy with 10% beam current and 15% average duty cycle
- Injector complex (not discussed here)
- Availability in operation of 80%

Courtesy, F. Valchkova, CERN



~ 1 MW

Main RF parameters and layout

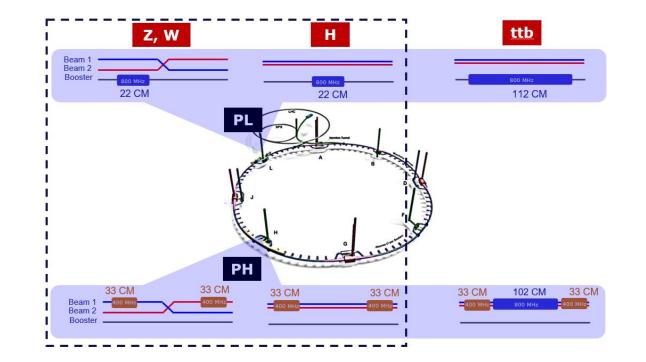
	Z	Z		W		Н		ttb		
	collider	booster	collider	booster	collider	booster	collider	collider	booster	
RF Frequency [MHz]	400.79	801.58	400.79	801.58	400.79	801.58	400.79	400.79	801.58	
Cavity type	1-cell	5-cell	2-cell	5-cell	2-cell	5-cell	2-cell	5-cell	5-cell	
Eacc [MV/m]	3.77	10.7	10.1	15.35	10.6	19.4	10.6	20.1	20.1	
Q0	2.7E+09	3.0E+10	2.7E+09	3.0E+10	2.7E+09	3.0E+10	2.7E+09	3.0E+10	3.0E+10	
Epk [MV/m]	8.3	22	20.2	31.5	21.2	39.8	21.3	41.3	41.3	
Bpk [mT]	20.2	46.3	54	66.5	56.4	84.1	56.7	87.3	87.3	
Beam current [mA]	1283	14.3	135	11.8	53.6	2	10	10	0.3	
RF power [kW]	894	110	377	144	378	32	78	163	5	
Optimum QL	2.5E+04	1.7E+06	8.4E+05	2.7E+06	9.2E+05	2E+07	4.5E+06	4.2E+06	1.3E+08	
Optimum detuning [Hz] 13884	191	601	90	112	11	9	56	1.4	
Operating temp. [K]	4.5	2	4.5	2	4.5	2	4.5	2	2	
dyn losses/cav [W]	8	2.3	117	4	128	9	129	23	20	
# CM (with 4 cav/CM)	<u>14 per beam</u>	2	33 per beam	7	66	27	<u>66</u>	<u>122</u>	<u>135</u>	

one RF system per beam

Courtesy, F. Peauger

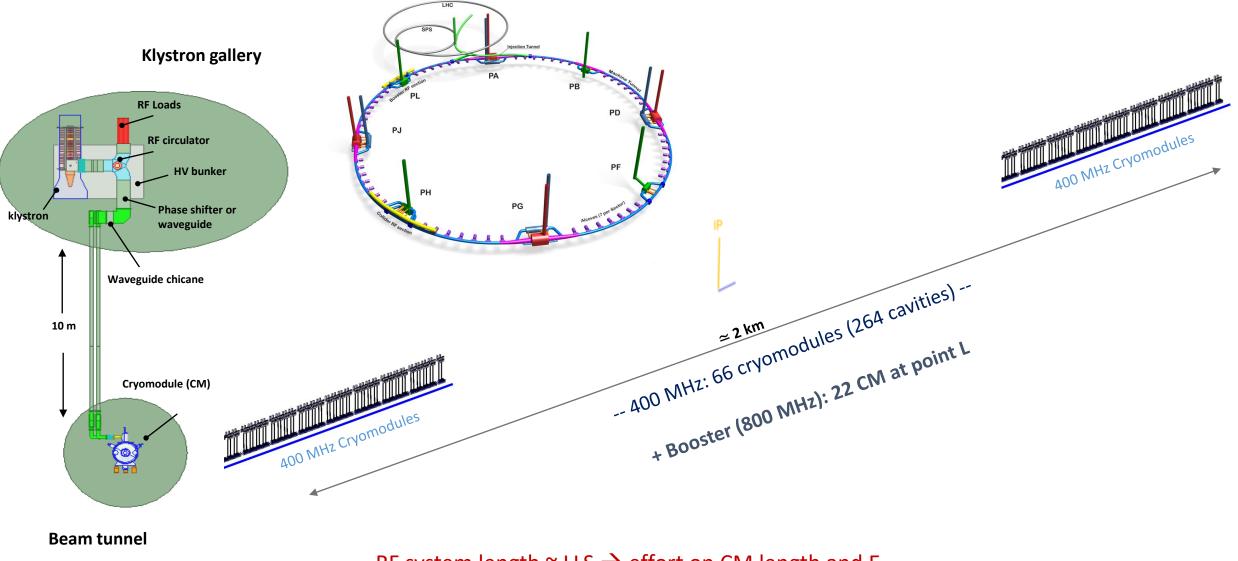
common RF system for both beams

-- Solid but tedious scenario --


-- Dedicated RF system for Z + massive upgrades (CM gymnastics + RF power distribution) --

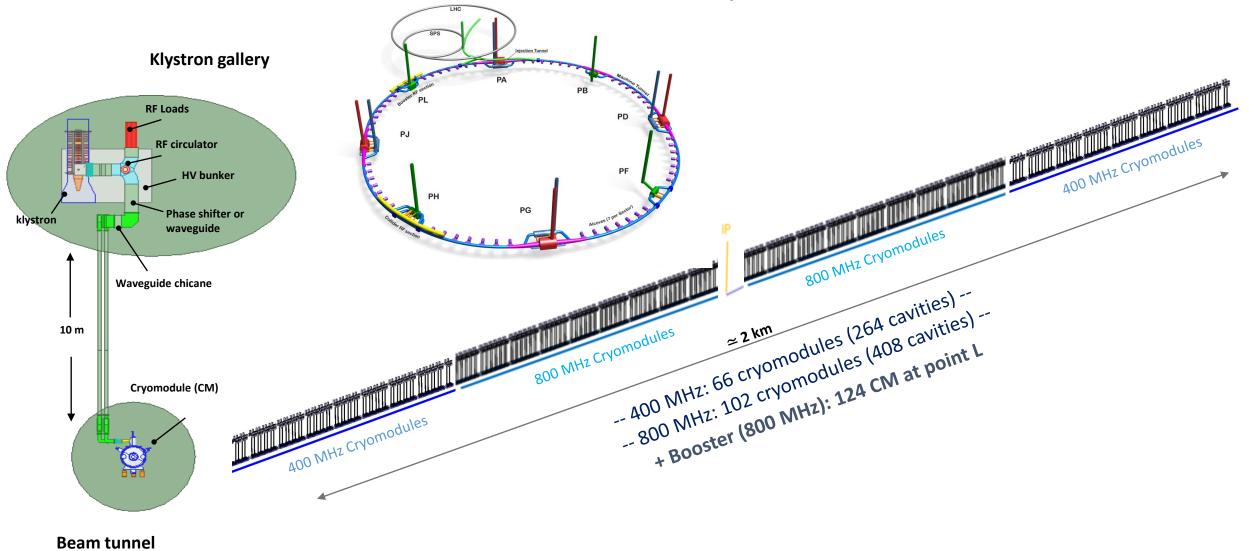
-- Is there any room for improvement ?? --

The dream scenario: (Z-W-ZH) - ttbar


- Single RF system for Z-W-ZH → 400 MHz 2_cells cavities compatible with a common operating point ?
- Increase the "real estate" gradient of the 800 MHz RF system (booster and ttbar) → 5 to 6 cells per cavity ?
- Optimize the design and the use of high efficiency (HE) RF power sources → HE across a wide range of RF power levels ?

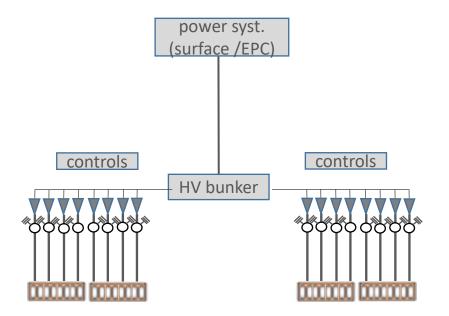
-- more operation time + more flexibility - reduced commissioning effort --

RF system integration (point H)

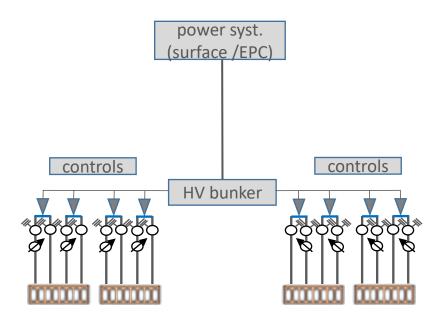


-- RF system length ~ LLS \rightarrow effort on CM length and E_{acc} --

RF system integration (point H)



-- RF system length ~ LLS \rightarrow effort on CM length and E_{acc} --

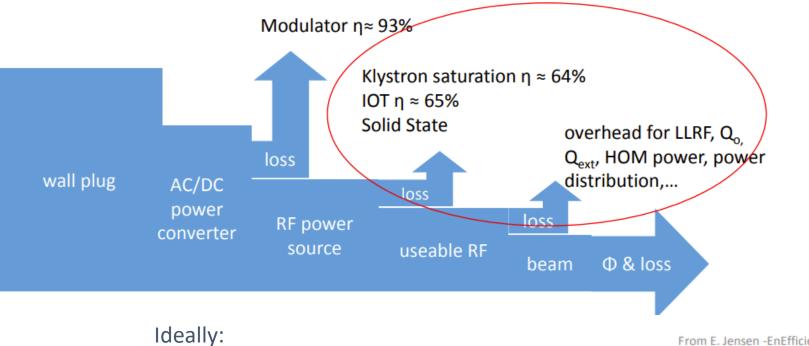


400 MHz RF units' principle: (Z, W, ZH -- ttbar)

<u>Z, W & ZH</u>

- ~400 kW per cavity
- 500 KW TS klystrons
- 1 cavities per klystron + strong feedback per cavity

<u>ttbar</u>


- ~ 80 kW per cavity
- 500 kW TS klystron \rightarrow 132 spare klystrons
- 2 cavities per klystron
- + magic T + phase shifters

-- high-efficiency RF source across a wide power range would avoid any modification for ttbar -- (also highly desired for the 800 MHz system)

-> See Igor's talk

Power source options

• compact

- highly efficient
- reliable
- low power consumption in standby
- large power range
- 'low' cost, several suppliers

-- The whole system must be optimized -- not one efficiency alone --

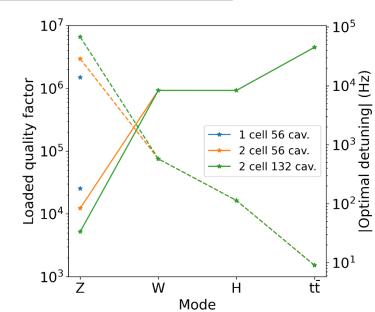
From E. Jensen -EnEfficient RF Sources, The Cockcroft Institute, 3-4 June 2014

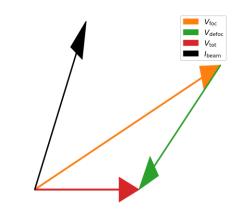
CERN

Unique 2-cells cavities RF system for Z, W, ZH ?

• Motivation:

•

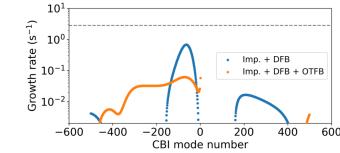

- to operate all cavities at the same Q_{ext} and same P_{RF} for all energies
- Reverse phase operation (RPO) offers this opportunity:
 - allows operation at higher cavity voltages : $cos(\phi_s + \phi_{foc}) = cos(\phi_s + \phi_{defoc})$
 - does not required more RF power (all cavities accelerate the beam)
 - experimentally verified with high beam loading in KEKB and baseline solution for EIC ESR

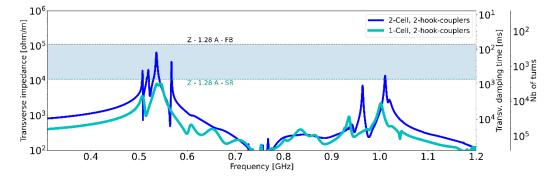

$$Q_{\text{ext,opt}} = \frac{|V_{\text{cav}}|}{|F_b|(R/Q)I_{b,\text{dc}}\cos(\phi_s + \phi_c)}$$
$$P_{g,\text{opt}} = \frac{|V_{\text{cav}}||F_b|I_{b,\text{dc}}\cos(\phi_s + \phi_c)}{2}$$

• cavity voltage can only be changed in discrete steps of $N_{foc}-N_{defoc=2, 4,...}$

Z, W, ZH:		N _{tot}	N _{foc}	N _{defoc}	<i>V</i> _{tot} Z (MV)	V _{cav} (MV)	Q_L	$P_{\rm opt}$ (kW)
	Option 1	132	71	61	88	7.95	9.21e5	378
	Option 2	152	81	71	79	6.88	7.93e5	329

-- RF system: 132 cavities, ~ 400 kW, Q_L ~ 1 e^6 --

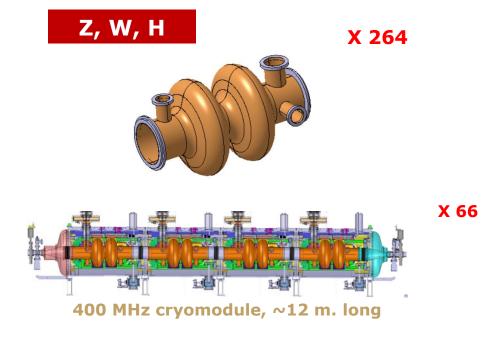




-- Potential showstopper: Synchrotron tune and bunch length spread -- under study

Reverse Phase Operation scheme: to do list

- Coupled-bunch instabilities (fundamental & HOM) -> OK with strong FB
- Higher-order-mode power losses -> 31 to 43 kW per CM (OK if 2-coax concept is demonstrated)
- Transient beam loading
- Availability aspects:
 - Reverse phasing with tripped cavities
 - Beam-induced voltage
 - Coupled bunch instabilities due to fundamental mode without feedback
- Sensitivity of RPO on cavity parameters (e.g., spread of Q_L, input power, ...)
- Impact on FCC-ee booster with all cavities needed for H being installed from the beginning
- Possibility of powering several cavities with a single RF source


٠

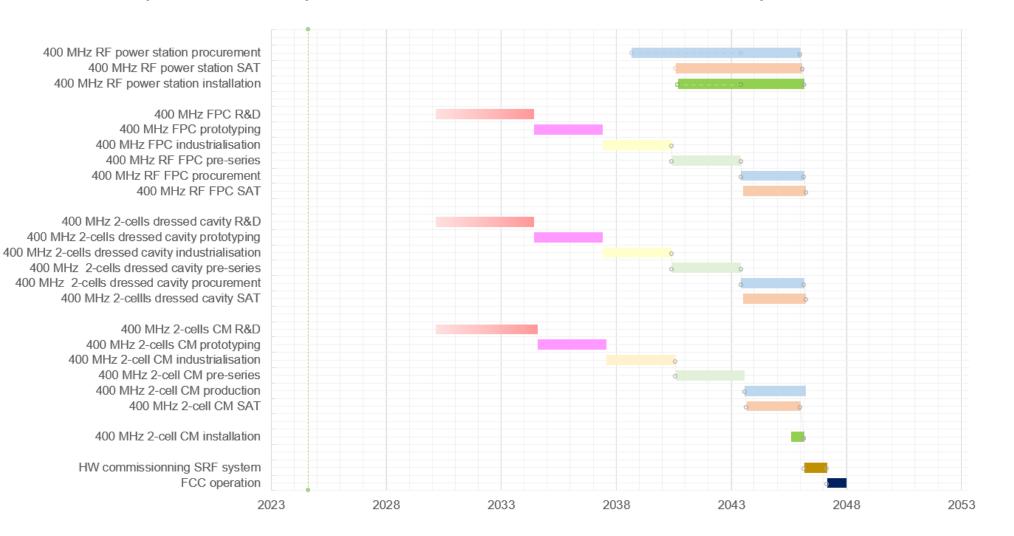
Two design of superconducting RF cavities

- 400 MHz 2-cell cavity
- Niobium thin film on Copper,
- Operation at 4.5 Kelvin
- Max. Accelerating gradient Eacc = 13 MV/m
- Quality factor $Q_0 = 3.3 \times 10^9$

ttb, booster

X 214 (=22+80+112)

X 856 (=88+320+448)



800 MHz cryomodule, ~10 m. long

- 800 MHz 6-cell cavity
- Bulk Niobium
- Operation at 2 Kelvin
- Max. Accelerating gradient Eacc = 24.8 MV/m
- Quality factor $Q_0 = 3.8 \times 10^{10}$

-- streamlined R&D and production effort --

Top-down plan (here 400 MHz only)

-- tight schedule + reduced R&D period --

Summary

- ***** The FCC is a long-term program maximizing physics opportunities
- For FCC-ee, the range of beam energies and beam currents is large between each mode of operation, all scaled to an available 50 MW maximum
- ✤ Ideal RF power source:
 - compact
 - highly efficient
 - reliable
 - low power consumption in standby
 - large power range
 - 'low' cost, several suppliers

Thank you for your attention!